A Solution of the Two-Dimensional Zakharov-Kuznetsov Equation Using Lattice-Boltzmann and He’s Semi-Inverse Method

F. Fonseca

Università Nacional de Colombia
Grupo de Ciencia de Materiales y Superficies
Departamento de Física
Bogotá, Colombia

Copyright © 2017 F. Fonseca. This article is distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract
In this work we solve the time dependent Zakharov-Kuznetsov equation in two dimensions, using lattice-Boltzmann technique and a $d2q9$ lattice-velocity scheme. Also, using the He’s semi-inverse method we find several families of solutions.

Mathematics Subject Classification: 35-XX, 34-XX, 76Dxx

Keywords: 2d Zakharov-Kuznetsov, lattice-Boltzmann, He’s semi-inverse method

1 Introduction
The Zakharov-Kuznetsov equation (ZKEq), is a very important nonlinear partial differential equation, which rules weak ion acoustic waves in magnetohydrodynamics, [1]. In the last decades, important analytical methods known as solitary wave solutions applied to the ZKEq solution have been developed in order to find analytical solutions [2]-[3]. On the other hand, lattice-Boltzmann (LB), is a technique originated in the statistical mechanics of the non-equilibrium, which has been applied with great success, to a great variety of problems in engineering and sciences., [4]-[5]. Besides, variational methods has become an elegant tool in order to provide solitary nonlinear wave solutions [6].
2 The lattice Boltzmann model

The lattice Boltzmann equation is given by, [4]-[5]:

\[f_j(\vec{x} + \vec{v}_j \Delta t, t + \Delta t) - f_j(\vec{x}, t) = \Omega_j(\vec{x}, t) + \omega_j(\vec{x}, t) \] (1)

The term \(\Omega_j(\vec{x}, t) \) represents the B.G.K. approximation, [7]:

\[\Omega_j(\vec{x}, t) = -\frac{1}{\tau} \left(f_j(\vec{x}, t) - f_j^{eq}(\vec{x}, t) \right) \] (2)

Expanding in a Taylor series, the distribution functions, up to third order, are:

\[f_j(\vec{x} + \vec{v}_j \epsilon, t + \epsilon) - f_j(\vec{x}, t) = \epsilon \left(\frac{\partial}{\partial t} + \vec{x}_j \cdot \vec{\nabla} \right) f_j \] (3)
\[+ \frac{\epsilon^2}{2} \left(\frac{\partial}{\partial t} + \vec{x}_j \cdot \vec{\nabla} \right)^2 f_j + \frac{\epsilon^3}{6} \left(\frac{\partial}{\partial t} + \vec{x}_j \cdot \vec{\nabla} \right)^3 f_j + O(\epsilon^4) \]

Doing a perturbative expansion of the derivatives in time in powers of \(\epsilon \), we get:

\[f_j = f_j^{(0)} + \epsilon f_j^{(1)} + \epsilon^2 f_j^{(2)} + \epsilon^3 f_j^{(3)} \] (4)

And assuming:

\[f_j^{(0)} = f_j^{eq} \] (5)

Where the temporal scales are defined as:

\[t_0 = t ; t_1 = \epsilon t ; t_2 = \epsilon t^2 ; t_3 = \epsilon t^3 \] (6)

And the perturbative expansion in parameter \(\epsilon \) of the temporal derivative is:

\[\frac{\partial}{\partial t} = \frac{\partial}{\partial t_0} + \epsilon^1 \frac{\partial}{\partial t_1} + \epsilon^2 \frac{\partial}{\partial t_2} + \epsilon^3 \frac{\partial}{\partial t_3} \] (7)

The extra terms \(\omega_j \) [5], therefore:

\[\omega_j = \epsilon^2 S_j \] (8)

Replacing eqs. (2)-(8) in eq. (1), we get at first \(\epsilon \), respectively, the next set of equations:

\[\frac{\partial f_j^{(0)}}{\partial t_0} + \vec{v}_j \cdot \vec{\nabla} f_j^{(0)} = -\frac{1}{\tau} f_j^{(1)} \] (9)

At second order in \(\epsilon \)

\[\frac{\partial f_j^{(0)}}{\partial t_1} - \tau(1 - \frac{1}{\tau}) \left(\frac{\partial}{\partial t_0} + \vec{v}_j \cdot \vec{\nabla} \right)^2 f_j = -\frac{1}{\tau} f_j^{(2)} + S_j \] (10)
3 The moments of the distributions

The moments of the distribution are:

\[\sum_j f_j^{(0)} = \phi = \sum_j f_j^{(eq)} \] (11)

\[\sum_j \vec{v}_j f_j^{(0)} = 0 \] (12)

\[\Pi_{m,n}^0 = \sum_j v_{j,m} v_{j,n} f_j^{(0)} = -\lambda \left[\frac{\partial \phi^m}{\partial x} \ 0 \ \frac{\partial \phi^m}{\partial x} \right] \] (13)

\[\sum_j f_j^{(k)} = 0, \quad \text{if } k \geq 1 \] (14)

Where \(\phi \) is the microscopic fields and \(\delta_{ij} \) is Kronecker’s delta.

