On Strong Rainbow Vertex-Coloring of

Generalized Petersen Graphs

\(G(n,2) \) and \(G(n,3) \)

I. Annammal Arputhamary\(^1\) and M. Helda Mercy\(^2\)

\(^1\) Sathyabama University, Chennai -119, India

\(^2\) Panimalar Engineering College, Chennai-123, India

Abstract

A path in a vertex-colored graph \(G \) is called a rainbow path if no two internal vertices get the same color. A vertex-colored graph \(G \) is strongly rainbow vertex-connected, if for every pair of distinct vertices, there exists at least one shortest rainbow path. The minimum number of colors required to strongly rainbow vertex-color a graph \(G \) is called the strong rainbow vertex-connection number, denoted by \(srvc(G) \). This work presents the exact values of strong rainbow vertex-connection numbers for the generalized Petersen graphs \(G(n,2) \) and \(G(n,3) \).

Mathematics Subject Classification: 05C15, 05C40

Keywords: diameter; chromatic number; rainbow vertex-connection number; strong rainbow vertex connection number; generalized Petersen graph

1. Introduction

The concept of rainbow connection of a graph was first presented by Chartrand et al. in [4]. The vertex version of the rainbow connection, called the rainbow vertex-connection number \(rvc(G) \), was put forward by M. Krivelevich and R. Yuster in 2009 [7]. Computing the rainbow vertex-connection number of an arbitrary graph is \(NP \) Hard [7]. Let \(G(V,E) \) be a graph. A vertex-coloring of a
graph G is a function from its vertex set to the set of natural numbers. A path in a vertex-colored graph G is called a rainbow path if no two internal vertices get the same color. A vertex-colored graph G is rainbow vertex-connected if every pair of vertices is connected by at least one rainbow path. Such a coloring is called a rainbow vertex-coloring. The rainbow vertex-connection number $rvc(G)$ is the minimum number of colors needed for rainbow vertex coloring of a graph G. Similarly, a vertex-colored graph G is strongly rainbow vertex-connected, if for every pair of distinct vertices, there exists a rainbow geodesic (shortest rainbow path). The minimum number of colors required to strongly rainbow vertex color a graph G is called the strong rainbow vertex-connection number, denoted by $srvc(G)$. Let $c(v)$ denote the color of the vertex $v \in V$. The distance between two vertices u and v in G, denoted by $d(u,v)$ is the length of a shortest path between them in G. The eccentricity $e(v)$ of a vertex v in a connected graph G is $\max\{d(u,v) \mid u \in V\}$. The maximum eccentricity of all vertices in a graph G is called the diameter $diam(G)$ of the graph.

2. An overview of the paper

The Petersen graph which appears throughout the literature of graph theory, is named after Julius Petersen, the Danish Mathematician. It was Watkins [8] who surmised that the class of generalized Petersen graphs have a Tait coloring, in addition to $G(5,2)$. This inference was proven in [3]. From then on this class of graphs is being analyzed extensively because of its applications. The graph $G(n,k)$ with n and k relatively prime was proposed by Coxeter in [5]. The credit for determining all the hamiltonian generalized Petersen graphs goes to Alspach [2]. The generalized Petersen graphs have been the focus of study of several other authors as well. In 2012, Huang et. al studied $L(2,1)$ labeling of generalized Petersen graphs [6]. In 2013, Ahmad et al. [1] investigated the metric dimension of generalized Petersen graphs.

This paper investigates the strong rainbow vertex-connection number of some classes of generalized Petersen graph $G(n,2)$ and $G(n,3)$.

3. Strong Rainbow-Vertex Connection Number of $G(n,2)$ and $G(n,3)$

In this section, we investigate the strong rainbow vertex connection in $G(n,2)$ for odd and even n and $G(n,3)$ for odd n.

