Quasi Fuzzy Neighborhood Groups and Their Relationships to Fuzzy Neighborhood Groups

Fawzi Al-Thukair and T. M. G. Ahsanullah

Department of Mathematics, King Saud University
Riyadh 11451, Saudi Arabia

Copyright © 2017 Fawzi Al-Thukair and T. M. G. Ahsanullah. This article is distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Introducing a notion of quasi fuzzy neighborhood group, we provide conditions under which it gives rise to a fuzzy neighborhood group. In doing so, we present the notion of weakly locally symmetric in a fuzzy quasi-uniform space, and show that this notion is a good extension of its classical counterpart. We introduce a concept of quasi bi-fuzzy neighborhood group, and give connection with fuzzy quasi-uniform structures. Furthermore, we provide natural example of quasi bi-fuzzy neighborhood groups induced by left(right) invariant fuzzy quasi pseudo-metric spaces.

Mathematics Subject Classification: 54A40; 54E55; 54H11

Keywords: Bi-topology; quasi bi-topological group; fuzzy topology; fuzzy neighborhood system; level-topology; fuzzy neighborhood group; quasi fuzzy neighborhood group; quasi bi-fuzzy neighborhood group; fuzzy quasi-uniformity; weakly locally symmetric; fuzzy quasi pseudo-metric space

1. Introduction

Following the appearance of the notion of fuzzy neighborhood systems - a localizable structure [16] within the frame work of fuzzy topological spaces [14] attributed to R. Lowen, quite a good amount of research work on the compatibility of fuzzy neighborhood systems with algebraic structures were undertaken. Among others, A. K. Katsaras [12], N. N. Morsi [22] and T. M.
G. Ahsanullah used this notion of fuzzy neighborhood system from different perspective. Katsaras introduced a notion of linear fuzzy neighborhood space and its fuzzy uniformizability, while Ahsanullah introduced a notion of fuzzy neighborhood group [1] and studied its fuzzy uniformizability. N. N. Morsi [22] studied the notion of fuzzy neighborhood system in much wider context. Furthermore, A. S. Mashhour and Morsi [21] investigated fuzzy neighborhood metric spaces and following this in [3], we discussed invariant probabilistic metrizability of fuzzy neighborhood groups. Classically, quasi-topological groups originally known as paratopological groups in the sense of Bourbaki [6] were studied by many authors (cf. [19, 20, 23]) over the years with an aim to obtain conditions under which a quasi-topological group is a topological group. With the same idea in mind, our aim in this paper is to weaken the notion of fuzzy neighborhood group by introducing a notion herein called quasi fuzzy neighborhood group, and see under what conditions it yields a fuzzy neighborhood group. In so doing, we introduce a concept of weakly locally symmetric in fuzzy quasi-uniform space, and showed that this a good extension in the sense of Lowen’s good extension criterion [15]. Moreover, we look into the relationship between quasi bi-fuzzy neighborhood groups and quasi bi-topological groups - the notions widely studied by many researchers over the the years following the introduction of bi-topological spaces by J. C. Kelly [13](see also [8]). We present here an example of quasi bi-fuzzy neighborhood group that arises naturally from left(or right)invariant fuzzy quasi pseudo-metric spaces.

2. Preliminaries

Let X be a set, $I_0 =]0, 1]$, $I_1 = [0, 1[$, and $I = [0, 1]$. A fuzzy set is an element of $I^X(= \{ \mu: X \rightarrow I \})$. We follow the definition of fuzzy topology due to R. Lowen [14]. We recall some well-known notions from [16, 17] for the convenience of the reader. If $A \subseteq X$, then its characteristic function is given by 1_A, and in case $A = \{x\}$, we simply write $1_{\{x\}}$ or even simply by just x. We refer the reader to [16] and [17] for the notions of prefilter and prefilterbasis including some other related notions.

If B is a prefilterbase in I^X, then the so-called saturation operation, denoted by $\tilde{\cdot}$ is given as $\tilde{B} = \{ \mu: X \rightarrow I; \forall \epsilon \in I_0 \exists \mu_\epsilon \in B \ni \mu_\epsilon - \epsilon \leq \mu \}$.

Definition 2.1. [16] A family $\Sigma = (\Sigma(x))_{x \in X}$ of prefilters in a set X is called a fuzzy neighborhood system on X if the following conditions are fulfilled:

(N1) for all $x \in X$ and for all $\mu \in \Sigma(x)$, $\mu(x) = 1$.

(N2) for all $x \in X$: $\Sigma(x) = \Sigma(x)$.

(N3) for all $x \in X$, for all $\mu \in \Sigma(x)$ and for all $\epsilon \in I_0$, there exists a family $(\mu_\epsilon^z)_{z \in Z}$ such that for all $y, z \in X$, $\mu_\epsilon^z \in \Sigma(z)$ and $\mu_\epsilon^z(z) \wedge \mu_\epsilon^y(y) \leq \mu(y) + \epsilon$.