4 The construction of the Zakharov-Kuznetsov Equation

Summing on \(j \) in eq. (9), and using eq. (14), supposing an irrotational fluid, we obtain:

\[\frac{\partial}{\partial t_0} \sum_j f_j^0 + \vec{\nabla} \cdot \sum_j \vec{v}_j f_j^0 = -\frac{1}{\tau} \sum_j f_j^1 \rightarrow \frac{\partial \phi}{\partial t_0} = 0 \] (15)

Again, doing some algebra in eq. (10), and using eqs. (11-13), we have:

\[\epsilon \frac{\partial \phi}{\partial t_1} - \epsilon \tau (1 - \frac{1}{\tau}) \nabla_m \nabla_n \Pi_{m,n}^0 = -\frac{\epsilon}{\tau} \sum_j f_j^{(2)} + \epsilon \sum_j S_j \] (16)

Using eq. (14), then, in eq. (16)

\[\epsilon \frac{\partial \phi}{\partial t_1} + \lambda \epsilon \tau (1 - \frac{1}{\tau}) \left(\frac{\partial^3 \phi^m}{\partial x^3} + \frac{\partial^3 \phi^m}{\partial y^2 \partial x} \right) = \epsilon \sum_j S_j \] (17)

Summing eqs. (15) and (17), and using eq. (7), we obtain:

\[\frac{\partial \phi}{\partial t} + \lambda \epsilon \tau (1 - \frac{1}{2\tau}) \left(\frac{\partial^3 \phi^m}{\partial x^3} + \frac{\partial^3 \phi^m}{\partial y^2 \partial x} \right) = \epsilon \sum_j S_j \] (18)

If we define:
\[\epsilon \sum_j S_j = \epsilon (b_1 + 1) S; S = -\frac{\partial \phi^n}{\partial x} - \frac{b}{a} \left(\frac{\partial^3 \phi^m}{\partial x^2 \partial y} - \frac{\partial^3 \phi^m}{\partial y^2 \partial x} \right), \]

\[b = \epsilon \lambda (\tau - \frac{1}{2}), a = \epsilon (b_1 + 1) \]

Then, the Zakharov-Kuznetsov equation, [1], is:

\[\frac{\partial \phi}{\partial t} + a \frac{\partial \phi^n}{\partial x} + b \frac{\partial^3 \phi^m}{\partial x^3} + b \frac{\partial^3 \phi^m}{\partial x^2 \partial y} = 0 \]

(20)

5 The equilibrium function in the \(d2q9\) velocity scheme.

We use the \(d2q9\) scheme shown in fig. (1), [4]-[5]. For the directions \(v_{i,j}\) and weights \(w_i\) on each cell it is assumed the next values:

\[w_i = \begin{cases}
\frac{4}{9}, & \text{if } i = 0; \\
\frac{1}{9}, & \text{if } i = 1, \ldots, 4; \\
\frac{1}{36}, & \text{if } i = 5, \ldots, 8
\end{cases} \]

(21)

Both, directions \(v_{i,j}\) and weights \(w_i\), follow the next tensorial relations:

\[\sum_i w_i v_{i,m} = 0, \sum_i w_i v_{i,m} v_{i,n} = \frac{1}{3} \delta_{m,n}, \sum_i w_i v_{i,m} v_{i,n} v_{i,p} = 0 \]

(22)

The equilibrium distribution functions \(f_i^{(eq)}\), is define as:

\[f_i^{(eq)} = f_i^{(0)} = \begin{cases}
\frac{w_i [A \vec{u} \cdot \vec{u} + B]}{w_0 D}, & \text{if } i > 0 \\
 otherwise & \text{if } i = 0
\end{cases} \]

(23)

Using the tensorial relations eqs. (22)

\[B = -3 \lambda \frac{\partial \phi^m}{\partial x}; \ A = 0; \ D = \frac{9 \phi}{4} + \lambda \frac{15 \partial \phi^m}{4 \partial x} \]

(24)
Figure 2: The spatiotemporal Lattice-Boltzmann for $\phi(x,t)$ using a $d2q9$ lattice velocity, for one initial profile given by eq. (31).

