A Note on gw-Continuity Induced by Generalized w-Open Sets in Associated w-Spaces

Won Keun Min

Department of Mathematics
Kangwon National University
Chuncheon 24341, Korea

Abstract

The purpose of this paper is to introduce the notions of gw-continuous and gw^*-continuous functions induced by gw-open sets in associated w-spaces, and to study some properties and the relationships among such notions and other continuity.

Mathematics Subject Classification: 54A05, 54B10, 54C10, 54D30

Keywords: associated w-space, gw-open, gw^*-open, $W(WO)$-continuous, $W^*(WK)$-continuous, gW-continuous, gW^*-continuous, gw-irresolute, gw^*-irresolute

1 Introduction

Siwiec [20] introduced the notions of weak neighborhoods and weak base in a topological space. We introduced the weak neighborhood systems defined by using the notion of weak neighborhoods in [11]. The weak neighborhood system induces a weak neighborhood space which is independent of neighborhood spaces [4] and general topological spaces [2]. The notions of weak structure,
w-space, W-continuity and W^*-continuity were investigated in [12]. In [13], the notions of associated w-spaces, WO-continuity and WK-continuity were investigated. Levine [5] introduced the notion of g-closed subsets in topological spaces. In fact, the set of all g-closed subsets is a kind of weak structure. In the same way, we introduced the notions of gw-closed sets [15] and gw_τ-closed sets [16] in weak spaces, and investigated some basic properties of such notions. The notions of gW-continuous, gW^*-continuous, gW^*-irresolute, and gW^*-irresolute functions induced by gw-open sets introduced in [18], and also the notions of $gw_\tau W$-continuous, $gw_\tau W^*$-continuous, $gw_\tau W^*$-irresolute, and $gw_\tau W^*$-irresolute functions investigated in [18]. The purpose of this note is to introduce the notions of gw-continuity and gw^*-continuity and to study the relationships among such notions and the other continuity in associated w-spaces.

2 Preliminaries

Let X be a nonempty set. A subfamily w_X of the power set $P(X)$ is called a weak structure [12] on X if it satisfies the following:

1. $\emptyset \in w_X$ and $X \in w_X$.
2. For $U_1, U_2 \in w_X$, $U_1 \cap U_2 \in w_X$.

Then the pair (X, w_X) is called a w-space on X. Then $V \in w_X$ is called a w-open set and the complement of a w-open set is a w-closed set. The collection of all w-open sets (resp., w-closed sets) in a w-space X will be denoted by $W(X)$ (resp., $WC(X)$). We set $W(x) = \{ U \in W(X) : x \in U \}$.

Let S be a subset of a topological space X. The closure (resp., interior) of S will be denoted by clS (resp., $intS$). A subset S of X is called a preopen set [9] (resp., α-open set [19], semi-open [6]) if $S \subset int(cl(S))$ (resp., $S \subset int(cl(int(S)))$). The complement of a preopen set (resp., α-open set, semi-open) is called a preclosed set (resp., α-closed set, semi-closed). The family of all preopen sets (resp., α-open sets, semi-open sets) in X will be denoted by $PO(X)$ (resp., $\alpha(X)$, $SO(X)$). We know the family $\alpha(X)$ is a topology finer than the given topology on X. And a subset A of X is said to be g-closed [5] (resp., gp-closed [7], gs-closed [1, 3]) if $cl(A)$ (resp., $pCl(A)$, $sCl(A)) \subset U$ whenever $A \subset U$ and U is open in X.

Then the family $\tau, GO(X), goO(X)$, and $go^*O(X)$, are all weak structures on X. But $PO(X)$, $GPO(X)$ and $SO(X)$ are not weak structures on X. A subfamily m_X of the power set $P(X)$ of a nonempty set X is called a minimal structure on X [8] if $\emptyset \in m_X$ and $X \in m_X$. Thus clearly every weak structure is a minimal structure.
For a subset \(A \) of \(X \), the \(w\)-closure of \(A \) and the \(w\)-interior of \(A \) are defined as follows in [12]:

1. \(wC(A) = \cap \{ F : A \subseteq F, X - F \in w_X \} \).
2. \(wI(A) = \cup \{ U : U \subseteq A, U \in w_X \} \).