Theorem 3.1: Let $G(n,2)$ be the generalized Petersen graph, where n is even and $n \geq 10$. Then $srvc(G(n,2)) = 2 + \frac{n}{2}$.
Proof: Since \(n \) is even, the outer rim is an even cycle of length \(n \) and there are two inner rims each of which is a cycle of length \(\frac{n}{2} \). Our aim is to find the minimum number of colors required for the \(U \) – vertices and \(V \) – vertices. First we shall find the minimum number of colors required for the \(U \) – vertices. We note that in \(G(n,2) \) there exists a unique shortest path \(P = \{v_i,u_i,u_{i+1},v_{i+1} \} \) of length 3, with end vertices \(v_i \) and \(v_{i+1} \). The two internal vertices of \(P \) are \(U \) – vertices. The path \(P \) will be a rainbow path if the two internal vertices are assigned with distinct colors. We also note that any path \(P \) of length greater than 3 with end vertices \(v_i \) and \(v_j \) is not a unique shortest path. Moreover, the path \(P \) consists of \(U \) – vertices and \(V \) – vertices as internal vertices. Since our objective is to minimize the number of colors, we use more number of \(V \) – vertices as they skip in steps of 2. Therefore we conclude that 2 colors are sufficient for the \(U \) – vertices. Therefore \(U \)-vertices are assigned with two colors \(a_1 \) and \(a_2 \) alternately.

Next, to find the minimum number of colors required for the \(V \) - vertices. The two inner rims are cycles of length \(\frac{n}{2} \). Let the two cycles be \(C_{\frac{n}{2}}^1 \) and \(C_{\frac{n}{2}}^2 \). The cycle \(C_{\frac{n}{2}}^1 \) is constituted by the vertices \(v_0,v_2,...,v_{\frac{n}{2}} \) and the cycle \(C_{\frac{n}{2}}^2 \) is constituted by the vertices \(v_1,v_3,...,v_{\frac{n}{2}-1} \). Consider a path \(P \) whose end vertices lie on the outer rim and the length of the path is \(\text{diam}(G(n,2)) = \left\lceil \frac{n}{4} \right\rceil + 2 \). Let \(P \) be a path with end vertices \(u_i \) and \(u_{i+\frac{n}{2}} \) with \(d(u_i,u_{i+\frac{n}{2}}) = \text{diam}(G(n,2)) \) where \(0 \leq i \leq n-1 \). As there exists more than one shortest path between vertices \(u_i \) and \(u_{i+\frac{n}{2}} \), we choose \(P \) containing at most two \(U \) vertices as internal vertices (Since only two colors are assigned for \(U \) vertices) and the remaining internal vertices as \(V \) vertices. Consider the two cases for which \(\frac{n}{2} \) is odd and even.

Case (i): \(\frac{n}{2} \) is even. If \(P \) is a path with end vertices \(u_i \) and \(u_{i+\frac{n}{2}} \) with \(d(u_i,u_{i+\frac{n}{2}}) = \text{diam}(G(n,2)) \) where \(0 \leq i \leq n-1 \), then \(P \) is of the form \(P: u_i,v_i,v_{i+2},...,v_{i+\frac{n}{2}},u_{i+\frac{n}{2}} \) where \(0 \leq i \leq n-1 \). The internal vertices of \(P \) are \(V \) - vertices lying on the cycle (say) \(C_{\frac{n}{2}}^1 \). There are exactly \(\left(\frac{n}{4} \right) + 1 \) internal vertices in \(P \). The path \(P \) will be a rainbow path if all the internal vertices have distinct colors. Since each inner rim is a cycle of length \(\frac{n}{2} \) and exactly \(\left(\frac{n}{4} \right) + 1 \) vertices
I. Annamal Arputhamary and M. Helda Mercy

should be distinct in color, assign \(\left(\frac{n}{4} \right) + 1 \) distinct colors to the vertices of \(C_n^1 \) starting from the vertex \(v_0 \). It follows that the remaining uncolored \(\left(\frac{n}{4} \right) - 1 \) vertices in \(C_n^1 \) should also be assigned with new colors for strong rainbow connectivity. That is, the \(V - \) vertices of \(C_n^1 \) in cyclic order namely \(v_0, v_2, ..., v_n = v_0 \) are assigned with \(\frac{n}{2} \) distinct colors totally. We also note that \(c(U) \cap c(V) = \phi \). That is the colors used for the \(U - \) vertices should be distinct from the colors used for the \(V - \) vertices. In addition, the two inner rims are disjoint and there exists no unique shortest path whose internal vertices lie on different inner rims. Therefore we assign the same set of \(\frac{n}{2} \) distinct colors to both the inner rims.