Then, the equilibrium distribution function is:

$$f_i^{(eq)} = \begin{cases}
-w_i 3 \lambda \frac{\partial \phi^m}{\partial x} \rightarrow i > 0 \\
w_0 \left(\frac{9 \phi}{4} + \lambda \frac{15}{4} \frac{\partial \phi^m}{\partial x} \right) \rightarrow i = 0
\end{cases}$$

(25)

6 He’s semi-inverse method, Solitary wave solution

Using the next coordinate transformation:

$$u = x + y - kt$$

(26)

$$\frac{\partial}{\partial t} = -k \frac{d}{du}; \quad \frac{\partial}{\partial x} = \frac{d}{du}; \quad \frac{\partial}{\partial y} = \frac{d}{du}; \quad \frac{\partial^2}{\partial x^2} = \frac{d^2}{du^2}; \quad \frac{\partial^2}{\partial x^3} = \frac{d^3}{du^3}$$

(27)

Then, eq. (20)

$$-k \frac{d \phi}{du} + a \frac{d \phi^m}{du} + b \frac{d^2 \phi^m}{du^2} + b \frac{d^3 \phi^m}{du^3} = 0$$

(28)

$$k_1 - k \phi + a \phi^n + 2b \frac{d^2 \phi^m}{du^2} = 0$$

(29)

According to He’s semi inverse method [6], we postulate one functional that satisfy eq. (29). So:
\[J(\phi) = \int \left(b \left(\frac{d\phi^m}{du} \right)^2 + \frac{k}{2} \phi^2 - \frac{a}{n+1} \phi^{n+1} - k_1 \phi \right) du \]

(30)

We have the field, \(\phi \), to be determined, and we select:

\[\phi = p \sin(\nu u^2) \exp(-\nu u^2) \]

(31)

Using \(m = 2 \) in eq. (29)

Defining \(A_1 = \left(\sqrt{\pi/2}(-2+2^{3/4} \cos \pi/8) \right)/8n = 3, \ A_2 = \left(\frac{1}{640} + \frac{i}{640} \right)((30-30i) - 8\sqrt{5} - 10i + 5\sqrt{-1} - i - 8\sqrt{5} - 10i) \sqrt{\pi} \), and \(A_3 = (\sqrt{\pi} \sin(\pi/8))/(2(2)^{1/4}) \).

Then, the entire action is:

\[J(q, p) = -\frac{k p^2}{2 q^{1/2}} A_1 - \frac{a p^4}{4 q^{1/2}} A_2 - \frac{k_1 p}{q^{1/2}} A_3 \]

(32)

\(J \) must be stationary:

\[\frac{\partial J}{\partial p} = 0 \rightarrow a A_2 p^3 + k A_1 p + k_1 A_3 = 0 \]

(33)

defining \(r_1 = -9a^2 A_2^2 A_3 k_1 + \sqrt{3} \sqrt{4a^3 A_1^2 A_2^3 k_1^3 + 27a^4 A_2^4 A_3^2 k_1^2} \)

\[p_1 = -\left(\frac{3^2}{2} \right)^{1/3} A_1 k (r_1)^{1/3} + \frac{(r_1)^{1/3}}{2^{1/3} 3^{2/3} a A_2} \]

(34)

\[p_2 = \left(1 + i \sqrt{3} \right) A_1 k \frac{2^{2/3} 3^{1/3} (r_1)^{1/3}}{2^{1/3} 3^{2/3} a A_2} - \left(1 - i \sqrt{3} \right) \frac{(r_1)^{1/3}}{2^{1/3} 3^{2/3} a A_2} \]

(35)

\[p_3 = \left(1 - i \sqrt{3} \right) A_1 k \frac{2^{2/3} 3^{1/3} (r_1)^{1/3}}{2^{1/3} 3^{2/3} a A_2} - \left(1 + i \sqrt{3} \right) \frac{(r_1)^{1/3}}{2^{1/3} 3^{2/3} a A_2} \]

(36)

\[\frac{\partial J}{\partial q} = 0 \rightarrow a A_2 p^3 + 2 A_1 k p + 4k_1 A_3 = 0 \]

(37)

defining \(r_2 = -9a^2 A_2^2 A_3 k_1 + \sqrt{3} \sqrt{2a^3 A_1^2 A_2^3 k_1^3 + 27a^4 A_2^4 A_3^2 k_1^2} \)

\[p_4 = -\frac{2^{2/3} A_1 k}{3^{1/3} (r_2)^{1/3}} + \frac{(r_2)^{1/3}}{3^{2/3} a A_2} \]

