Note on Minimal Möbius-Invariant Subspaces of Analytic and Harmonic Functions on the Unit Disc

Yitzhak Weit

Department of Mathematics, University of Haifa, Haifa, Israel

Copyright © 2017 Yitzhak Weit. This article is distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

We study minimal Möbius-invariant subspaces for some classes of linear topological spaces of analytic and harmonic functions on the unit disc.

Mathematics Subject Classification: 30H05, 57S25

Keywords: minimal Möbius- invariant

Introduction

Let D denote the open unit disc in the complex plane \mathbb{C}. Let $G=\text{Aut}(D)$ be the group of Möbius transformations of the form $\varphi = \lambda \varphi_a$ where $\lambda \in \Pi = \partial D$ and $\varphi_a(z) = \frac{a-z}{1-\bar{a}z}$. Let X be a linear topological Möbius-invariant subspace of analytic functions on D. That is, $f \in X$ implies $f \circ \varphi \in X$ for every $\varphi \in G$.

Definition:

A closed Möbius-invariant subspace V is said to be minimal if it does not contain a closed non-trivial Möbius-invariant subspace. It follows that for each $f \in V$, $f \neq \text{const}$, the span of $\{f \circ \varphi, \varphi \in G\}$ is dense in V.

For the study of semi- normed and normed Möbius-invariant subspaces X see [1].
Main results

Theorem 1.
Let \(X \) be a Möbius-invariant space of analytic functions on \(D \) which satisfies:

1. The polynomials \(P(z) = a_0 + a_1 z + \ldots + a_n z^n \) are dense in \(X \).
2. If \(V \) is a closed Möbius-invariant subspace of \(X \), and \(f \in V \) then the function \(h(z) = \int f(z e^{i\alpha}) \, d\mu(\alpha) \) belongs to \(V \) for each measure \(\mu \) on the subgroup of rotations \(K \).

Then \(X \) is a minimal Möbius-invariant subspace.

Proof:
For \(f \neq \text{const.} \), let \(M(f) \) denote the closed subspace spanned by \(\{ f \circ \varphi, \varphi \in G \} \).

Let \(z_0 \in D \) such that \(f'(z_0) \neq 0 \). If \(\varphi_0 \in G, \varphi_0(0) = z_0 \), then \(h_0'(0) \neq 0 \) where \(h_0 = f \circ \varphi_0 \) and \(h_0 \in M(f) \). Hence \(h_0(z) = \sum_{n=0}^{\infty} a_n z^n \) for \(a_1 \neq 0 \). For each \(\alpha \), \(h_0(z e^{i\alpha}) \in M(f) \) and by (2) \(h_1(z) = \int_0^{2\pi} h_0(ze^{i\alpha}) e^{-i\alpha} d\alpha = 2\pi a_1 z \in M(f) \).

But \(h_2 = h_1 \circ \varphi_2 = 2\pi a_1 \varphi_2 \), for some \(\varphi_2 \in G, \varphi_2(0) \neq 0 \), belongs to \(M(f) \).

Since \(\varphi_2 = \sum_{n=0}^{\infty} a_n^* z^n \) where \(a_n^* \neq 0 \) \(\forall n \). By averaging rotations as in (2) we obtain \(z^k \in M(f) \) \(\forall k \geq 0 \), implying by (1) that \(M(f) = X \).

The following result shows that we don’t need the whole group \(G = \text{Aut}(D) \).

Let \(\Lambda \subseteq \text{Aut}(D) = \{ e^{i\alpha}, \alpha \in \mathbb{R} \} \cup \{ \varphi_n \in G: \varphi_n(0) \to \beta, \varphi_n(0) \neq \beta \) for some \(\beta \in D \} \).

Theorem 2.
If \(X \) satisfies (1) and (2) in Theorem 1 then \(X \) is minimal with respect to \(\Lambda \). That is, for every \(f \in X, f \neq \text{const.} \), the subspace spanned by \(f \circ \varphi, \varphi \in \Lambda \) is dense in \(X \).

Proof:
Let \(f \in X, f \neq \text{const.} \). Since \(f \) is analytic there exists \(n_0 \) such that \(f'(\varphi_{n_0}(0)) \neq 0 \).

For \(h = f \circ \varphi_{n_0} \) we have \(h'(0) \neq 0 \) and the result follows as in the proof of Theorem 1.
The analogue result for harmonic functions is the following:

Theorem 3.

Let X be a Möbius-invariant linear topological space over \mathbb{R} of real-valued harmonic functions on D.

Suppose X satisfies:

1. The harmonic polynomials $P_n(z) + \overline{P_n(z)}$ are dense in X.
2. Same as in Theorem 1.

Then X is a minimal Möbius-invariant subspace.

Proof:

Let $f \in X$, $f \neq \text{const}$. Since f is the real part of an analytic function there exists $z_0 \in D$ such that $\frac{\partial f}{\partial z}(z_0, \overline{z}_0) \neq 0$ and $\frac{\partial f}{\partial \overline{z}}(z_0, \overline{z}_0) \neq 0$. If $\varphi \in G$, $\varphi(0) = z_0$ then $h = f \circ \varphi$ belongs to $M(f)$ and satisfies $\frac{\partial h}{\partial z}(0,0) \neq 0$ and $\frac{\partial h}{\partial \overline{z}}(0,0) \neq 0$. It follows that $h(z, \overline{z}) = \sum_{n=0}^{\infty} a_n z^n + \sum_{n=0}^{\infty} \overline{a}_n \overline{z}^n$ where $a_1 \neq 0$. By taking average of rotations of h with $\mu(\alpha) = e^{i\alpha} + e^{-i\alpha}$ in (2)*, we obtain $a_1 z + \overline{a}_1 \overline{z} \in M(f)$.

Hence $h_1 = a_1 \varphi_0 + \overline{a}_1 \overline{\varphi}_0$ for some $\varphi_0 \in G$, $\varphi_0(0) \neq 0$. But $h_1(z, \overline{z}) = \sum_{n=0}^{\infty} (b_n z^n + \overline{b}_n \overline{z}^n)$ with $b_n \neq 0$ for every n. By rotating h_1 with $\mu(\alpha) = c e^{i\alpha} + \overline{c} e^{-i\alpha}$ in (2)* we obtain $c b_n z^n + \overline{c} b_n \overline{z}^n \in M(f)$ for every n and $c \in \mathbb{C}$, implying by (1)* that $M(f) = X$.

Corollary 4. [2, 2.1 Theorem].

Let $f(e^{i\alpha})$ be a real valued continuous, non-constant function on $\Pi = \partial D$.

Then the span of $f \circ \varphi$, $\varphi \in G$ is dense in $C(\Pi)$.

Proof:

Let $F(z, \overline{z})$ be the harmonic extension of f to D. Since the disc algebra satisfies (1) and (2) the result follows from Theorem 3.

Similarly we obtain:

Theorem 5.

Theorem 3 and Corollary 4 hold when G is replaced by Λ.

References

https://doi.org/10.1515/crll.1985.363.110

Received: January 9, 2017; Published: February 9, 2017