The pair (X, Σ) is called a fuzzy neighborhood space and the elements of $\Sigma(x)$ are called fuzzy neighborhoods of x. It is well-known that each fuzzy neighborhood space gives rise to a fuzzy topological space $(X, \Delta = t(\Sigma))$ via a
fuzzy neighborhood base
A family of fuzzy closure operator described in [16]. For further details, see [16], pp. 169. Furthermore, note that if \((X, U)\) fulfills the following properties:

\[\forall (x, y) \in X \times X, \nu(x) \leq \nu(y) \]

The pair \((QFU1)\) is called a **fuzzy neighborhood space**. For the level topological space \((X, \Sigma)\) associated with it is a fuzzy neighborhood space, and the fuzzy neighborhood system is given by

\[\Sigma(x) = \{ \nu_j \land \nu_{j+1} \land \ldots \land \nu_{j+n}, \nu_j \in \Sigma_{j+1}(x), i = 1, 2, \ldots, n; n \in \mathbb{N} \} \]

Definition 2.3. [16] A mapping \(f : (X, \Sigma) \rightarrow (Y, \Sigma')\) between fuzzy neighborhood spaces is said to be **continuous at** \(x \in X\) if for any \(\nu' \in \Sigma'(f(x))\), \(f^{-1}(\nu') \subseteq \Sigma(x)\) or equivalently, for any \(\nu' \in \Sigma'(f(x))\) there is a \(\nu \in \Sigma(x)\) such that \(f(\nu) \leq \nu'\).

Proposition 2.4. [16] A mapping \(f : (X, \Sigma) \rightarrow (Y, \Sigma')\) between fuzzy neighborhood spaces is continuous at \(x \in X\) if for any \(\nu' \in \Sigma'(f(x))\), and for any \(\epsilon \in I_0\), there is a \(\nu \in \Sigma(x)\) such that \(\nu - \epsilon \leq f^{-1}(\nu')\).

Theorem 2.5. [16] If \((X, \Sigma)\) is a fuzzy neighborhood space and \(\alpha \in I_1\), then the level topological space \((X, \nu_{\alpha}(\Sigma))\) has as a neighborhood system the family \((\nu_{\alpha}(\Sigma(x)))_{x \in X}\) where for all \(x \in X\),

\[\nu_{\alpha}(\Sigma(x)) = \{ \nu^{-1}[\beta, 1][\nu \in \Sigma(x), \beta \in [0, 1 - \alpha]\} \]

where \(\nu^{-1}[\beta, 1] = \{ x \in X | \nu(x) > \beta \}\).

Theorem 2.6. [16] If \((X, \tau)\) is a topological space, then the fuzzy topological space \((X, \omega(\tau))\) associated with it is a fuzzy neighborhood space, and the fuzzy neighborhood system is given by \((\Sigma(x))_{x \in X}\), where for all \(x \in X\)

\[\Sigma(x) = \{ \nu \in I^X | \nu(x) = 1 \text{ and } \nu \text{ is l.s.c in } x \} \]

Definition 2.7. [17] A fuzzy quasi-uniformity \(U\) on \(X\) is a subset \(U \subseteq I^X \times X\) fulfilling the following properties:

- (QFU1) \(U\) is a prefilter;
- (QFU2) \(\tilde{U} = \overline{U}\);
- (QFU3) \(\forall \nu \in U\), and \(\forall x \in X\), \(\nu(x, x) = 1\);
- (QFU4) \(\forall \nu \in U\), \(\forall \epsilon > 0\), there exists \(\nu_\epsilon \in U\) such that \(\nu_\epsilon \circ \nu_\epsilon - \epsilon \leq \nu\), where \(\nu_\epsilon \circ \nu_\epsilon'(x, y) = \bigvee_{z \in X} \nu_\epsilon(x, z) \land \nu_\epsilon'(z, y)\) for any \((x, y) \in X \times X\).

The pair \((X, U)\) is called a **fuzzy quasi-uniform space**, while the pair \((X, U)\) is called a **fuzzy uniform space** if in addition to the above conditions, \(U\) satisfies

- (FU) \(\nu^{-1}(x, y) = \nu(y, x)\), for any \((x, y) \in X \times X\) and \(\nu \in U\).
3. Quasi bi-fuzzy neighborhood groups

Definition 2.8. [17] A subset \(B \subset I^X \times X \) is called a fuzzy quasi-uniform basis if and only if the following conditions are fulfilled:

- (QFUB1) \(B \) is a prefilterbasis;
- (QFUB2) \(\forall \beta \in B, \beta(x,x) = 1, \forall x \in X \);
- (QFUB3) \(\forall \beta \in B, \forall \epsilon > 0, \) there exists a \(\beta_\epsilon \in B \) such that \(\beta_\epsilon \circ \beta_\epsilon \epsilon \leq \beta \).

If, moreover, for any \(\beta \in B, \beta^{-1} \in B \), then \(B \) is called a fuzzy uniform basis, where \(\beta^{-1}(x,y) = \beta(y,x) \).

