Remarks on ”Smooth” Functions

Fahad Alsharari

School of Mathematical Sciences
Faculty of Science and Technology
University Kebangsaan Malaysia, 43600
UKM Bangi, Selangor DE, Malaysia

Habibulla Akhadkulov

School of Quantitative Sciences
University Utara Malaysia
CAS 06010, UUM Sintok, Kedah DA, Malaysia
*Corresponding author

Sokhobiddin Akhatkulov

School of Mathematical Sciences, Faculty of Science and Technology
University Kebangsaan Malaysia, 43600
UKM Bangi, Selangor DE, Malaysia

Copyright © 2016 Fahad Alsharari et al. This article is distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

The purpose of this paper is to study a class of continuous functions \(\hat{\lambda}_s(\gamma), \gamma > 0 \) satisfying a certain ”smooth”ness condition dependent on a parameter \(\gamma \). For \(\gamma > \frac{1}{2} \), it is shown in [3] that the class \(\hat{\lambda}_s(\gamma) \) is a subset of the class of absolute continuous functions. In this paper, for \(\gamma \in (0, \frac{1}{2}] \), we provide an example which is differentiable almost nowhere. And for \(\gamma > 1 \), we prove that the class \(\hat{\lambda}_s(\gamma) \) is a subset of \(C^1 \). Moreover, for \(\gamma \in (0, 1] \) we get a precise estimate for the modulus of continuity of the functions of \(\hat{\lambda}_s(\gamma) \).

Mathematics Subject Classification: 26A15, 26A16, 42A55, 46E35
Keywords: ”smooth” functions, modulus of continuity, differentiability

1 Introduction

Consider a function \(f : I \to \mathbb{R} \) defined on an open finite interval \(I \). Denote by \(\Delta^1_s f(x_0, \tau) \) and \(\Delta^2_s f(x_0, \tau) \) the first and second symmetric differences of \(f \), respectively that is,

\[
\Delta^1_s f(x_0, \tau) = f(x_0 + \tau) - f(x_0 - \tau),
\]

\[
\Delta^2_s f(x_0, \tau) = f(x_0 + \tau) + f(x_0 - \tau) - 2f(x_0)
\]

where \(x_0 \in I \) and \(\tau \in [0, |I|/2] \). Then the ordinary difference \(\Delta f(x_0, \tau) = f(x_0 + \tau) - f(x_0) \) can be written as

\[
\Delta f(x_0, \tau) = \frac{1}{2} \Delta^1_s f(x_0, \tau) + \frac{1}{2} \Delta^2_s f(x_0, \tau).
\]

It is natural in many contexts to examine the continuity and differentiability properties of \(f \) by studying those properties in the two parts \(\Delta^1_s f(x_0, \tau) \) and \(\Delta^2_s f(x_0, \tau) \). The continuity of \(f \) at a point \(x_0 \), that is the requirement that \(\Delta f(x_0, \tau) \to 0 \) as \(\tau \to 0 \), is equivalent to requiring both \(\Delta^1_s f(x_0, \tau) \to 0 \) and \(\Delta^2_s f(x_0, \tau) \to 0 \) as \(\tau \to 0 \). And these two requirements are called in analysis odd and even continuity of \(f \) at \(x_0 \) respectively. Similarly, differentiability of \(f \) at \(x_0 \) is equivalent to the existence of both of limits

\[
\lim_{\tau \to 0} \frac{\Delta^1_s f(x_0, \tau)}{\tau} \quad \text{and} \quad \lim_{\tau \to 0} \frac{\Delta^2_s f(x_0, \tau)}{\tau}.
\]

If the first limit exists then this limit is called symmetric derivative of \(f \) at \(x_0 \).

And if the second limit exists and zero that is

\[
\Delta^2_s f(x_0, \tau) = o(\tau) \quad \text{as} \quad \tau \to 0
\]

then \(f \) is called ”smooth” function at \(x_0 \). It follows immediately that if \(f' \) exists and is finite then \(f \) is ”smooth” at \(x_0 \). The converse is obviously false, but if \(f \) is ”smooth” at \(x_0 \) and if a one-sided derivative \(f \) at \(x_0 \) exists the derivative on the other side also exists and both are equal. If \(f \) is ”smooth” at every point of \(I \), we say that \(f \) is a ”smooth” function on \(I \). If \(f \) is continuous and satisfies (1) uniformly in \(x_0 \) i.e.,

\[
\|\Delta^2_s f(\cdot, \tau)\|_\infty = o(\tau) \quad \text{as} \quad \tau \to 0
\]

we shall say that \(f \) is uniformly ”smooth”, where \(\| \cdot \|_\infty \) is the supremum norm on \(I \). The class of such functions is denoted by \(\lambda_* \). Similarly, denote by \(\Lambda_* \) the
class of continuous functions f which satisfy the following relation uniformly in x_0

$$\|\Delta^2_\gamma f(\cdot, \tau)\|_\infty = O(\tau) \text{ as } \tau \to 0.$$

(3)