Theorem 2.1 ([12]). Let \((X, w_X)\) be a \(w \)-space and \(A \subseteq X \).

1. \(x \in wI(A) \) if and only if there exists an element \(U \in W(x) \) such that \(U \subseteq A \).
2. \(x \in wC(A) \) if and only if \(A \cap V \neq \emptyset \) for all \(V \in W(x) \).
3. If \(A \subseteq B \), then \(wI(A) \subseteq wI(B) \); \(wC(A) \subseteq wC(B) \).
4. \(wC(X - A) = X - wI(A) \); \(wI(X - A) = X - wC(A) \).
5. If \(A \) is \(w \)-closed (resp., \(w \)-open), then \(wC(A) = A \) (resp., \(wI(A) = A \)).

Let \((X, w_X)\) be a \(w \)-space and \(A \subseteq X \). Then \(A \) is called a generalized \(w \)-closed set (simply, a \(gw \)-closed set) [15] if \(wC(A) \subseteq U \), whenever \(A \subseteq U \) and \(U \) is \(w \)-open. Then the union of two \(gw \)-closed sets is a \(gw \)-closed set, but the intersection of two \(gw \)-closed sets is not always \(gw \)-closed. The family of all \(w \)-closed sets (resp., \(gw \)-closed sets, \(gw \)-open sets) in \(X \) will be denoted by \(WC(X) \) (resp., \(GW(X) \)). We set \(gW(x) = \{ U \in GW(X) : x \in U \} \). \(A \) is called a generalized \(w \)-open set (simply, a \(gw \)-open set) if \(X - A \) is \(gw \)-closed. Then \(A \) is \(gw \)-open if and only if \(F \subseteq wI(A) \) whenever \(F \subseteq A \) and \(F \) is \(w \)-closed. For a subset \(A \) of \(X \), \(gw \)-closure of \(A \) and \(gw \)-interior [15] of \(A \) are defined as the following:

1. \(gwC(A) = \cap \{ F : A \subseteq F, F \text{ is } gw \text{-closed} \} \).
2. \(gwI(A) = \cup \{ U : U \subseteq A, U \text{ is } gw \text{-open} \} \).

Theorem 2.2 ([15]). Let \((X, w_X)\) be a \(w \)-space and \(A \subseteq X \).

1. If \(A \) is \(gw \)-open (\(gw \)-closed), then \(gwI(A) = A \) (\(gwC(A) = A \)).
2. If \(A \subseteq B \), then \(gwI(A) \subseteq gwI(B) \); \(gwC(A) \subseteq gwC(B) \).
3. \(gwC(X - A) = X - gwI(A) \); \(gwI(X - A) = X - gwC(A) \).
4. \(x \in gwI(A) \) iff there exists a \(gw \)-open set \(U \) containing \(x \) such that \(U \subseteq A \).
5. \(x \in gwC(A) \) iff \(A \cap V \neq \emptyset \) for all \(gw \)-open set \(V \) containing \(x \).

3 Main Results

First, we recall that: Let \(X \) be a nonempty set and let \((X, \tau)\) be a topological space. A subfamily \(w \) of the power set \(P(X) \) is called an associated weak structure (simply, \(w_\tau \)) [13] on \(X \) if \(\tau \subseteq w \) and \(w \) is a weak structure. Then the pair \((X, w_\tau)\) is called an associated \(w \)-space with \(\tau \).
Definition 3.1. Let $f : X \rightarrow Y$ be a function in two associated w-spaces. Then f is said to be

1. gw-continuous if for $x \in X$ and for each open set V containing $f(x)$, there is a gw-open set U containing x such that $f(U) \subseteq V$;

2. gw^*-continuous if for every open set V in Y, $f^{-1}(V)$ is a gw-open set in X.

Obviously we obtain the following theorem:

Theorem 3.2. Every gw^*-continuous function is gw-continuous.

The following example supports that the converse of the above theorem is not true in general.