Proposition 3.2. If \((X, \cdot, \Sigma = (\Sigma(x))_{x \in X}) \) is a fuzzy neighborhood group, then

\((X, \cdot, \Sigma^{-1} = \Sigma^{-1}(x))_{x \in X} \) is also a fuzzy neighborhood group, where \(\Sigma^{-1} \) is known as the conjugate fuzzy neighborhood system of \(\Sigma \), as given by \(\Sigma^{-1}(x) = \{ \nu^{-1} \in I^G | \nu \in \Sigma(x) \}^\sim \), \(\forall x \in G \), whence \(\nu^{-1} : X \rightarrow I \), defined by \(\nu^{-1}(x) = \nu(x^{-1}) \).

Definition 3.3. A quasi bi-fuzzy neighborhood group is a quadruple \((G, \cdot, \Sigma, \Sigma^{-1}) \), where \((G, \cdot, \Sigma) \) is a quasi fuzzy neighborhood group and \(\Sigma^{-1} \) is the conjugate fuzzy neighborhood system of \(\Sigma \).

Remark 3.4. If \((G, \cdot, \Sigma, \Sigma^{-1}) \) is a quasi bi-fuzzy neighborhood group, then the left translation by the element \(x, L_x : G \rightarrow G \) defined by \(L_x(x) = xz \), and the right translation by the element \(x, R_x : G \rightarrow G \) defined by \(R_x(x) = zx \), for any \(x \in G \), both are homeomorphisms of the fuzzy neighborhood space \((G, \Sigma) \) onto itself. Also, they are homeomorphisms of \((G, \Sigma^{-1}) \) onto itself, i.e., \(L_x, R_x : (G, \Sigma^{-1}) \rightarrow (G, \Sigma^{-1}) \) are homeomorphisms.

The following Propositions 3.5 and 3.6 follow almost in the similar way as in the Proposition 2.6 [1].

Proposition 3.5. Let \((G, \cdot, \Sigma, \Sigma^{-1}) \) be a quasi bi-fuzzy neighborhood group, \(x \in G \) and \(\nu \in I^G \). Then the following hold:

- (a) \(\nu \in \Sigma(e) \iff L_x(\nu) \in \Sigma(x) \iff R_x(\nu) \in \Sigma(x) \);
- (b) \(\nu \in \Sigma(e) \iff L_x(\nu^{-1}) \in \Sigma^{-1}(x) \iff R_x(\nu^{-1}) \in \Sigma^{-1}(x) \);
- (c) \(\nu \in \Sigma(e) \iff L_x^{-1}(\nu) \in \Sigma(e) \iff R_x^{-1}(\nu) \in \Sigma(e) \).

Proposition 3.6. Let \((G, \cdot, \Sigma, \Sigma^{-1}) \) be a quasi bi-fuzzy neighborhood group, \(x \in G \). Then the following assertions are fulfilled:

- (i) \(\Sigma'(x) = \{ L_x(\nu) | \nu \in \Sigma(e) \}^\sim = \{ R_x(\nu) | \nu \in \Sigma(e) \}^\sim \);
- (ii) \(\Sigma'^{-1}(x) = \{ L_x(\nu^{-1}) | \nu \in \Sigma(e) \}^\sim = \{ R_x(\nu^{-1}) | \nu \in \Sigma(e) \}^\sim \).
Lemma 3.7. [1] Let \((G, \cdot)\) be a group and \(\Sigma\) be a fuzzy neighborhood system on \(G\). Then

(a) The mapping \(r: G \rightarrow G, x \mapsto x^{-1}\) is continuous at \(e \in G\) if and only if for all \(\nu \in \Sigma(e)\) and for all \(\epsilon > 0\) there exists \(\mu \in \Sigma(e)\) such that \(\mu - \epsilon \leq \nu^{-1}\).
(b) The mapping \(m: G \times G \rightarrow G, (x, y) \mapsto xy\) is continuous at \((e, e) \in G \times G\) if and only if for all \(\epsilon > 0\) and for all \(\nu \in \Sigma(e)\) there exists \(\theta \in \Sigma(e)\) such that \(\theta \odot \theta'(z) = \bigvee_{s=t=z} \theta(s) \wedge \theta'(t)\) for any \(\theta, \theta' \in I^G\) and \(z \in G\).

Theorem 3.8. Let \((G, \cdot, \Sigma, \Sigma^{(-1)})\) be a quasi bi-fuzzy neighborhood group. Then

\((G, \cdot, \Sigma^*)\) is a fuzzy neighborhood group, where for any \(x \in G\),

\[\Sigma^*(x) = \Sigma(x) \vee \Sigma^{-1}(x) = \{\xi \wedge \xi^{-1} | \xi \in \Sigma(x), \xi^{-1} \in \Sigma^{-1}(x)\}^{\sim} .\]

Proof. It follows at once from the Proposition 2.2 that \(\Sigma^*\) is indeed a fuzzy neighborhood system. Need to check the continuity conditions of \(m\) and \(r\).

