Stolarsky Type Inequality for Sugeno Integrals on Fuzzy Convex Functions

Dug Hun Hong

Department of Mathematics, Myongji University
Yongin Kyunggido 449-728, South Korea

Abstract

Recently, Flores-Franulić et al. [A note on fuzzy integral inequality of Stolarsky type, Applied Mathematics and Computation 208 (2008) 55-59] proved the Stolarsky’s inequality for the Sugeno integral on the special class of continuous and strictly monotone functions. This result can be generalized to a general class of fuzzy convex functions in this paper. We also give a fuzzy integral inequality based on addition. Some illustrated examples are given.

Mathematics Subject Classification: 26E50

Keywords: Fuzzy measure; Sugeno integral; Stolarsky type inequality

1 Introduction and preliminaries

A number of studies have examined the Sugeno integral since its introduction in 1974 [16], it has been exhaustively investigated by many authors. Ralescu and Adams [12] generalized a range of fuzzy measures and gave several equivalent definitions of fuzzy integrals. Wang and Klir [17] provided an overview of fuzzy measure theory.

The purpose of this paper is to generalize the main results in [6], that is, we prove a Stolarsky type inequality for Sugeno integrals on fuzzy convex functions. We also give a fuzzy integral inequality based on addition. Some examples are provided to illustrate the validity of the proposed inequalities.

Definition 1. Let Σ be a σ-algebra of subsets of \mathbb{R} and let $\mu : \Sigma \to [0, \infty]$ be a non-negative, extended real-valued set function. We say that μ is a fuzzy measure if and only if

(a) $\mu(\emptyset) = 0$.
(b) $E, F \in \Sigma$ and $E \subseteq F$ imply $\mu(E) \leq \mu(F)$ (monotonicity).
(c) $\{E_p\} \subseteq \Sigma$ and $E_1 \subseteq E_2 \subseteq \cdots$ imply $\lim_{p \to \infty} \mu(E_p) = \mu\left(\bigcup_{p=1}^{\infty} E_p\right)$ (continuity form below).
(d) $\{E_p\} \subseteq \Sigma$, $E_1 \supseteq E_2 \supseteq \cdots$, and $\mu(E_1) < \infty$ imply $\lim_{p \to \infty} \mu(E_p) = \mu\left(\bigcap_{p=1}^{\infty} E_p\right)$ (continuity form above).

If f is a non-negative real-valued function defined on \mathbb{R}, then we denote by $F_\alpha = \{x \in X | f(x) \geq \alpha\} = \{f \geq \alpha\}$ the α-level of f, for $\alpha > 0$, and $F_0 = \{x \in X | f(x) > 0\} = \text{supp}(f)$ is the support of f.

We note that

$\alpha \leq \beta \Rightarrow \{f \geq \beta\} \subseteq \{f \geq \alpha\}$

If μ is a fuzzy measure on $A \subseteq \mathbb{R}$, then we define the following:

$\mathcal{F}^\mu(A) = \{f : A \to [0, \infty)|f$ is μ-measurable}.

Definition 2. Let μ be a fuzzy measure on (\mathbb{R}, Σ). If $f \in \mathcal{F}^\mu(\mathbb{R})$ and $A \in \Sigma$, then the Sugeno integral (or the fuzzy integral) of f on A, with respect to the fuzzy measure μ, is defined as

\[
(S) \int_A f d\mu = \sup_{\alpha \in [0, \infty)} [\alpha \wedge \mu(A \cap F_\alpha)].
\]
In particular, if $A = X$ then
\[
(S) \int_R f \, d\mu = (S) \int f \, d\mu = \sup_{\alpha \in [0, \infty)} [\alpha \land \mu(F_\alpha)]
\]

The following properties of the Sugeno integral are well known and can be found in [17]:

Proposition 1 [17]. If μ is a fuzzy measure on \mathbb{R} and $f, g \in \mathcal{F}^\mu(\mathbb{R})$, then