Thus the graph is strongly rainbow vertex connected since any two vertices are connected by at least one shortest rainbow path.

Case (ii): \(\frac{n}{2} \) is odd. Any path \(P \) with end vertices \(u_i \) and \(u_{i + \frac{n}{2}} \) is of the form \(P: u_i, v_i, v_{i+2}, ..., v_{i + \frac{n}{2} - 1}, u_{i + \frac{n}{2} - 1}, u_{i + \frac{n}{2}} \) where \(0 \leq i \leq n - 1 \) whose length is \(\text{diam}(G(n,2)) \).

The internal vertices of \(P \) are \(\left\lfloor \frac{n}{4} \right\rfloor \) vertices of the inner rim (say the cycle \(C_n^1 \)) in cyclic order and exactly one outer rim vertex. Since the inner rim \(C_n^1 \) is a cycle of length \(\frac{n}{2} \) and \(\left\lfloor \frac{n}{4} \right\rfloor \) vertices in cyclic order should be distinct in color, it follows that the remaining \(\left\lfloor \frac{n}{4} \right\rfloor \) vertices of \(C_n^1 \) should also be distinct in color. Hence totally \(\frac{n}{2} \) distinct colors are assigned for the inner rim \(C_n^1 \). Since both the inner rims are disjoint cycles, it is sufficient to color both the cycles with the same set of \(\frac{n}{2} \) distinct colors as discussed in case (i). Hence the proof.

Theorem 3.2: For a generalized Petersen graph \(G(n,2) \), if \(2 \mid n \), then \(srvc(G(n,2)) = 3 + \left\lceil \frac{n}{4} \right\rceil + r, \ 0 \leq r \leq \left\lceil \frac{n}{4} \right\rceil - 1. \)
Proof: \(n \) is odd. It is easy to check that \(\text{srvc}(G(5,2)) = 1 \) and \(\text{srvc}(G(7,2)) = 3 \).

For \(n \geq 9 \), the following cases arise.

Case (i): \(\frac{n-1}{2} \) is even. The outer rim is an odd cycle of length \(n \). From theorem 3.1, every two consecutive vertices in the outer rim should be distinct in color. We color the first \(n-1 \) vertices \(u_0, u_1, \ldots, u_{n-2} \) with the colors \(a_1 \) and \(a_2 \) alternately and the \(n^{th} \) vertex \(u_{n-1} \) is assigned with the color \(a_3 \). Next we color the inner rim vertices. The inner rim is a cycle of odd length \(n \). The vertices of the inner rim in cyclic order are \(v_0, v_2, \ldots, v_{n-1}, v_1, v_3, \ldots, v_{n-2} \). The diameter of \(G(n,2) \) is \(\left\lfloor \frac{n}{4} \right\rfloor + 2 \).