For, let \(x, y \in G, \nu^* \in \Sigma^*(xy)\) and \(\epsilon > 0\). Then there exists \(\nu \in \Sigma(xy)\) such that \(\nu \wedge \nu^{-1} - \frac{\epsilon}{2} \leq \nu^*\). Consequently, there are \(\nu_1 \in \Sigma(x), \nu_2 \in \Sigma(y)\) such that \(\nu_1 \odot \nu_2 - \frac{\epsilon}{2} \leq \nu\). Also, there are \(\mu_1 \in \Sigma^{-1}(x)\) and \(\mu_2 \in \Sigma^{-1}(y)\) such that \(\mu_1 \odot \mu_2 - \frac{\epsilon}{2} \leq \nu^{-1}\).

Put \(\xi_1 = \nu_1 \wedge \mu_1\) and \(\xi_2 = \nu_2 \wedge \mu_2\). Hence, one obtains:

\[\xi_1 \odot \xi_2 = (\nu_1 \wedge \mu_1) \odot (\nu_2 \wedge \mu_2)\]

\[= (\nu_1 \odot \nu_2) \wedge (\mu_1 \odot \mu_2)\]

\[\leq (\nu + \frac{\epsilon}{2}) \wedge (\nu^{-1} + \frac{\epsilon}{2})\]

\[\leq (\nu \wedge \nu^{-1}) + \frac{\epsilon}{2} \leq \nu^* + \epsilon, \text{ i.e. } \xi_1 \odot \xi_2 \leq \nu^* + \epsilon,\]

showing that the mapping \(m: (G \times G, \Sigma^* \times \Sigma^*) \rightarrow (G, \Sigma^*), (x, y) \mapsto xy\) is continuous.

Finally, to show the continuity of inversion map \(r: (G, \Sigma^*) \rightarrow (G, \Sigma^*), x \mapsto x^{-1}\), we let \(x \in X\) and \(\nu^* \in \Sigma^*(x^{-1})\) and \(\epsilon > 0\). Then there is a \(\eta \in \Sigma(e)\) such that \((x^{-1} \odot \eta) \wedge (x^{-1} \odot \eta^{-1}) - \epsilon \leq \nu^*\). Put \(\rho = \eta \odot x \wedge \eta^{-1} \odot x\), then \(r(\rho) = (x^{-1} \odot \eta) \wedge (x^{-1} \odot \eta^{-1}) \leq \nu^* + \epsilon\). This completes the proof that the triple \((G, \cdot, \Sigma^*)\) is a fuzzy neighborhood group.

Proposition 3.9. [1] The quadruple \((G, \cdot, \tau, \tau^{-1})\) is a quasi bi-topological group if and only if \((G, \cdot, \omega(\tau), \omega(\tau^{-1}))\) is a quasi bi-fuzzy neighborhood group.

Proposition 3.10. [3] A mapping \(f: (X, \Sigma) \rightarrow (Y, \Sigma')\) between fuzzy neighborhood spaces is continuous if and only if \(f: (X, \iota_\alpha(\Sigma)) \rightarrow (Y, \iota_\alpha(\Sigma'))\) is continuous between \(\alpha\)-level topologies, for all \(0 < \alpha < 1\).

The following proposition follows almost the same way as in [3, 4].

Proposition 3.11. The quadruple \((G, \cdot, \Sigma, \Sigma^{(-1)})\) is a quasi bi-fuzzy neighborhood group if and only if for all \(0 < \alpha < 1\), the \(\alpha\) level spaces \((G, \cdot, \iota_\alpha(\Sigma), \iota_\alpha(\Sigma^{(-1)}))\) are quasi bi-topological groups.

We present below conditions under which a fuzzy neighborhood system on a group generates a quasi bi-fuzzy neighborhood group, and conversely, conditions under which one has a structure of quasi bi-fuzzy neighborhood system on a given group. The proof of which can be extracted from Theorems 2.18 and 2.19 [1].
Theorem 3.12. Let \((G, \cdot)\) be a group and \(\Sigma\) a fuzzy neighborhood system on \(G\). Then the quadruple \((G, \cdot, \Sigma, \Sigma^{-1})\) is a quasi bi-fuzzy neighborhood group if and only if the following properties are fulfilled:

(a) \(\forall x \in G, \Sigma(x) = \{\mathcal{L}_x(\nu) | \nu \in \Sigma(e)\}\), where \(\mathcal{L}_x\) is a left translation by the element \(x\);

(b) \(\forall \nu \in \Sigma(e), \forall \epsilon > 0\) there exists \(\theta \in \Sigma(e)\) such that \(\theta \odot \theta - \epsilon \leq \nu\);

(c) \(\forall \nu \in \Sigma(e), \forall \epsilon > 0\) and \(\forall z \in G\) there exists \(\theta \in \Sigma(e)\) such that \(z \odot \theta \odot z^{-1} - \epsilon \leq \nu\).