(i) $(S) \int_A f \, d\mu \leq \mu(A)$;
(ii) $(S) \int_A K \, d\mu = K \land \mu(A)$ for any constant $K \in [0, \infty)$;
(iii) $(S) \int_A f \, d\mu \leq (S) \int_A g \, d\mu$, if $f \leq g$ on A;
(iv) $\mu(A \cap \{f \geq \alpha\}) \geq \alpha \Rightarrow (S) \int_A f \, d\mu \geq \alpha$;
(v) $\mu(A \cap \{f \geq \alpha\}) \leq \alpha \Rightarrow (S) \int_A f \, d\mu \leq \alpha$;
(vi) $(S) \int_A f \, d\mu < \alpha \Leftrightarrow$ there exists $\gamma < \alpha$ such that $\mu(A \cap \{f \geq \gamma\}) < \alpha$;
(vii) $(S) \int_A f \, d\mu > \alpha \Leftrightarrow$ there exists $\gamma > \alpha$ such that $\mu(A \cap \{f \geq \gamma\}) > \alpha$.

2 Stolarsky type inequality for fuzzy convex functions

Flores-Franulić et al. [6] presented the following Stolarsky-type inequality for fuzzy integrals under the conditions that f is a continuous and strictly monotone function.

Theorem 1 (Stolarsky type inequality: monotone case [6]). Let $a, b > 0$. If $f : [0, 1] \to [0, 1]$ is a continuous and strictly monotone (decreasing or increasing) function and μ is the Lebesgue measure on \mathbb{R}, then the inequality

\[
(S) \int_0^1 f \left(\frac{1}{x^{a+b}} \right) \, dx \geq \left((S) \int_0^1 f \left(\frac{1}{x^a} \right) \, dx \right) \left((S) \int_0^1 f \left(\frac{1}{x^b} \right) \, dx \right)
\]

holds.

This result can be generalized to a general class of fuzzy convex functions in this paper. We need the following lemma.

Lemma 1. Let $a, b > 0$. If $f : [0, 1] \to \mathbb{R}$ is a fuzzy convex function, and μ is the Lebesgue measure on \mathbb{R}, then the inequalities

\[
\mu \left\{ f \left(\frac{1}{x^{a+b}} \right) \geq \alpha \right\} \geq \mu \left\{ f \left(\frac{1}{x^a} \right) \geq \alpha \right\} \mu \left\{ f \left(\frac{1}{x^b} \right) \geq \alpha \right\}
\]

and

\[
\mu \left\{ f \left(\frac{1}{x^{a+b}} \right) \geq \alpha \right\} \leq \mu \left\{ f \left(\frac{1}{x^a} \right) \geq \alpha \right\} + \mu \left\{ f \left(\frac{1}{x^b} \right) \geq \alpha \right\}
\]
hold.

Proof. Suppose that for $0 < \alpha$,

\[
\left\{ f \left(x^{\frac{1}{\alpha + \delta}} \right) \geq \alpha \right\} = [\alpha_1, \alpha_2].
\]

Then we have

\[
f \left(\alpha_1^{\frac{1}{\alpha + \delta}} \right) = f \left(\alpha_2^{\frac{1}{\alpha + \delta}} \right) = \alpha,
\]

and hence

\[
\left\{ f(x) \geq \alpha \right\} = [\alpha_1^{\frac{1}{\alpha + \delta}}, \alpha_2^{\frac{1}{\alpha + \delta}}].
\]

Similarly, suppose that

\[
\left\{ f \left(x^{\frac{1}{\beta}} \right) \geq \alpha \right\} = [\beta_1, \beta_2], \quad \left\{ f \left(x^{\frac{1}{\gamma}} \right) \geq \alpha \right\} = [\gamma_1, \gamma_2],
\]

then we have

\[
\left\{ f(x) \geq \alpha \right\} = [\beta_1^{\frac{1}{\beta}}, \beta_2^{\frac{1}{\beta}}] = [\gamma_1^{\frac{1}{\gamma}}, \gamma_2^{\frac{1}{\gamma}}].
\]

Let \(\{ f(x) \geq \alpha \} = [h_1, h_2] \). Then we have

\[
[\alpha_1, \alpha_2] = [h_1^{a+b}, h_2^{a+b}], \quad [\beta_1, \beta_2] = [h_1^a, h_2^a] \text{ and } [\gamma_1, \gamma_2] = [h_1^b, h_2^b].
\]