Consider a path \(P \) whose end vertices are \(U \) – vertices with length \(\text{diam}(G(n,2)) \). Since our aim is to minimize the number of colors, we pass through the inner rim vertices as it skips in steps of 2. Let \(P \) be a path \(P: u_i, v_i, v_{i+2}, \ldots, v_{i+ \frac{n-1}{2}}, u_{i+ \frac{n-1}{2}}, v_{i+ \frac{n-1}{2} + 1}, \ldots, v_{i+ \frac{n-1}{2} + \frac{n}{4}}, u_{i+ \frac{n-1}{2} + \frac{n}{4}} \), \(0 \leq i \leq n-1 \) of length \(\left\lfloor \frac{n}{4} \right\rfloor + 2 \). The path \(P \) contains \(\left\lfloor \frac{n}{4} \right\rfloor \) inner rim vertices in cyclic order. For strong rainbow vertex coloring, all the internal vertices of \(P \) should be distinct in color. We color the inner rim vertices in cyclic order with the colors \(b_1, b_2, \ldots, b_{\left\lfloor \frac{n}{4} \right\rfloor} \) starting from the vertex \(v_0 \), \(\left\lfloor \frac{n}{m} \right\rfloor \) times, where \(m = \left\lfloor \frac{n}{4} \right\rfloor \). If \(\left\lfloor \frac{n}{4} \right\rfloor \) divides \(n \), then all the inner rim vertices will be assigned with colors \(b_1, b_2, \ldots, b_{\left\lfloor \frac{n}{4} \right\rfloor} \) cyclically in the clockwise direction. If not, there are at most \(\left\lfloor \frac{n}{4} \right\rfloor - 1 \) remaining vertices left uncolored at the end of the cycle. Assign \(\left\lfloor \frac{n}{4} \right\rfloor - 1 \) new colors to the remaining vertices such that it preserves rainbow connectivity. Consequently, if \(n \equiv 0 \pmod{\left\lfloor \frac{n}{4} \right\rfloor} \), then the inner rim vertices are assigned with \(\left\lfloor \frac{n}{4} \right\rfloor \) distinct colors \(\left\lfloor \frac{n}{\left\lfloor \frac{n}{4} \right\rfloor} \right\rfloor \) times cyclically. In this case, \(\text{srvc}(G(n,2)) = 3 + \left\lfloor \frac{n}{4} \right\rfloor \). Similarly, \(n \equiv 1 \pmod{\left\lfloor \frac{n}{4} \right\rfloor} \) implies that the inner rim vertices are assigned with \(\left\lfloor \frac{n}{4} \right\rfloor \) distinct colors \(\left\lfloor \frac{n}{\left\lfloor \frac{n}{4} \right\rfloor} \right\rfloor \) times cyclically starting from the vertex \(v_0 \) and only one vertex \(v_{n-2} \) is left uncolored.
Assigning a new color to that vertex, we see that \(srvc(G(n, 2)) = 3 + \left\lceil \frac{n}{4} \right\rceil + 1 \). In general, \(n = r \mod \left\lceil \frac{n}{4} \right\rceil \) implies that \(srvc(G(n, 2)) = 3 + \left\lceil \frac{n}{4} \right\rceil + r \) where \(r \) is an integer, \(0 \leq r \leq \left\lceil \frac{n}{4} \right\rceil - 1 \). Thus \(srvc(G(n, 2)) = 3 + \left\lceil \frac{n}{4} \right\rceil + r, \) \(0 \leq r \leq \left\lfloor \frac{n}{4} \right\rfloor - 1 \).

Case (ii): \(\frac{n-1}{2} \) is odd. The \(U \)-vertices can be assigned with the colors as discussed in case (i). Now we proceed to color the \(V \)-vertices. The diameter of \(G(n, 2) \) is \(\left\lceil \frac{n}{4} \right\rceil + 2 \). Any path \(P \) with length \(\text{diam}(G(n, 2)) \) and having \(U \)-vertices as end vertices is of the form \(P : u_i, v_i, v_{i+2}, \ldots, v_{i+\frac{n-3}{2}}, u_i, v_{i+\frac{n-3}{2}}, \ldots, v_{i+\frac{n-1}{2}}, 0 \leq i \leq n - 1 \). The internal vertices of \(P \) consists of \(\left\lfloor \frac{n}{4} \right\rfloor \) inner rim vertices and exactly one outer rim vertex. For strong rainbow vertex coloring, all the internal vertices of \(P \) should be distinct in color. We color the inner rim vertices in cyclic order starting from the vertex \(v_0 \) as given in case (i). Using the argument discussed in case (i), it follows that \(srvc(G(n, 2)) = 3 + \left\lceil \frac{n}{4} \right\rceil + r \) where \(0 \leq r \leq \left\lfloor \frac{n}{4} \right\rfloor - 1 \).

In the next theorem, we characterize the strong rainbow-vertex connection number of \(G(n, 3) \) if \(3 \| n \) and \(n \) is odd.

Theorem 3.3: If \(3 \| n \) and \(n \) is odd in \(G(n, 3) \), then \(srvc(G(n, 3)) = 3 + \frac{n}{3} \).