Example 3.3. Let $X = \{a, b, c, d\}$, a topology $\tau = \{\emptyset, \{a, c\}, X\}$ and an associated w-structure $w = \{\emptyset, \{a, c\}, \{a\}, \{b\}, \{c\}, \{a, d\}, X\}$ in X. Then for the power set $P(X)$ of X, $GW(X) = P(X) - \{\{b, c, d\}, \{b, d\}\}$ is the set of all gw-open sets. Consider a function $f : (X, w) \rightarrow (X, w)$ defined by $f(a) = b; f(b) = a; f(c) = d; f(d) = c$. Then f is gw-continuous. For an open set $\{a, c\}$, $f^{-1}(\{a, c\}) = \{b, d\}$ is not gw-open, and so f is not gw^*-continuous.

We recall that: Let (X, w_τ) be an associated w-space with a topology τ and $A \subseteq X$. Then A is called a generalized w_τ-closed set (simply, gw_τ-closed set) [16] if $cl(A) \subseteq U$, whenever $A \subseteq U$ and U is w-open.

Let $f : X \rightarrow Y$ be a function in two associated w-spaces w-spaces. Then f is said to be

1. gw_τ-continuous [17] if for $x \in X$ and for each open set V containing $f(x)$, there is a gw_τ-open set U containing x such that $f(U) \subseteq V$;

2. gw^*_τ-continuous [17] if for every open set V in Y, $f^{-1}(V)$ is a gw_τ-open set in X.

Obviously, the following things are obtained:

Theorem 3.4. (1) Every gw_τ-continuous function is gw-continuous.

(2) Every gw^*_τ-continuous function is gw^*-continuous.

Proof. Since every gw_τ-open set is gw-open, the things are obvious. \qed

The following example supports that the converses of the above theorem are not true in general.

Example 3.5. Let $X = \{a, b, c, d\}$, a topology $\tau = \{\emptyset, \{a\}, \{a, b\}, X\}$ and $w_X = \{\emptyset, \{a\}, \{a, b\}, \{a, c\}, \{a, d\}, \{a, b, d\}, X\}$ be a w-structure in X. Note that:
Continuity induced by generalized w-open sets

$WC(X) = \{\emptyset, \{b, c, d\}, \{c, d\}, \{b, d\}, \{b, c\}, \{c\}, X\};$

$GW_xC(X) = \{\emptyset, \{b, c\}, \{c, d\}, \{a, b, c\}, \{a, c, d\}, \{b, c, d\}, X\};$

$GW_\tau(X) = \{\emptyset, \{a\}, \{b\}, \{d\}, \{a, b\}, \{a, d\}, X\};$

$GWC(X) = \{\emptyset, \{b\}, \{c\}, \{d\}, \{b, c\}, \{b, d\}, \{c, d\}, \{a, b, c\}, \{a, c, d\}, \{a, c, d\}, \{a, b, d\}, \{a, c, d\}, \{a, b, d\}, X\};$

$GW(X) = \{\emptyset, \{a\}, \{b\}, \{d\}, \{a, b\}, \{a, c\}, \{a, b, c\}, \{a, b, d\}, \{a, b, d\}, X\}.$

Consider a function $f : X \to X$ defined as: $f(a) = f(c) = a; f(b) = b; f(d) = d$. Then f is gw-continuous and gw^*-continuous. But for an open set $\{a\}$, $f^{-1}(\{a\}) = \{a, c\}$ is not gw_τ-open. So f is not neither gw_τ-continuous nor gw^*_τ-continuous.

Let $f : X \to Y$ be a function in two associated w-spaces. Then f is said to be

1. **WO-continuous** [13] if for $x \in X$ and for each open set V containing $f(x)$, there is a w-open set U containing x such that $f(U) \subseteq V$;
2. **WK-continuous** [13] if for every open set V in Y, $f^{-1}(V)$ is a w-open set in X.

Obviously, the following things are obtained:

Theorem 3.6.
1. Every WO-continuous function is gw-continuous.
2. Every WK-continuous function is gw-continuous.

Proof. Since every w-open set is gw-open, they are obtained.