We now consider that

\[
\mu \left\{ f \left(x^{\frac{1}{\alpha + \delta}} \right) \geq \alpha \right\} - \mu \left\{ f \left(x^{\frac{1}{\beta}} \right) \geq \alpha \right\} \mu \left\{ f \left(x^{\frac{1}{\gamma}} \right) \geq \alpha \right\}
\]

\[
= (\alpha_2 - \alpha_1) - (\beta_2 - \beta_1)(\gamma_2 - \gamma_1)
\]

\[
= (h_2^{a+b} - h_1^{a+b}) - (h_2^a - h_1^a)(h_2^b - h_1^b)
\]

\[
= h_1^a h_2^b + h_1^b h_2^a - 2h_1^{a+b}
\]

\[
\geq 0
\]

and

\[
\mu \left\{ f \left(x^{\frac{1}{\alpha + \delta}} \right) \geq \alpha \right\}
\]

\[
= \alpha_2 - \alpha_1 = \beta_2 \gamma_2 - \beta_1 \gamma_1
\]

\[
= \beta_2 \gamma_2 - \beta_2 \gamma_1 + \beta_2 \gamma_1 - \beta_1 \gamma_1
\]

\[
= \beta_2 (\gamma_2 - \gamma_1) + \gamma_1 (\beta_2 - \beta_1)
\]

\[
\leq (\gamma_2 - \gamma_1) + (\beta_2 - \beta_1)
\]

\[
= \mu \left\{ f \left(x^{\frac{1}{\beta}} \right) \geq \alpha \right\} + \mu \left\{ f \left(x^{\frac{1}{\gamma}} \right) \geq \alpha \right\}.
\]

which completes the proof.

By using Lemma 1, we obtain the following main result. We show that the condition of continuity and strictly monotonicity of \(f \) can be released. Fuzzy
convexity of f is sufficient for validity of a Stolarsky type inequality for fuzzy integrals.

Theorem 2. Let $a, b > 0$. If $f : [0, 1] \to \mathbb{R}$ is a fuzzy convex function, and μ is the Lebesgue measure on \mathbb{R}, then the inequality

$$
(S) \int_0^1 f \left(x^{\frac{1}{a+b}} \right) d\mu \geq \left((S) \int_0^1 f \left(x^{\frac{1}{a}} \right) d\mu \right) \left((S) \int_0^1 f \left(x^{\frac{1}{b}} \right) d\mu \right)
$$

holds.

Proof. Let $(S) \int_0^1 f \left(x^{\frac{1}{a}} \right) d\mu = p$ and $(S) \int_0^1 f \left(x^{\frac{1}{b}} \right) d\mu = q$. And let $\varepsilon > 0$ such that $\min\{p - \varepsilon, q - \varepsilon\} > 0$.

Then we have

$$
(S) \int_0^1 f \left(x^{\frac{1}{a}} \right) d\mu > p - \varepsilon \quad \text{and} \quad (S) \int_0^1 f \left(x^{\frac{1}{b}} \right) d\mu > q - \varepsilon
$$

holds. By Proposition 1, there exist α and β such that $1 \geq \alpha > p - \varepsilon$ and $1 \geq \beta > q - \varepsilon$,

$$
\mu \{ f \left(x^{\frac{1}{a}} \right) \geq \alpha \} > p - \varepsilon \quad \text{and} \quad \mu \{ f \left(x^{\frac{1}{b}} \right) \geq \beta \} > q - \varepsilon
$$

hold. By Lemma 1, we have

$$
\mu \{ f \left(x^{\frac{1}{a+b}} \right) \geq \alpha \beta \} \geq \mu \{ f \left(x^{\frac{1}{a}} \right) \geq \alpha \} \mu \{ f \left(x^{\frac{1}{b}} \right) \geq \beta \} > (p - \varepsilon)(q - \varepsilon).
$$

Since $\alpha \beta > (p - \varepsilon)(q - \varepsilon)$, by Proposition 1,

$$
(S) \int_0^1 f \left(x^{\frac{1}{a+b}} \right) d\mu > (p - \varepsilon)(q - \varepsilon).
$$

Since ε is arbitrary,

$$
(S) \int_0^1 f \left(x^{\frac{1}{a+b}} \right) d\mu \geq pq = \left((S) \int_0^1 f d\mu \right) \left((S) \int_0^1 g d\mu \right).
$$

In a similar manner, we can prove the following result using Lemma 1.