Proof: If \(3 \| n \) in \(G(n, 3) \), then there are three inner rims. Each inner rim is a cycle of length \(\frac{n}{3} \). The outer rim is a cycle of length \(n \). We shall first find the minimum number of colors required for the outer rim vertices. We note that in \(G(n, 3) \) there exists a unique shortest path \(P = \{ v_i, u_i, v_{i+1}, u_{i+1} \mid 0 \leq i \leq n - 1 \} \) of length 3, with end vertices \(v_i \) and \(v_{i+1} \). The two internal vertices of \(P \) are \(U \)-vertices. The path \(P \) will be a rainbow path if the two internal vertices are assigned with distinct colors. We also note that any path \(P \) of length greater than 3 with end vertices \(v_i \) and \(v_j \) is not a unique shortest path. Moreover, the path \(P \) consists of \(U \)-vertices and \(V \)-vertices as internal vertices. Since our objective is to minimize the number of colors, we use more number of \(V \)-vertices as they skip in steps of 3. Therefore \(U \)-vertices are assigned with two colors \(a_i \) and \(a_2 \) alternately. Since \(n \) is odd, we
color the first \(n-1 \) vertices \(u_0, u_1, \ldots, u_{n-2} \) with the colors \(a_1 \) and \(a_2 \) alternately and the \(n^{th} \) vertex \(u_{n-1} \) is assigned with the color \(a_3 \). Hence the number of colors required to color the \(U \) - vertices are 3.

Now we proceed to find the minimum number of colors required for the inner rims in order to make \(G(n,3) \) a strongly rainbow vertex connected graph. The three inner rims are cycles of length \(\frac{n}{3} \). Consider two farthest \(U \) – vertices with distance \(\text{diam}(G(n,3)) \) apart. Let \(u_i \) and \(u_{i+\frac{n-1}{2}} \) be two vertices with \(d(u_i, u_{i+\frac{n-1}{2}}) = \text{diam}(G(n,3)) \) where \(0 \leq i \leq n-1 \). The shortest path connecting the vertices \(u_i \) and \(u_{i+\frac{n-1}{2}} \) is not unique. We choose the path \(P \) connecting the vertices \(u_i \) and \(u_{i+\frac{n-1}{2}} \) in such a way that it cannot have more than two outer rim vertices as internal vertices. Then the path \(P \) is of the form \(P: u_i, v_i, v_{i+3}, \ldots, v_{i+n-3}, u_{i+\frac{n-1}{2}}, u_{i+\frac{n-3}{2}}, u_{i+\frac{n-1}{2}} \).

The internal vertices of \(P \) are \(\left\lceil \frac{n}{6} \right\rceil \) inner rim vertices in cyclic order and exactly one outer rim vertex. This implies that \(\left\lfloor \frac{n}{6} \right\rfloor \) inner rim vertices in cyclic order should acquire distinct colors. Suppose the internal vertices of \(P \) which passes through the inner rim lie on the cycle, say \(C_{\frac{n}{3}}^1 \). Out of \(\frac{n}{3} \) inner rim vertices, only \(\left\lfloor \frac{n}{6} \right\rfloor \) vertices are assigned with colors. That is, \(\left\lfloor \frac{n}{6} \right\rfloor \) remaining vertices of \(C_{\frac{n}{3}}^1 \) are left uncolored. Since \(\left\lfloor \frac{n}{6} \right\rfloor \) vertices in cyclic order should be distinct in color to preserve rainbow connectivity, they should also be assigned with new colors. That is totally \(\frac{n}{3} \) distinct colors are assigned for the vertices of \(C_{\frac{n}{3}}^1 \). Also we note that the three inner rims \(C_{\frac{n}{3}}^1, C_{\frac{n}{3}}^2 \) and \(C_{\frac{n}{3}}^3 \) are disjoint cycles and there exists no unique shortest path whose internal vertices lie on different cycles. Therefore the same set of \(\frac{n}{3} \) distinct colors are assigned for the inner rims \(C_{\frac{n}{3}}^1, C_{\frac{n}{3}}^2 \) and \(C_{\frac{n}{3}}^3 \). We also note that \(c(U) \cap c(V) = \phi \). It is easy to see that the above coloring scheme gives a strong rainbow vertex coloring, with \(3 + \frac{n}{3} \) colors.
Concluding remarks: In this paper, the exact values of strong rainbow vertex-connection numbers of $G(n,2)$ and $G(n,3)$ have been computed. It would be interesting to find the strong rainbow vertex connection number of $G(n,k)$ for various values of n and k.

References

Received: April 15, 2017; Published: November 16, 2017