The following example supports that the converses of the above theorem are not true in general.

Example 3.7. Consider the function f defined in Example 3.5. Then f is gw-continuous and gw^*-continuous but neither WO-continuous nor WK-continuous.

Let $f : X \to Y$ be a function on w-spaces. Then f is said to be

1. **gW-continuous** [18] if for $x \in X$ and for each w-open set V containing $f(x)$, there is a gw-open set U containing x such that $f(U) \subseteq V$;
2. **gW*-continuous** [18] if for every w-open set V in Y, $f^{-1}(V)$ is a gw-open set in X.

Obviously, the following things are obtained:

Theorem 3.8.
1. Every gW-continuous function is gw-continuous.
2. Every gW*-continuous function is gw^*-continuous.
Proof. Since every open set is \(w \)-open, the things are obtained.

The following example supports that the converses of the above theorem are not true in general.

Example 3.9. (1) The function \(f \) defined in Example 3.5 is obviously \(gw^* \)-continuous but not \(gW^* \)-continuous.

(2) In Example 3.5, consider a function \(g : X \to X \) defined by \(g(a) = b ; g(b) = a ; g(c) = c ; g(d) = d \). Then \(g \) is \(gw \)-continuous. For a \(w \)-open set \(V = \{a, c\} \) and for \(g(c) = c \in U \), there is no any \(gw \)-open set \(U \) containing \(c \) such that \(g(U) \subseteq V \). So, \(g \) is not \(gW^* \)-continuous.

Let \(f : (X, w_\tau) \to (Y, w_\mu) \) be a function on two associated \(w \)-spaces with \(\tau \) and \(\mu \). Then \(f \) is said to be

(1) \(gW \)-irresolute [18] if for \(x \in X \) and for each \(gw \)-open set \(V \) containing \(f(x) \), there is \(gw \)-open set \(U \) containing \(x \) such that \(f(U) \subseteq V \);

(2) \(gW^* \)-irresolute [18] if for every \(gw \)-open set \(V \) in \(Y \), \(f^{-1}(V) \) is \(gw \)-open in \(X \).

In [18], we showed that every \(gW \)-irresolute is \(gW \)-continuous and very \(gW^* \)-irresolute function is \(gW^* \)-continuous. From Theorem 3.4, the following theorem is directly obtained:

Theorem 3.10.

1. Every \(gW \)-irresolute is \(gw \)-continuous.
2. Every \(gW^* \)-irresolute function is \(gw^* \)-continuous.

Remark 3.11. For a function from an associated \(w \)-space to an associated \(w \)-space, we have the following diagram:

\[
\begin{array}{ccc}
\text{Continuity} & \rightarrow & WK\text{-conti.} \\
\downarrow & & \downarrow \\
\downarrow & & \downarrow \\
gw^*\text{-conti.} & \rightarrow & gw\text{-conti.} \\
\downarrow & & \downarrow \\
gw^*_r\text{-conti.} & \rightarrow & gw_r\text{-conti.} \\
\uparrow & & \uparrow \\
\uparrow & & \uparrow \\
gw_rW^*\text{-conti.} & \rightarrow & gw_rW\text{-conti.} \\
\uparrow & & \uparrow \\
gW^*\text{-conti.} & \rightarrow & gW\text{-conti.} \\
\uparrow & & \uparrow \\
W^*\text{-conti.} & \rightarrow & W\text{-conti.}
\end{array}
\]

Continuity \(\rightarrow gw^*_r\)-continuity \(\rightarrow gw_r\)-continuity
Theorem 3.12. Let \(f : X \rightarrow Y \) be a function on \(w \)-spaces. Then \(f \) is \(gw^* \)-continuous if and only if for every closed set \(F \) in \(Y \), \(f^{-1}(F) \) is \(gw \)-closed in \(X \).

Proof. It is obvious. \(\square\)

Theorem 3.13. Let \(f : X \rightarrow Y \) be a function on \(w \)-spaces. Then the following statements are equivalent:

1. \(f \) is \(gw \)-continuous.
2. \(f(gwC(A)) \subseteq cl(f(A)) \) for \(A \subseteq X \).
3. \(gwC(f^{-1}(V)) \subseteq f^{-1}(cl(V)) \) for \(V \subseteq Y \).
4. \(f^{-1}(int(V)) \subseteq gwI(f^{-1}(V)) \) for \(V \subseteq Y \).