Theorem 3.13. Let \((G, \cdot)\) be a group and \(\mathfrak{F}\) a family of fuzzy subsets of \(G\) such that the following hold:

(a) \(\mathfrak{F}\) is a prefilterbasis such that \(\nu(e) = 1, \forall \nu \in \mathfrak{F}\);

(b) \(\forall \nu \in \mathfrak{F}\) and \(\forall \epsilon > 0\) there exists \(\theta \in \mathfrak{F}\) such that \(\theta \odot \theta - \epsilon \leq \nu\);

(c) \(\forall \nu \in \mathfrak{F}, \forall \epsilon > 0\) and \(\forall x \in G\) there exists \(\theta \in \mathfrak{F}\) such that \(x \odot \theta^{-1} - \epsilon \leq \nu\).

Then there exists a unique fuzzy neighborhood system \(\Sigma\) such that \(\mathfrak{F}\) is a basis for the fuzzy neighborhood system \(\Sigma\) at \(e\) and \((G, \cdot, \Sigma, \Sigma^{-1})\) is a quasi bi-fuzzy neighborhood group.

Definition 3.14. [5, 10, 21] If \(\mathbb{R}^+\) denotes the set of all nonnegative real numbers, then a nonnegative fuzzy real number \(\xi\) is a descending, left continuous real map: \(\xi: \mathbb{R}^+ \rightarrow I,\) with \(\xi(0) = 1\), and infimum 0. The set of all nonnegative fuzzy real numbers is denoted by \(\mathfrak{R}(I)\).

Definition 3.15. [10, 21] A fuzzy quasi pseudo-metric (quasi pseudo-probabilistic metric) is a mapping \(d: X \times X \rightarrow \mathfrak{R}(I)\) satisfying the following two conditions:

(QPM1) \(d(x, x) = 0, \forall x \in X,\) where \(\tilde{0}(t) = 1,\) if \(t = 0\) and \(\tilde{0}(t) = 0\) if \(t > 0\);

(QPM2) \(d(x, y) \leq d(x, z) \oplus d(z, y), \forall x, y, z \in X,\) where
\[
[d(x, z) \oplus d(z, y)](\nu) = \sum_{s+t=v} d(x, z)(s) \wedge d(z, y)(t).
\]

The pair \((X, d)\) is called fuzzy quasi pseudo-metric space. If, moreover, \(d\) satisfies (PM3) \(d(x, y) = d(y, x), \forall x, y \in X,\) then the pair \((X, d)\) is a called fuzzy pseudo-metric space; and if \(d\) satisfies (M) \(\forall x \neq y \Rightarrow d(x, y) > 0,\) then the pair is called fuzzy (probabilistic) metric space.

Definition 3.16. [21] If \((X, d)\) is a fuzzy quasi pseudo-metric space, then the fuzzy open ball \(B(x; r) \in I^X,\) with center at \(x \in X\) and radius \(r > 0,\) is the fuzzy subset of \(X\) given by
\[
B(x; r)(y) = \mathbb{L}_r[d(x, y)](1 - d(x, y)(r)),\]
where for each \(r > 0, \mathbb{L}_r: \mathfrak{R}(I) \rightarrow I,\) is defined by \(\mathbb{L}_r(\eta) = 1 - \eta(r),\) for all \(\eta \in \mathfrak{R}(I)\).

Theorem 3.17. [21, 17, 10] Let \((X, d)\) be a fuzzy pseudo-metric space. Then the family
\[
\mathcal{V}_d = \{\psi_r \in I^{X \times X} | r > 0\}
\]
is a fuzzy uniform basis in \(X,\) where \(\psi_r(x, y) = \mathbb{L}_r[d(x, y)], r > 0, x, y \in X.\)

The fuzzy uniformity \(\mathcal{U}_d = \mathcal{V}_d\) is called the fuzzy metric uniformity induced by \(d.\)
Since every fuzzy uniform space gives rise to a fuzzy neighborhood space \([17]\), it is shown in \([21]\) that the pair \((X, t(d))\) is a fuzzy pseudo-metric neighborhood space, where the fuzzy neighborhood topology is obtained as \(t(U_d)\) having the fuzzy neighborhood basis given by \(\mathbb{B}_d = (\mathbb{B}_d(x))_{x \in X}\), where \(\mathbb{B}_d(x) = \{B(x : r) : r > 0\}\).

Theorem 3.18. [5] A mapping \(f : (X, t(d)) \rightarrow (Y, t(d'))\) between fuzzy quasi pseudo-metric spaces is continuous at \(x \in X\) if and only if for all \(\epsilon > 0\) and for all \(\delta > 0\) there exists a \(\gamma = \gamma_{x, \epsilon, \delta} > 0\) such that \(d'(f(x), f(z)) < d(x, z)(\gamma) + \delta\), for all \(z \in X\).

Definition 3.19. Let \((G, \cdot)\) be a group and \(d\) a fuzzy quasi pseudo-metric on \(G\). Then \(d\) is called left invariant if for all \(a, x, y \in G\), \(d(ax, ay) = d(x, y)\); right invariant if \(d(xa, yb) = d(x, y)\). Note that if \(d\) is left or right invariant, then so is \(d^{-1}\).