(38)
\[p_5 = \frac{(1 + i\sqrt{3}) A_1 k}{6^{1/3} (r_2)^{1/3}} - \frac{(1 - i\sqrt{3}) (r_2)^{1/3}}{6^{2/3} a A_2} \]

\[p_6 = \frac{(1 - i\sqrt{3}) A_1 k}{6^{1/3} (r_2)^{1/3}} - \frac{(1 + i\sqrt{3}) (r_2)^{1/3}}{6^{2/3} a A_2} \]

We found six families of solutions for eq. (31). Also, we select \(\phi \) as:

\[\phi = psech(q u) \]

Also, using \(m = 2 \) in eq. (29). Then, the entire action is:

\[J(q, p) = \frac{8bp^4 q}{15} + \frac{kp^2}{2q} - \frac{ap^4}{6q} - \frac{k_1 p \pi}{2q} \]

Also, \(J \) must be stationary:

\[\frac{\partial J}{\partial p} = 0 \rightarrow \frac{(32bp^3 q^2)}{15} + \frac{kp}{q} - \frac{2ap^3}{3q} - \frac{k_1 \pi}{2q} = 0 \]

\[\frac{(32bp^3 q^2)}{15} + kp - \frac{2ap^3}{3} - \frac{k_1 \pi}{2} = 0 \]

\[\frac{\partial J}{\partial q} = 0 \rightarrow \frac{(8bp^4)}{15} - \frac{kp^2}{2q^2} + \frac{ap^4}{6q^2} + \frac{k_1 p \pi}{2q^2} = 0 \]

\[\frac{(8bp^4)}{15} - \frac{kp}{2} + \frac{ap^3}{6} + \frac{k_1 \pi}{2} = 0 \]

defining \(l_1 = -3a^2 k_1 \pi + \sqrt{3}\sqrt{-4a^3 k^3 + 3a^4 k_1^2 \pi^2} \)

\[p_1 = -\left(\frac{3}{2}\right)^{2/3} k \left(\frac{3}{2}\right)^{1/3} (l_1)^{1/3} - \frac{\left(\frac{3}{2}\right)^{1/3} (l_1)^{1/3}}{2a}, \]

\[q_1 = -(-60k^3 + 25a k_1^2 \pi^2 + \frac{602^{2/3} 3^{1/3} a k^4}{(l_1)^{2/3}} + \frac{202^{1/3} 3^{2/3} a k_1^2 \pi}{(l_1)^{1/3}}) + 102^{2/3} 3^{1/3} k k_1 \pi \]

\[+ 102^{2/3} 3^{1/3} k k_1 \pi \left(\frac{l_1}{a}\right)^{1/2})/(4\sqrt{3}\sqrt{b k_1 \pi}) \]
\[p_2 = -\left(\frac{3}{2}\right)^{2/3} k \left(l_1\right)^{1/3} - \left(\frac{3}{2}\right)^{1/3} \left(l_1\right)^{1/3} \frac{k}{2a}, \]
\[q_2 = ((-60k^3 + 25ak^2\xi^2 + \frac{602^{2/3}3^{1/3}ak^4}{(l_1)^{2/3}} + \frac{202^{1/3}3^{2/3}ak^2k_1\pi}{(l_1)^{1/3}} + 102^{2/3}3^{1/3}kk_1\pi (l_1)^{1/3} + \frac{102^{1/3}3^{2/3}k^2 (l_1)^{2/3}}{a})(4\sqrt{3}\sqrt{b}k_1\pi) \]
\[p_3 = \frac{\left(\frac{3}{2}\right)^{2/3} (1 + i\sqrt{3}) k}{2 (l_1)^{1/3}} + \frac{\left(\frac{3}{2}\right)^{1/3} (1 - i\sqrt{3}) (l_1)^{1/3}}{4a}, \]
\[q_3 = -((-60k^3 + 25ak^2\xi^2 - \frac{302^{2/3}3^{1/3}ak^4}{(l_1)^{2/3}} + \frac{30i2^{2/3}3^{5/6}ak^4}{(l_1)^{2/3}} - \frac{30i2^{1/3}3^{1/6}ak^2k_1\pi}{(l_1)^{1/3}} - \frac{102^{1/3}3^{2/3}ak^2k_1\pi}{(l_1)^{1/3}} - 52^{2/3}3^{1/3}kk_1\pi (l_1)^{1/3} - \frac{15i2^{1/3}3^{1/6}k^2 (l_1)^{2/3}}{a} - \frac{52^{1/3}3^{2/3}k^2 (l_1)^{2/3}}{a})(4\sqrt{3}\sqrt{b}k_1\pi) \]
\[p_4 = \frac{\left(\frac{3}{2}\right)^{2/3} (1 + i\sqrt{3}) k}{2 (l_1)^{1/3}} + \frac{\left(\frac{3}{2}\right)^{1/3} (1 - i\sqrt{3}) (l_1)^{1/3}}{4a}, \]
\[q_4 = ((-60k^3 + 25ak^2\xi^2 - \frac{302^{2/3}3^{1/3}ak^4}{(l_1)^{2/3}} + \frac{30i2^{2/3}3^{5/6}ak^4}{(l_1)^{2/3}} - \frac{30i2^{1/3}3^{1/6}ak^2k_1\pi}{(l_1)^{1/3}} - \frac{102^{1/3}3^{2/3}ak^2k_1\pi}{(l_1)^{1/3}} - 52^{2/3}3^{1/3}kk_1\pi (l_1)^{1/3} - \frac{15i2^{1/3}3^{1/6}k^2 (l_1)^{2/3}}{a} - \frac{52^{1/3}3^{2/3}k^2 (l_1)^{2/3}}{a})(4\sqrt{3}\sqrt{b}k_1\pi) \]
\[p_5 = \frac{\left(\frac{3}{2}\right)^{2/3} (1 - i\sqrt{3}) k}{2 (l_1)^{1/3}} + \frac{\left(\frac{3}{2}\right)^{1/3} (1 + i\sqrt{3}) (l_1)^{1/3}}{4a}, \]
Solution of the two-dimensional Zakharov-Kuznetsov equation