The conditions (2) and (3) are called small Zygmund and Zygmund conditions, respectively. We denote by λ_γ and Λ_γ the classes of functions defined on I and satisfying (2) and (3) respectively. Furthermore, denote by Λ_α the class of functions satisfying the α-Hölder condition in I. Next we compare the classes λ_γ and Λ_γ with well known classes of analysis in order to be well understood for the reader the importance of these classes. It is easy to verify that if a function g is continuously differentiable then it belongs to both of the classes λ_γ, Λ_γ and if g is Lipschitz then it belongs only to the class Λ_γ. The reverse is not true. For example, the function $g(x) = x \log(x) + Ax$, $x > 0$ satisfies (3) but it is not Lipschitz. It is, however, α-Hölder for each $\alpha < 1$. If g has bounded variation then it also does not necessarily belong to the class Λ_γ and vice versa. For example, the function $g(x) = \sqrt{x}$ has bounded variation but does not belong to the class Λ_γ, and on the other hand the function $g(x) = x^2 \sin(1/x^2)$ has unbounded variation but it belongs to the class Λ_γ. The following theorem was proved in [4].

Theorem 1.1. ([4], p.44) f be defined in a finite interval I. If $f \in \Lambda_\gamma$ then

$$\omega(\delta; f) = O\left(\delta \log \frac{1}{\delta}\right)$$

and in particular $f \in \Lambda_\alpha$ for every $\alpha \in (0, 1)$. If $f \in \lambda_\gamma$ then

$$\omega(\delta; f) = o\left(\delta \log \frac{1}{\delta}\right)$$

where $\omega(\cdot; f)$ is the modulus of continuity of f.

The purpose of this work is to generalize the above theorem for a subclass of λ_γ which is defined as follows. Consider the function $Z_\gamma : [0, 1) \to (0, +\infty)$, given

$$Z_\gamma(x) = \frac{1}{(\log \frac{1}{x})^\gamma}, \quad x \in (0, 1)$$

and $Z_\gamma(0) = 0$, where $\gamma > 0$. Denote by $\hat{\lambda}_\gamma(\gamma)$ the class of continuous functions $f : I \to \mathbb{R}$ satisfying

$$\|\Delta^2_\gamma f(\cdot, \tau)\|_\infty \leq C_\tau Z_\gamma(\tau)$$

(4)

for some constant $C := C(f) > 0$. Note that $\hat{\lambda}_\gamma(\gamma) \subset \lambda_\gamma$ for all $\gamma > 0$, since $Z_\gamma(\tau) \to 0$ as $\tau \to 0$ and this class was investigated by Weiss and Zygmund [3]. They proved the following theorem.
Theorem 1.2. [3] Let $f : \mathbb{R} \to \mathbb{R}$ be 2π-periodic and satisfies (4) for some $\gamma > \frac{1}{2}$. Then f is absolute continuous and $f \in L^p[0, 2\pi]$ for every $p > 1$.

In this work we study the class of functions $\hat{\lambda}_*(\gamma)$ for different γ's. More precisely, first we show that the modulus of continuity of the functions of $\hat{\lambda}_*(\gamma)$ for $\gamma \in (0, 1)$ is $O(\delta(\log \frac{1}{\delta})^{1-\gamma})$ and for $\gamma = 1$ is $O(\delta(\log \log \frac{1}{\delta}))$. And then we provide an example which is differentiable almost nowhere. These results extend Theorem 1.1. Moreover, we prove the differentiability of the functions of $\hat{\lambda}_*(\gamma)$ for $\gamma > 1$. This result generalizes Theorem 1.2 for $\gamma > 1$.

2 Main results

Let $\mathcal{P}_\gamma : (0, 1) \to \mathbb{R}$ defined as

$$\mathcal{P}_\gamma(x) = \sum_{n=1}^{\infty} \mathcal{Z}_\gamma(x2^{-n}) \text{ where } x \in (0, 1) \text{ and } \gamma > 1. \quad (5)$$

It is clear that \mathcal{P}_γ is continuous and $\lim_{x \to 0} \mathcal{P}_\gamma(x) = 0$. This function will be needed in the proof of main theorems. The first main result is the following.