Definition 3.20. [3] Let \((G, \cdot)\) be a group. A mapping \(p : (G, \cdot) \rightarrow \mathbb{R}^*(I)\) is called a fuzzy quasi absolute valued mapping if the following holds:

- (AQV1) \(p(e) = 0\);
- (AQV2) \(p(xy) \leq p(x) \oplus p(y), \forall x, y \in G\);
- (CC) \(\forall z \in G, \forall \epsilon > 0 \text{ and } \forall \delta \in I_0 \exists \gamma = \gamma_{z, \epsilon, \delta} > 0 \text{ such that } p(zz^{-1})(\epsilon) \leq p(x)(\gamma) + \delta, \forall x \in X\).

Theorem 3.21. Let \((G, \cdot)\) be a group and \(p\) be a fuzzy quasi absolute valued map on \(G\). Then the mapping \(d : G \times G \rightarrow \mathbb{R}^*(I)\) defined by \(d(x, y) = p(x^{-1}y)\) is a fuzzy quasi pseudo-metric on \(G\) such that the quadruple \((G, \cdot, t(d), t(d^{-1}))\) is a quasi bi-fuzzy neighborhood group. Conversely, let \((G, \cdot)\) be a group and \(d\) be a left (or right) invariant fuzzy quasi pseudo-metric on \(G\) such that \((G, \cdot, t(d), t(d^{-1}))\) is a quasi bi-fuzzy neighborhood group. Then the mapping \(p : G \rightarrow \mathbb{R}^*(I)\) defined by \(p(x) = d(e, x)\) is a fuzzy quasi absolute valued map.

Proof. Clearly \(d\) is a fuzzy quasi pseudo-metric on \(G\), and hence gives rise to a conjugate fuzzy quasi-pseudo metric \(d^{-1}\) defined by \(d^{-1}(x, y) = d(y, x)\). Upon using the Theorem 3.12(a) and (c) in conjunction with (CC), one can obtain that the quadruple \((G, \cdot, t(d), t(d^{-1}))\) is a quasi bi-fuzzy neighborhood group (see Proposition 5.7 and Theorem 5.8[3] for detailed clarifications). To agree with the converse, we apply the fact that \(d^{-1}(x, y) = d(y, x)\), for any \(x, y \in G\), and the left invariant of \(d\) as well as \(d^{-1}\) together with the property (QPM2). In fact, \(p(e) = d(e, e) = 0\), which is (AQV1) and for any \(x, y \in G\), \(p(xy) = d(e, xy) = d^{-1}(xy, e) = d^{-1}(y, x^{-1}) = d(x^{-1}, y) \leq d(x^{-1}, e) \oplus d(e, y) = d(e, x) \oplus d(e, y) = p(x) \oplus p(y)\), which proves (AQV2). Finally, (CC) follows from the fact that the quadruple \((G, \cdot, t(d), t(d^{-1}))\) is already a bi-fuzzy neighborhood group.

Theorem 3.22. Let \((G, \cdot, \Sigma, \Sigma^{(-1)})\) be a quasi bi-fuzzy neighborhood group and let \(d\) be a left (resp. right) invariant quasi fuzzy pseudo-metric on \(G\) such that \(\Sigma = t(d)\). Then \(d\) induces the left invariant fuzzy quasi-uniformity \(\mathbb{U}_L\) (resp. right invariant fuzzy quasi-uniformity \(\mathbb{U}_R\)) for \((G, \cdot, \Sigma, \Sigma^{(-1)})\).
Proof. That $\mathcal{U}(d) = \mathcal{U}_L$ follows from Theorem 5.11[3], while $\mathcal{U}^{-1}(d) = \mathcal{U}^{-1}_L$ follows same way as in Theorem 5.11[3]. In fact, for any $(x, y) \in X \times X,$
\[\psi_r^{-1}(x, y) = \psi_r(y, x) = L_r[d(y, x)] \]
= $L_r[d(e, y^{-1}x)] = \psi_r < e > (y^{-1}x)$
= $(\psi_r < e >)^{-1}(x^{-1}y) = ((\psi_r < e >)^{-1})_L(x, y),$
whence one obtains: $\mathcal{U}^{-1}(d) = \{(\psi_r < e >)^{-1} \mid \psi_r < e > \in \mathcal{B}(e)\} = \mathcal{U}^{-1}_L.$ \hfill \Box

4. FUZZY QUASI-UNIFORMIZABILITY OF QUASI BI-FUZZY NEIGHBORHOOD GROUPS

If $(G, \cdot, \Sigma, \Sigma'(−1))$ is a quasi bi-fuzzy neighborhood group, then it has three fuzzy quasi-uniformities: \mathcal{U}_L (the left quasi-uniformity), \mathcal{U}_R (the right quasi-uniformity) and \mathcal{U}_B (the two-sided quasi-uniformity), which are defined as:

$\mathcal{U}_L = \{\nu_L \mid \nu \in \Sigma(e)\}^\sim, \mathcal{U}_R = \{\nu_R \mid \nu \in \Sigma(e)\}^\sim$ and $\mathcal{U}_B = \{\nu_L \land \nu_R \mid \nu \in \Sigma(e)\}^\sim$,

whence $\nu_L : G \times G \rightarrow I, (x, y) \mapsto \nu_L(x, y) = \nu(x^{-1}y)$ and $\nu_R : G \times G \rightarrow I, (x, y) \mapsto \nu_R(x, y) = \nu(yx^{-1})$.