Theorem 3. Let $a, b > 0$. If $f : [0, 1] \to \mathbb{R}$ is a fuzzy convex function, and μ is the Lebesgue measure on \mathbb{R}, then the inequality

$$
(S) \int_0^1 f \left(x^{\frac{1}{a+b}} \right) d\mu \leq \left((S) \int_0^1 f \left(x^{\frac{1}{a}} \right) d\mu \right) + \left((S) \int_0^1 f \left(x^{\frac{1}{b}} \right) d\mu \right)
$$

holds.
holds.

In the following, we present an example to illustrate the validity of Theorem 2. and 3.

Example 1. Let $f(x) = 4(x - x^2)$, $x \in [0,1]$ and $a = 2, b = 1/6$. Then, a straightforward calculus with the aid of computer work shows that

\[
i(S) \int_0^1 f(x^\frac{1}{7}) \, d\mu = (S) \int_0^1 (x^\frac{1}{7} - x) \, d\mu = \bigvee_{\alpha \in [0,\infty)} [\alpha \wedge \mu(4(x^\frac{1}{7} - x) \geq \alpha)] = 0.618,
\]

\[
ii(S) \int_0^1 f(x^\frac{1}{6}) \, d\mu = (S) \int_0^1 (x^6 - x^{12}) \, d\mu = \bigvee_{\alpha \in [0,\infty)} [\alpha \wedge \mu(4(x^6 - x^{12}) \geq \alpha)] = 0.319,
\]

\[
iii(S) \int_0^1 f(x^\frac{1}{a+b}) \, d\mu = (S) \int_0^1 (x^{\frac{6}{a+b}} - x^{\frac{12}{a+b}}) \, d\mu = \bigvee_{\alpha \in [0,\infty)} [\alpha \wedge \mu(4(x^{\frac{6}{a+b}} - x^{\frac{12}{a+b}}) \geq \alpha)] = 0.610.
\]

Therefore

\[
0.610 = (S) \int_0^1 f(x^\frac{1}{a+b}) \, d\mu \geq \left((S) \int_0^1 f(x^\frac{1}{7}) \, d\mu \right) \left((S) \int_0^1 f(x^\frac{1}{6}) \, d\mu \right) = 0.197.
\]

Example 2. Let

\[
f(x) = \begin{cases}
x & \text{if } x \in [0,1/4) \\
1/2 & \text{if } x \in [1/4,3/8) \\
4x - 1 & \text{if } x \in [3/8,1/2) \\
2(1-x) & \text{if } x \in [1/2,1],
\end{cases}
\]

and $a = 1, b = 2$. Then f is not continuous and not monotone but is fuzzy convex. A straightforward calculus shows that

\[
\mu\{f(x^\frac{1}{7}) \geq 1/2\} = 1/2 \quad \text{and} \quad \mu\{f(x^\frac{1}{7}) \geq 1/2\} = 1/2,
\]

and hence by Proposition 1, we have

\[
(S) \int_0^1 f(x^\frac{1}{7}) \, d\mu = 1/2 \quad \text{and} \quad (S) \int_0^1 f(x^\frac{1}{6}) \, d\mu = 1/2.
\]

Now, a straightforward calculus shows that

\[
\mu\left\{f(x^\frac{1}{a+b}) \geq \alpha\right\} = \begin{cases}
(1 - \alpha/2)^2 - \alpha^2 & \text{if } x \in [0,1/4], \\
(1 - \alpha/2)^2 - 1/16 & \text{if } x \in [1/4,1/2], \\
(1 - \alpha/2)^2 - (1/4 + \alpha/4)^2 & \text{if } x \in (1/2,1].
\end{cases}
\]
By proving the equation \((1 - \alpha/2)^2 - 1/16 = \alpha\), we see that
\[
\mu\{ f \left(\frac{x}{\alpha + x} \right) \geq 0.4499 \} = 0.4499
\]
and hence
\[
(S) \int_0^1 f \left(\frac{1}{\alpha + x} \right) d\mu = 0.4499.
\]
Therefore
\[
0.4499 = (S) \int_0^1 f \left(\frac{1}{\alpha + x} \right) d\mu \geq \left((S) \int_0^1 f \left(\frac{1}{x} \right) d\mu \right) \left((S) \int_0^1 f \left(\frac{1}{x} \right) d\mu \right) = 0.25.
\]

References

Received: December 6, 2016; **Published**: January 11, 2017