Theorem 2.1. Let $f : I \to \mathbb{R}$ be continuous and satisfies the inequality (4) on I. Then

$$\omega(\delta, f) \leq C \begin{cases} \delta(\log \frac{1}{\delta})^{1-\gamma} & \text{if } \gamma \in (0, 1); \\ \delta(\log \log \frac{1}{\delta}) & \text{if } \gamma = 1; \end{cases}$$

where $\omega(\cdot, f)$ is the modulus of continuity of f. Moreover, f is a Lipschitz function if $\gamma > 1$.

Proof. The proof follows closely that of [4] (p.44). Let us consider the function $\Delta f(x, \tau) = f(x + \tau) - f(x)$. Take any $x \in I$ we fix. The inequality (4) implies

$$|\Delta f(x, \tau) - 2\Delta f(x, \tau 2^{-1})| \leq C \tau \mathcal{Z}_\gamma(\tau)$$

for small enough $\tau \in (0, \zeta]$. Replacing here τ successively by $\tau 2^{-1}$, $\tau 2^{-2}$, ... , $\tau 2^{-(n-1)}$ and in each step multiplying $2, 2^2, ..., 2^{n-1}$ we obtain

$$|\Delta f(x, \tau) - 2\Delta f(x, \tau 2^{-1})| \leq C \tau \mathcal{Z}_\gamma(\tau 2^{-1}),$$

$$|2\Delta f(x, \tau 2^{-1}) - 2^2\Delta f(x, \tau 2^{-2})| \leq C \tau \mathcal{Z}_\gamma(\tau 2^{-2}),$$

$$|2^n \Delta f(x, \tau 2^{-(n-1)}) - 2^n \Delta f(x, \tau 2^{-n})| \leq C \tau \mathcal{Z}_\gamma(\tau 2^{-n}).$$
Below n and τ will be chosen. By termwise addition above inequalities we get

$$|\Delta f(x, \tau) - 2^n \Delta f(x, \tau 2^{-n})| \leq C \tau \sum_{k=1}^{n} Z_\gamma(\tau 2^{-k}).$$ \hfill (6)

Suppose $\delta > 0$ be sufficiently small. Let $0 < \delta \leq \frac{1}{2} \zeta$ and n be a natural such that $\frac{\zeta}{2} \leq 2^n \delta < \zeta$. This implies $n < \log_2 \frac{\zeta}{\delta}$. Make substitution $\tau = 2^n \delta$ in (6) we get

$$|\Delta f(x, \delta)| \leq \frac{2 \max_{x \in I} |f(x)| \delta}{2^n \delta} + C \delta \sum_{k=1}^{n} Z_\gamma(\delta 2^{n-k}).$$ \hfill (7)

Easily can be seen

$$\delta \sum_{k=1}^{n} Z_\gamma(\delta 2^{n-k}) = \delta \sum_{k=1}^{n} \frac{2^{-(n-k)} Z_\gamma(\delta 2^{n-k})}{2^{-(n-k)}} \leq C \int_{2^{-n}}^{1} \frac{\delta Z_\gamma(\frac{\delta}{x})}{x} dx. \hfill (8)$$

An easy computation shows that

$$\int_{2^{-n}}^{1} \frac{\delta Z_\gamma(\frac{\delta}{x})}{x} dx \leq C \begin{cases}
\delta (\log \frac{1}{\delta})^{1-\gamma} & \text{if } \gamma \in (0, 1); \\
\delta (\log \log \frac{1}{\delta}) & \text{if } \gamma = 1.
\end{cases} \hfill (9)$$

This proves the first assertion of Theorem 2.1. To prove the second assertion we use the inequality

$$\sum_{k=1}^{n} Z_\gamma(\delta 2^{n-k}) \leq P_\gamma(\delta) \hfill (10)$$

for $\delta \in [0, \frac{\zeta}{2}]$. The proof of this inequality is simple. Moreover, P_γ is bounded since it is continuous on $[0, \frac{\zeta}{2}]$. This and the relation (7) implies the second assertion of Theorem 2.1.

Next we provide an example which belongs to $\hat{\lambda}_* (\gamma)$ but the derivative of this function can be ”bad” as it can for $\gamma \in (0, \frac{1}{2}]$. Consider a class of Weierstrass functions

$$W_\beta(x) = \sum_{n=1}^{\infty} \theta_n b^{-\beta n} \cos(b^n x) \quad \text{where } b > 1 \quad \text{and} \quad \lim_{n \to \infty} \theta_n = 0. \hfill (11)$$

The following facts can be found in [4]. Weierstrass showed that for a small enough $\beta > 0$ the function W_β is nowhere differentiable. The extension to $\beta \leq 1$ was first proved by Hardy. For $\beta > 1$ the function W_β^\prime exists and continuous. Moreover, if the sum of squares of the sequence θ_n is divergence then W_1 is differentiable in a set of measure zero only. Thus,
Lemma 2.2. Let \(\gamma \in (0, \frac{1}{2}] \). If we choose \(b = 2, \theta_n = n^{-\gamma} \) and \(\beta = 1 \) in (11), then the function \(W_1 \) satisfies (4).