Definition 4.1. A quasi bi-fuzzy neighborhood space $(X, \Sigma, \Sigma'(−1))$ is called fuzzy quasi-uniformizable if and only if there exists a fuzzy quasi-uniformity \mathcal{U} on X such that $\Sigma = t(\mathcal{U})$ and $\Sigma'(−1) = t(\mathcal{U}^{-1})$, where $\mathcal{U}^{-1} = \{\nu^{-1} \mid \nu \in \mathcal{U}\}$, and $\nu^{-1}(x, y) = \nu(y, x)$, for any $(x, y) \in X \times X$.

Theorem 4.2. Each quasi bi-fuzzy neighborhood group is fuzzy quasi-uniformizable.

Proof. Let $(G, \cdot, \Sigma, \Sigma'(−1))$ be a quasi bi-fuzzy neighborhood group. Since for any $x \in G, \mathcal{U}_L(x) = \{\nu_L < x > \mid \nu \in \Sigma(e)\}^\sim = \{\mathcal{L}_x(\nu) \mid \nu \in \Sigma(e)\}^\sim = \Sigma(x)$, it follows from Theorem 3.3[1] in conjunction with Theorem 3.12(a) that $t(\mathcal{U}_L) = \Sigma$. Hence it suffices to prove that $t(\mathcal{U}^{-1}) = \Sigma'(−1)$. Note that for any $x \in G$ and $\nu \in \Sigma(e)$, we have $\nu_L^{-1} < x > = x \circ \nu^{-1} = \mathcal{L}_x(\nu^{-1})$. Hence it follows that $t(\mathcal{U}_L^{-1}) = \Sigma'(−1)$. Thus we have shown that $t(\mathcal{U}_L) = \Sigma$ and $t(\mathcal{U}_L^{-1}) = \Sigma'(−1)$ proving that $(G, \cdot, \Sigma, \Sigma'(−1))$ is fuzzy quasi-uniformizable.

Similarly, considering right fuzzy quasi-uniformity \mathcal{U}_R, one can easily conclude that $t(\mathcal{U}_R) = \Sigma$ and $t(\mathcal{U}_R^{-1}) = \Sigma'(−1)$. \hfill \Box

Remark 4.3. From the Theorem 3.8, it follows that Σ and Σ^{-1} generates a fuzzy neighborhood group (G, \cdot, Σ^*), where $\Sigma^* = \Sigma \lor \Sigma'(−1)$. If $\mathcal{U}_L^\gamma, \mathcal{U}_R^\gamma$ and \mathcal{U}_B^γ denote respectively left, right and both-sided fuzzy uniformities for the fuzzy neighborhood group (G, \cdot, Σ^*), then we obtain the following

Proposition 4.4. Let $(G, \cdot, \Sigma, \Sigma'(−1))$ be a quasi bi-fuzzy neighborhood group. Then $\mathcal{U}_L^\gamma = \mathcal{U}_L, \mathcal{U}_R^\gamma = \mathcal{U}_R$ and $\mathcal{U}_B^\gamma = \mathcal{U}_B^\gamma$.

Proof. Let $\nu \in \Sigma(e)$. Then since $(\nu \land \nu^{-1})_L = \nu_L \land \nu_L^{-1}$, we get $\mathcal{U}_L^\gamma = \mathcal{U}_L \lor \mathcal{U}_L^{-1} = \mathcal{U}_L$. Similarly, one can obtain: $\mathcal{U}_R^\gamma = \mathcal{U}_R \lor \mathcal{U}_R^{-1} = \mathcal{U}_R$, and $\mathcal{U}_B^\gamma = \mathcal{U}_B \lor \mathcal{U}_B^{-1} = \mathcal{U}_B$. \hfill \Box
Following a classical notion of weakly locally symmetric quasi-uniform space as studied in [7] and [9] (see below the Definition 4.5), we generalize this notion for fuzzy quasi-uniform spaces to characterize fuzzy neighborhood group.

Definition 4.5. [7, 9] A quasi-uniform space \((X, \mathcal{U})\) is called weakly locally symmetric provided if \(x \in X\) and \(U \in \mathcal{U}\), there is a symmetric entourage \(V \in \mathcal{U}\) such that \(V[x] \subset U[x]\).

If \(X\) is any set, \(\mu \in I^X\) and \(\nu \in I^{X \times X}\), then the section of \(\nu\) over \(\mu\) is defined by \(\nu < \mu > (x) = \bigvee_{y \in X} \mu(y) \land \nu(x, y)\). So, if \(\mu = 1_{\{x\}} (= x)\), then the section of \(\nu\) over \(\mu\) is given by \(\nu < x >\).

