On a Subclass of Univalent Functions Defined by a Generalized Differential Operator

Opoola O. Timothy

Department of Mathematics
University of Ilorin, Ilorin, Nigeria

Abstract

In this paper, we investigate a new subclass of univalent functions defined by a generalized differential operator. An inclusion result and characterization properties of this class of functions are also established.

Mathematics Subject Classification: 30C45, 30C80

Keywords: Univalent functions, analytic functions, differential Operator, Caratheodeory functions

1. Introduction and Definitions

Let A denotes the class of functions analytic in the unit disk $U = \{z \in \mathbb{C} : |z| < 1\}$. Also, let S denote the subclass of functions in A that are univalent and have the form

$$f(z) = z + \sum_{k=2}^{\infty} a_k z^k \quad (1.1)$$

Let P denote the class of functions such that $p(0) = 1$ and $\text{Rep}(z) > 0$ for $z \in U$. The class of functions in P are called Caratheodory functions (see [4]). For a function $f(z) \in A$ and of the form (1) we let

$$D_t f(z) = 1 + \sum_{k=2}^{\infty} [(1 + (k + \beta - \mu - 1)t)a_k z^{k-1}] \quad 0 \leq \mu \leq \beta, \quad t \geq 0. \quad (1.2)$$
Furthermore, we define the differential operator $D^n(\mu, \beta, t)f(z)$ such that
\[D^0(\mu, \beta, t)f(z) = f(z) \]
\[D^1(\mu, \beta, t)f(z) = zD_t f(z) = ztf'(z) - z(\mu - \beta)t + (1 + (\beta - \mu - 1)t)f(z) \]
\[D^2(\mu, \beta, t)f(z) = zD_t(zD_tf(z)) = zD_t(D(\mu, \beta, t)f(z)) \] (1.3)
\[D^n(\mu, \beta, t)f(z) = zD_t[D^{n-1}(\mu, \beta, t)f(z)] \quad n \in N_0 = N \cup \{0\} \]

If $f(z)$ is given by (1), then from the above definition of $D^n(\mu, \beta, t)f(z)$ we have that
\[D^n(\mu, \beta, t)f(z) = z + \sum_{k=2}^{\infty} [1 + (k + \beta - \mu - 1)t]n a_k z^k \] (1.4)

$0 \leq \mu \leq \beta, \quad t \geq 0$ and $n \in N_0 = N \cup \{0\}$

It should be noted that

(i) when $\mu = \beta$ and $t = 1$, $D^n(\mu, \beta, t)f(z)$ is the Salagean differential operator (see Salagean[5]).

(ii) when $\mu = \beta$, then $D^n(\mu, \beta, t)f(z)$ is the Al-Oboudi differential operator studied in [1].

We say that a function $f(z) \in A$ is in the class $S^n(\mu, \beta, t)$ if
\[f(z) = z + \sum_{k=2}^{\infty} a_k z^k \quad \text{and} \quad Re[D^n(\mu, \beta, t)f(z)] > \lambda \]
for $0 \leq \lambda < 1, \quad 0 \leq \mu \leq \beta, \quad t \geq 0$ and $n \in N_0 = N \cup \{0\}$

For $\mu = \beta$, the class $S^n(\mu, \beta, t)$ is the class of functions considered by Al-Oboudi in [1]. It should further be noted that if $p(z) \in S^n(\mu, \beta, t)$, then $p(0) = 1$ and
\[Re(p(z)) > \lambda, \quad 0 \leq \lambda < 1. \text{ i.e } p(z) \in P \text{ which is the class of the Caratheodory functions.} \]

Lemma We shall need the following lemma to prove our results.

Lemma 2.1 ([2], p.356 - 358). Let $u = u_1 + iu_2, \quad v = v_1 + iv_2$ and let $\psi(u, v)$ be complex valued function such that

(a) $\psi(u, v)$ is continuous in a domain Ω of \mathbb{C}^2.