\[q_5 = -(-60k^3 + 25ak_1^2\pi^2 - \frac{302^{2/3}3^{1/3}ak^4}{(l_1)^{2/3}} - \frac{30i2^{2/3}3^{5/6}ak^4}{(l_1)^{2/3}}) \]
\[+ \frac{30i2^{1/3}3^{1/6}ak^2k_1\pi}{(l_1)^{1/3}} - \frac{102^{1/3}3^{2/3}ak^2k_1\pi}{(l_1)^{1/3}} - 52^{2/3}3^{1/3}kk_1\pi (l_1)^{1/3} \]
\[- 5i2^{2/3}3^{5/6}kk_1\pi (l_1)^{1/3} + \frac{15i2^{1/3}3^{1/6}k^2(l_1)^{2/3}}{a} \]
\[- \frac{5 2^{1/3}3^{2/3}k^2(l_1)^{2/3}}{a} (l_1)^{1/3}(4\sqrt{3}\sqrt{b}k_1\pi) \]

\[p_6 = \left(\frac{3}{2}\right)^{2/3} \left(1 - i\sqrt{3}\right) k \]
\[+ \left(\frac{3}{2}\right)^{1/3} \left(1 + i\sqrt{3}\right) (l_1)^{1/3} \]
\[\frac{4a}{2(l_1)^{1/3}} \]

\[q_6 = ((-60k^3 + 25ak_1^2\pi^2 - \frac{302^{2/3}3^{1/3}ak^4}{(l_1)^{2/3}} - \frac{30i2^{2/3}3^{5/6}ak^4}{(l_1)^{2/3}}) \]
\[+ \frac{30i2^{1/3}3^{1/6}ak^2k_1\pi}{(l_1)^{1/3}} - \frac{102^{1/3}3^{2/3}ak^2k_1\pi}{(l_1)^{1/3}} - 52^{2/3}3^{1/3}kk_1\pi (l_1)^{1/3} \]
\[- 5i2^{2/3}3^{5/6}kk_1\pi (l_1)^{1/3} + \frac{15i2^{1/3}3^{1/6}k^2(l_1)^{2/3}}{a} \]
\[- \frac{5 2^{1/3}3^{2/3}k^2(l_1)^{2/3}}{a} (l_1)^{1/3}(4\sqrt{3}\sqrt{b}k_1\pi) \]

We found six families of solutions for eq. (35).

7 Conclusions

Therefore, this paper presents a solution to the Zakharov-Kuznetsov equation in two dimensions using lattice-Boltzmann and He’s semi inverse methods. Figure (2), shows the LB result given by an initial profile, eq. (29). Also, we find twelve families of solutions \((i, j = 1, ..., 6)\), using He’s semi inverse method. Furthermore, the extension to 3 dimensions is straightforward.

\[\phi(\xi)_i = p_i \sin(qu^2) \exp(-qu^2); \quad \phi(\xi)_j = p_j \text{sech}(q_j u) \]

Acknowledgements. This research was supported by Universidad Nacional de Colombia in Hermes project (32501).
References

Received: September 23, 2017; Published: October 3, 2017