Definition 4.6. A fuzzy quasi-uniform space \((X, \mathcal{U})\) is called weakly locally symmetric if and only if for all \(x \in X\), for all \(\nu \in \mathcal{U}\) and for all \(\epsilon > 0\) there exists a symmetric \(\varrho \in \mathcal{U}\) such that \(\varrho < x > - \epsilon \leq \nu < x >\).

The next theorem shows that the above definition fulfills Lowen’s good extension criteria [15].

Theorem 4.7. A quasi-uniform space \((X, \mathcal{U})\) is weakly locally symmetric if and only if the fuzzy quasi-uniform space \((X, \omega_u(\mathcal{U}))\) is weakly locally symmetric.

Proof. Let \((X, \mathcal{U})\) be a weakly locally symmetric quasi-uniform space. It follows from the Theorem 3.1 [17] that \((X, \omega_u(\mathcal{U}))\) is a fuzzy quasi-uniform space. We only need to show that it is weakly locally symmetric. For, let \(\epsilon \in I_0\), \(x \in X\) and \(\nu \in \omega_u(\mathcal{U})\). Put \(\delta = 1 - \epsilon \in I_1\). Then \(\nu^{-1}[\delta, 1] \in \mathcal{U}\). So, there exists a symmetric entourage \(V \in \mathcal{U}\) such that \(V[x] \subset \nu^{-1}[\delta, 1][x]\). Set \(\eta = 1_V\), then \(\eta \in \omega_u(\mathcal{U})\), and \(\eta < x > - \epsilon = 1_V < x > - \epsilon = 1_V[x] - \epsilon \leq 1_{\nu^{-1}[\delta, 1][x]} - \epsilon\), implying that \(\eta < x > - \epsilon \leq \nu < x >\), where \(\eta\) is a symmetric entourage. Conversely, assume that \((X, \omega_u(\mathcal{U}))\) is weakly locally symmetric. To show \((X, \mathcal{U})\) is weakly locally symmetric, let \(U \in \mathcal{U}\) and \(x \in X\). Then \(1_U \in \omega_u(\mathcal{U})\). Thus for any \(\epsilon > 0\) there is a symmetric \(\rho \in \omega_u(\mathcal{U})\) such that \(\rho < x > - \epsilon \leq 1_U < x >\), i.e., \(\rho < x > - \epsilon \leq 1_U[x]\). Now if we choose \(\delta \in I_0\) such that \(0 < \epsilon + \delta < 1\), then upon using symmetry of \(\rho\), one obtains: \(\rho^{-1}[\epsilon + \delta, 1][x] \subset U[x]\), whence \(\rho^{-1}[\epsilon + \delta, 1] \in \mathcal{U}\) is a symmetric entourage. \(\square\)

Lemma 4.8. [2] If \((G, \cdot)\) is a group and \(\Sigma\) is a fuzzy neighborhood system on \(G\) such that \(x \mapsto yx\) and \(x \mapsto xy\) are continuous for all \(y \in G\), and such that the the inversion mapping \(r: x \mapsto x^{-1}\) is continuous at the identity, then \(x \mapsto x^{-1}\) is continuous at each \(x \in G\).

Theorem 4.9. Let \((G, \cdot, \Sigma)\) be a quasi fuzzy neighborhood group. Then \((G, \cdot, \Sigma)\) is a fuzzy neighborhood group if and only if any one of \(\mathcal{U}_L\), \(\mathcal{U}_R\) or \(\mathcal{U}_B\) is weakly locally symmetric.

Proof. If \((G, \cdot, t(\Sigma))\) is a fuzzy neighborhood group, then in view of Theorem 3.3[1], it follows that \(\mathcal{U}_L\), \(\mathcal{U}_R\) and \(\mathcal{U}_B\) are fuzzy uniformities and then by exploiting Theorem 5.1[16] one can show that the preceding fuzzy uniformity, left, right or both sided is a weakly locally symmetric. We prove the converse
Fawzi Al-Thukair and T. M. G. Ahsanullah

for U_e; assume it is weakly locally symmetric. We show that the inversion map $r: x \mapsto x^{-1}$ is continuous at $e \in G$. Let $\nu \in \Sigma(e)$ and $\epsilon > 0$. Then there exists a $\xi \in \Sigma(e)$ and a symmetric entourage μ such that $\mu < e > -\frac{\epsilon}{2} \leq \nu$ and $\xi - \frac{\epsilon}{2} \leq \mu$.

Then for any $y \in G$, $\xi(y) = \xi_L(y^{-1}, e) \leq \mu(e, y^{-1}) + \frac{\epsilon}{2} = \mu < e > (y^{-1}) + \frac{\epsilon}{2} \leq \nu(y^{-1}) + \epsilon = r^{-1}(\nu)(y) + \epsilon$, i.e. $\xi - \epsilon \leq r^{-1}(\nu)$, showing that the inversion is continuous at $e \in G$. Hence the the continuity of the inversion mapping at an arbitrary point follows from Lemma 4.8 above and this ensures that the triple (G, \cdot, Σ) is a fuzzy neighborhood group.

□

References

Quasi fuzzy neighborhood groups

Received: October 16, 2017; Published: October 30, 2017