(b) $(1, 0) \in \Omega$ and $Re\psi(1, 0) > 0$

(c) $Re\psi(\xi + (1 - \xi)u_2i, \quad v_1) \leq \xi$ when $(\xi + (1 - \xi)u_2i, \quad v_1) \in \Omega$ and $2v_1 \leq -(1 - \xi)(1 + u_2^2)$ for real $\xi, \quad 0 \leq \xi < 1$. If $p \in P$ such that $(p(z), zp'(z)) \in \Omega$ and $Re\psi(p(z), zp'(z)) > \xi$ for $z \in U$, then $Re\ p(z) > \xi$ for $z \in U$.

\[2. \text{ Main Results} \]

Our main results in this paper are the following

Theorem 2.1. Let $0 \leq \mu \leq \beta, \quad 0 \leq \alpha < 1, \quad t \geq 0$ and $n \in N = N \cup \{0\}$. Then
\[S^{n+1}(\mu, \beta, t) \subset S^n(\mu, \beta, t) \]
Proof: Suppose \(f(z) \in S^{n+1}(\mu, \beta, t) \). Then by the definition of the class \(S^{n+1}(\mu, \beta, t) \) we have that
\[
Re[D^{n+1}(\mu, \beta, t)f(z)]' > \lambda , \quad 0 \leq \lambda < 1 \tag{2.1}
\]
from (1.3) we obtain that
\[
D^{n+1}(\mu, \beta, t)f(z) = zt[D^n(\mu, \beta, t)f(z)]' + (1 + (\beta - \mu - 1)t)[D^n(\mu, \beta, t)f(z)]
\]
Therefore,
\[
[D^{n+1}(\mu, \beta, t)f(z)]' = t[D^n(\mu, \beta, t)f(z)]' + zt[D^n(\mu, \beta, t)f(z)]' + (1 + (\beta - \mu - 1)t)[D^n(\mu, \beta, t)f(z)]' - (\beta - \mu)t \tag{2.2}
\]
Let
\[
p(z) = [D^n(\mu, \beta, t)f(z)]'
\]
Then, from (2.1) and (2.2) we obtain that
\[
Re[(1 + (\beta - \mu)t)p(z) + tzp'(z) - (\beta - \mu)t] > \lambda \tag{2.3}
\]
for \(0 \leq \lambda < 1 \)
Define
\[
\psi(u, v) = (1 + (\beta - \mu)t)u + tv - (\beta - \mu)t , \quad 0 \leq \mu \leq \beta , \quad t \geq 0 \tag{2.4}
\]
Then, from (2.3)
\[
Re\psi(p(z), zp'(z)) > \lambda , \quad 0 \leq \lambda < 1 \tag{2.5}
\]
Also,
\[
\psi(1, 0) = 1 > 0
\]
\[
\psi(\lambda + (1 - \lambda)u_2i, \ v_1) = (1 + (\beta - \mu)t)(\lambda + (1 - \lambda)u_2i + tv_1 - (\beta - \mu)t
\]
and
\[
Re\psi(\lambda + (1 - \lambda)u_2i, \ v_1) = \lambda + (\beta - \mu)t\lambda + tv_1 - (\beta - \mu)t
\leq \lambda + (\beta - \mu)t\lambda - \frac{(1 - \lambda)(1 + u_2^2)}{2} - (\beta - \mu)t
\]
for \(2v_1 \leq -(1 - \lambda)(1 + u_2^2) \), \(0 \leq \lambda < 1 \)
i.e
\[
Re \psi(\lambda + (1 - \lambda)u_2i, v_1) \leq \lambda - \frac{(1 - \lambda)(1 + u_2^2)}{2} + (\beta - \mu)t\lambda - (\beta - \mu)t \leq \lambda
\]
for $0 \leq \lambda < 1$, \quad \nu_1 \leq \frac{(1-\lambda)(1+u_2^2)}{2} \quad 0 \leq \mu \leq \beta$ and \quad $t \geq 0$