Proof. Indeed,

\[
W_1(x + \tau) + W_1(x - \tau) - 2W_1(x) = -4 \sum_{n=1}^{\infty} \frac{\cos(2^n x)}{2^n n^\gamma} \sin^2\left(\frac{2^n \tau}{2}\right) =
\]

\[-4 \sum_{n=1}^{N} \frac{\cos(2^n x)}{2^n n^\gamma} \sin^2\left(\frac{2^n \tau}{2}\right) + (-4) \sum_{n=N+1}^{\infty} \frac{\cos(2^n x)}{2^n n^\gamma} \sin^2\left(\frac{2^n \tau}{2}\right) := I_1 + I_2\]

where \(N := N(\tau) \) is the largest integer satisfying \(2^N \tau \leq 1 \), so that \(2^{N+1} \tau > 1 \).

Next we estimate \(I_1, I_2 \) separately. It is obvious

\[
|I_1| \leq 4 \sum_{n=1}^{N} \frac{1}{2^n n^\gamma} \left(\frac{2^n \tau}{2}\right)^2 = \tau^2 \sum_{n=1}^{N} \frac{2^n}{n^\gamma} = \tau^2 2^N \sum_{n=1}^{N} \frac{1}{2^N - n n^\gamma} \leq \tau \sum_{n=1}^{N} \frac{1}{2^N - n n^\gamma}.
\]

On the other hand

\[
\sum_{n=1}^{N} \frac{1}{2^N - n n^\gamma} = \sum_{n=1}^{[\frac{N}{2}]} \frac{1}{2^N - n n^\gamma} + \sum_{n=[\frac{N}{2}] + 1}^{N} \frac{1}{2^N - n n^\gamma} \leq \frac{2}{2^{[\frac{N}{2}]} + (\frac{N}{2} + 1)\gamma} \leq C \left(\sqrt{\tau} + \frac{1}{(\log \frac{1}{\tau})^\gamma}\right) \leq C \mathcal{Z}_\gamma(\tau).
\]

Thus \(I_1 \leq C \tau \mathcal{Z}_\gamma(\tau) \). It is easy to see

\[
|I_2| \leq 4 \sum_{n=N+1}^{\infty} \frac{1}{2^n n^\gamma} \leq 4 \frac{1}{2^N (N+1)^\gamma} \leq C \tau \mathcal{Z}_\gamma(\tau).
\]

Hence

\[
|W_1(x + \tau) + W_1(x - \tau) - 2W_1(x)| \leq C \tau \mathcal{Z}_\gamma(\tau).
\]

The right hand side of this inequality does not depend on \(x \). Therefore \(\|\cdot\|_{\infty} \)-norm of the left hand side bounded with \(C \tau \mathcal{Z}_\gamma(\tau) \). This proves lemma. \(\square \)

Further we investigate the class \(\mathcal{A}_s(\gamma) \) for \(\gamma > 1 \).

Theorem 2.3. Let \(f : I \to \mathbb{R} \) satisfies the inequality (4) for some \(\gamma > 1 \). Then \(f \in C^1(I) \) and

\[
|f'(\xi) - f'(\eta)| \leq C \cdot \mathcal{P}_\gamma(|\xi - \eta|)
\]