Proof. Obvious. \(\square\)

Corollary 3.14. Let \(f : X \rightarrow Y \) be a function on \(w \)-spaces. Then the following statements are equivalent:

1. \(f \) is \(gw \)-continuous.
2. \(f^{-1}(V) = gwI(f^{-1}(V)) \) for every open set \(V \in Y \).
3. \(f^{-1}(B) = gwC(f^{-1}(B)) \) for every closed set \(B \subseteq Y \).

Proof. From Theorem 2.2 and Theorem 3.13, it is obvious. \(\square\)

Let \((X, w)\) be a \(w \)-space. Let \(gw(x) \) (resp., \(w(x) \)) denote the set of all \(gw \)-open (resp., \(w \)-open) set containing \(x \) in \(X \). A collection \(\mathcal{H} \) of subsets of \(X \) is called an \(m \)-family \([10]\) on \(X \) if \(\cap \mathcal{H} \neq \emptyset \). Let \(\mathcal{H} \) be an \(m \)-family on \(X \). Then we say that an \(m \)-family \(\mathcal{H} \) \(gw \)-converges (resp., \(gw \)-converges) to \(x \in X \) if \(\mathcal{H} \) is finer than \(gw(x) \) (resp., \(O(x) \)) i.e., \(gw(x) \subseteq \mathcal{H} \) (resp., \(O(x) \subseteq \mathcal{H} \)). Let \(f : X \rightarrow Y \) be a function; then it is obvious \(f(\mathcal{H}) = \{ f(F) : F \in \mathcal{H} \} \) is an \(m \)-family on \(Y \).

Theorem 3.15. Let \(f : X \rightarrow Y \) be a function on \(w \)-spaces. If \(f \) is \(gw \)-continuous, then for an \(m \)-family \(\mathcal{H} \) \(gw \)-converging to \(x \in X \), an \(m \)-family \(< f(\mathcal{H}) > = \{ F : H \subseteq F \) for some \(H \in f(\mathcal{H}) \} \) converges to \(f(x) \).

Proof. Let \(f \) be \(gw \)-continuous and let \(\mathcal{H} \) be an \(m \)-family \(gw \)-converging to \(x \in X \). By \(gw \)-continuity, for an open set \(V \) containing \(f(x) \), there exists a \(gw \)-open set \(U \) containing \(x \) such that \(f(U) \subseteq V \). Since \(f(gw(x)) \subseteq f(\mathcal{H}) \), \(V \in < f(\mathcal{H}) > \), and so \(O(f(x)) \subseteq < f(\mathcal{H}) > \). Hence the \(m \)-family \(< f(\mathcal{H}) > \) converges to \(f(x) \). \(\square\)
Theorem 3.16. Let $f : X \rightarrow Y$ be a bijective function on w-spaces. Then f is gw^*-continuous iff for an m-family \mathcal{H} gw-converging to $x \in X$, the m-family $f(\mathcal{H})$ converges to $f(x)$.

Proof. Suppose f is gw^*-continuous and \mathcal{H} is an m-family gw-converging to $x \in X$. By hypothesis and surjectivity, $O(f(x)) \subseteq f(gW(x)) \subseteq f(\mathcal{H})$, and so the m-family $f(\mathcal{H})$ converges to $f(x)$.

For the converse, let $U \in O(f(x))$ for $U \subseteq Y$. Since the family $gW(x)$ clearly gw-converges to x, by hypothesis, we get $O(f(x)) \subseteq f(gW(x))$ for $x \in X$. Since f is injectivity, $f^{-1}(U) \in gW(x)$.

Acknowledgements. This study was supported by 2016 Research Grant from Kangwon National University(No. D1000625-01-01).

References

https://doi.org/10.2140/pjm.1974.52.233

Received: November 21, 2016; Published: January 6, 2017