Hence, we see that $\psi(u, v)$ as define in (2.4) satisfies all the conditions of lemma (2.1). Therefore by lemma 2.1

$$\text{Re}\; p(z) > \lambda \quad , \quad 0 \leq \lambda < 1 \quad (2.6)$$

which gives that

$$\text{Re}\; [D^n(\mu, \beta, t)f(z)]' > \lambda \quad , \quad 0 \leq \lambda < 1 \quad \text{i.e.}$$

$$f(z) \in S^n(\mu, \beta, t).$$

Therefore, $f(z) \in S^{n+1}(\mu, \beta, t) \implies f(z) \in S^n(\mu, \beta, t)$

which implies that

$$S^{n+1}(\mu, \beta, t) \subset S^n(\mu, \beta, t)$$

Theorem 2.2. The class $S^n(\mu, \beta, t) \subset S$ for $\leq \mu \leq \beta$, \quad $t \geq 0$ and $n \in N_0 = N \cup \{0\}$

Proof. Let $f(z) \in S^n(\mu, \beta, t)$

then by the definition of the class $S^n(\mu, \beta, t)$, $f(z)$ has the form

$$f(z) = z + \sum_{k=2}^{\infty} a_k z^k \quad , \quad z \in U$$

By applying theorem 2.1

$$S^n(\mu, \beta, t) \subset S^{n-1}(\mu, \beta, t) \subset \ldots \subset S^0(\mu, \beta, t)$$

This gives that

$$f(z) \in S^0(\mu, \beta, t)$$

which implies that

$$\text{Re}\; [D^0(\mu, \beta, t)f(z)]' > \lambda \quad , \quad 0 \leq \lambda < 1$$

which from (1.3) implies that

$$\text{Re}\; f'(z) > \lambda$$

It is known that if $f(z) \in A$ and $\text{Re}\; f'(z) > \lambda$, \quad $0 \leq \lambda < 1$ and $z \in U$ then $f(z)$ is univalent in U(see[4]).

Hence, $f(z) \in S^n(\mu, \beta, t)$ implies that $f(z)$ is univalent in U.

Therefore,

$$S^n(\mu, \beta, t) \subset S.$$
Theorem 2.3. Let \(f(z) = z + \sum_{k=2}^{\infty} a_k z^k \in A \)
If
\[
\sum_{k=2}^{\infty} k[1 + (k + \beta - \mu - 1)t]^{n} |a_k| z^k < 1 - \lambda
\]
then \(f(z) \in S^n(\mu, \beta, t) \).

Proof: It suffices to show that
\[
|[D^n(\mu, \beta, t)f(z)]' - 1| < 1 - \lambda, \quad 0 \leq \lambda < 1
\]
We have that
\[
|[D^n(\mu, \beta, t)f(z)]' - 1| = \left| \sum_{k=2}^{\infty} k[1 + (k + \beta - \mu - 1)t]^{n} |a_k| z^k \right| < 1 - \lambda
\]
By the condition of the theorem
Thus, we obtain
\[
|[D^n(\mu, \beta, t)f(z)]' - 1| < 1 - \lambda
\]
and the proof is complete.

Theorem 2.4. A function \(f(z) = z - \sum_{k=2}^{\infty} a_k z^k, \quad a_k \geq 0 \) is in \(S^n(\mu, \beta, t) \) if and only if
\[
\sum_{k=2}^{\infty} k[1 + (k + \beta - \mu - 1)t]^{n} a_k z^{k-1} < 1 - \lambda
\]
for \(0 \leq \lambda < 1 \)

Proof: Let \(f(z) = z - \sum_{k=2}^{\infty} a_k z^k \in S^n(\mu, \beta, t), \quad a_k \geq 0 \).
Then we have that
\[
Re[D^n(\mu, \beta, t)f(z)]' > \lambda \tag{2.7}
\]
which implies that
\[
|[D^n(\mu, \beta, t)f(z)]' - 1| < 1 - \lambda \tag{2.8}
\]
\[
|(D^n(\mu, \beta, t)f(z))' - 1| = \left| \sum_{k=2}^{\infty} k[1 + (k + \beta - \mu - 1)t]^{n} a_k z^{k-1} \right|
\]
Thus,
\[
Re \left(\sum_{k=2}^{\infty} k[1 + (k + \beta - \mu - 1)t]^{n} a_k z^{k-1} \right) < 1 - \lambda \tag{2.9}
\]
Taking values of z on real axis and letting $z \rightarrow 1$ through real values we have from (2.9) that

$$\sum_{k=2}^{\infty} k[1 + (k + \beta - \mu - 1)t]^n a_k < 1 - \lambda$$

Conversely,

$$\left| \sum_{k=2}^{\infty} k[1 + (k + \beta - \mu - 1)t]^n a_k z^{k-1} \right|$$

$$\leq \sum_{k=2}^{\infty} k[1 + (k + \beta - \mu - 1)t]^n |a_k|$$

$$= \sum_{k=2}^{\infty} k[1 + (k + \beta - \mu - 1)t]^n a_k$$

Hence, by the condition of the theorem we have that

$$\left| [D^n(\mu, \beta, t)f(z)]' - 1 \right| < 1 - \lambda$$

which gives that

$$\text{Re}[D^n(\mu, \beta, t)f(z)]' > \lambda$$

Therefore, $f(z) \in S^n(\mu, \beta, t)$.

NEIGHBORHOODS FOR THE CLASS $S^n(\mu, \beta, t)$

For a function $f(z) \in S^n(\mu, \beta, t)$ and $\delta \geq 0$, the δ-neighborhood of $f(z)$ is define as

$$N_\delta(f) = \left\{ g(z) = z + \sum_{k=2}^{\infty} b_k z^k \in S^n(\mu, \beta, t) : \sum_{k=2}^{\infty} k|a_k - b_k| \leq \delta \right\} \quad (2.10)$$

In the particular case of the identity function $e(z) = z$, we have that

$$N_\delta(e) = \left\{ g(z) = z + \sum_{k=2}^{\infty} b_k z^k \in S^n(\mu, \beta, t) : \sum_{k=2}^{\infty} k|b_k| \leq \delta \right\} \quad (2.11)$$

The concept of neighborhoods of analytic functions was first introduced by Goodman [3].

Theorem 2.5 If

$$\delta = \frac{1 - \lambda}{[1 + (1 + \beta - \mu)t]^n} \quad (2.12)$$
then \(S^n(\mu, \beta, t) \subset N_\delta(e) \).

Proof: Let \(f(z) \in S^n(\mu, \beta, t) \), then from theorem (2.3) we have that
\[
\sum_{k=2}^{\infty} k [1 + (k + \beta - \mu - 1)t] \ |a_k| < 1 - \lambda
\]
which implies that
\[
[1 + (1 + \beta - \mu)t] \sum_{k=2}^{\infty} k |a_k| < 1 - \lambda
\]
i.e
\[
\sum_{k=2}^{\infty} k |a_k| < \frac{1 - \lambda}{[1 + (1 + \beta - \mu)t]^n}
\]
which by (2.11) gives that \(f(z) \in N_\delta(e) \)
Therefore, \(S^n(\mu, \beta, t) \subset N_\delta(e) \).

3. Conclusions

In this work, we define a differential operator which generalizes the well known Salagean and Al-Oboudi differential operators. Using the generalized differential operator we investigate the properties of a new subclass of analytic functions and showed that this new subclass of analytic functions is a class of univalent functions.

The new generalized differential operator can be used to obtain new subclasses of univalent functions and their properties.

Competing Interests. No competing interests.

Acknowledgements. The research was performed while the author was visiting The State School of Higher Education in Chelm, Poland. The author is grateful to Professor Jozef Zajac, The Rector of The State School of Higher Education in Chelm for his warm hospitality.

References

Received: March 11, 2017; Published: September 26, 2017