for any \(\xi, \eta \in I \), where \(C > 0 \) depends only on \(f \).
Proof. According to Theorem 2.1, \(f \) is at least Lipschitz function in the case of \(\gamma > 1 \). Hence \(f' \) exists almost everywhere and \(f \) is the indefinite integral of \(f' \). Taking any Lebesgue points \(\xi, \eta \in I \) of \(f' \) we set \(\tau := |\xi - \eta| \). By inequality (4) we have
\[
\Delta f(x, \tau) = \Delta f(x - \tau, \tau) + \mathcal{O}(\tau \mathcal{Z}_\gamma(\tau))
\] (12)
for all \(x \in I \) and for all \(\tau \in [0, |I|/2] \). Replacing in (12) \(x \) successively by \(x_n = \eta + \tau 2^{-n} \) and \(\tau \) successively by \(\tau 2^{-n} \), \(n = 1, 2, \ldots \) we obtain
\[
\Delta f(x_n, \tau 2^{-n}) = \Delta f(\eta, \tau 2^{-n}) + \mathcal{O}(\tau 2^{-n} \mathcal{Z}_\gamma(\tau 2^{-n})).
\]
It easily can be seen that for all \(n \geq 1 \) the following identity holds.
\[
\Delta f(x_n, \tau 2^{-n}) - \Delta f(\eta, \tau 2^{-n}) = \Delta f(\eta, \tau 2^{-n+1}) - 2\Delta f(\eta, \tau 2^{-n}).
\]
Thus
\[
\Delta f(\eta, \tau 2^{-n+1}) = 2\Delta f(\eta, \tau 2^{-n}) + \mathcal{O}(\tau 2^{-n} \mathcal{Z}_\gamma(\tau 2^{-n})).
\]
This implies
\[
2^{-n+1}\Delta f(\eta, \tau 2^{-n+1}) = 2^{-n}\Delta f(\eta, \tau 2^{-n}) + \mathcal{O}(\tau \mathcal{Z}_\gamma(\tau 2^{-n})).
\]
By termwise addition from \(n = 1 \) to \(N \) and divide \(\tau \) we obtain
\[
\frac{\Delta f(\eta, \tau)}{\tau} = \frac{2^N}{\tau} \Delta f(\eta, \tau 2^{-N}) + \mathcal{O}\left(\sum_{n=1}^{N} \mathcal{Z}_\gamma(\tau 2^{-n})\right). \tag{13}
\]
Since the point \(\eta \) is the Lebesgue point of \(f' \) and \(\gamma > 1 \) taking limit as \(N \to \infty \) in (13) we get
\[
\lim_{N \to \infty} \frac{2^N}{\tau} \Delta f(\eta, \tau 2^{-N}) = f'(\eta) \quad \text{and} \quad \frac{\Delta f(\eta, \tau)}{\tau} = f'(\eta) + \mathcal{O}(\mathcal{P}_\gamma(\tau)). \tag{14}
\]
Similarly as above, replacing in (12) \(x \) successively by \(x_n = \xi - \tau 2^{-n} \) and \(\tau \) successively by \(\tau 2^{-n} \), \(n = 1, 2, \ldots \) we obtain
\[
\Delta f(x_n, \tau 2^{-n}) = \Delta f(x_{n-1}, \tau 2^{-n}) + \mathcal{O}(\tau 2^{-n} \mathcal{Z}_\gamma(\tau 2^{-n})).
\]
Here the following identity can be also easily checked for all \(n \geq 1 \).
\[
\Delta f(x_n, \tau 2^{-n}) - \Delta f(x_{n-1}, \tau 2^{-n}) = - \left(\Delta f(x_{n-1}, \tau 2^{-n+1}) - 2\Delta f(x_n, \tau 2^{-n}) \right).
\]
This implies
\[
2^{-n+1}\Delta f(x_{n-1}, \tau 2^{-n+1}) = 2^{-n}\Delta f(x_n, \tau 2^{-n}) + \mathcal{O}(\tau \mathcal{Z}_\gamma(\tau 2^{-n})).
\]
The same manner as above we get
\[
\frac{\Delta f(\xi - \tau, \tau)}{\tau} = f'(\xi) + \mathcal{O}(\mathcal{P}_\gamma(\tau)).
\] (15)

So far as the right hand sides of (14) and (15) are same. Therefore we have
\[
|f'(\xi) - f'(\eta)| \leq C \cdot \mathcal{P}_\gamma(\|\xi - \eta\|).
\]

This proves uniform continuity of \(f' \) on the set of Lebesgue points, thus \(f' \) coincides almost everywhere on \(I \) with a some continuous function \(\mathcal{U} : I \to \mathbb{R} \). It is clear \(\int_a^x \mathcal{U}(t)dt \) is a \(C^1(I) \) function and the function \(\mathcal{L}(x) := \int_a^x \mathcal{U}(t)dt - f(x) \) is absolute continuous. However, \(\mathcal{L}'(x) = 0 \) almost everywhere, hence \(\mathcal{L}(x) \equiv \text{const.} \) Theorem 2.3 is therefore completely proved.

\begin{remark}
Note that, the classes \(\lambda_* \) and \(\Lambda_* \) are not only important classes in harmonic analysis, but they have deserved applications in the theory circle maps. For example recently the authors have applied the class \(\hat{\lambda}_*(\gamma) \) to the renormalizations of circle maps [1].
\end{remark}

\textbf{Acknowledgements.} The authors are very grateful to the Ministry of Higher Education of Malaysia for providing us with the Fundamental Research Grant Scheme (FRGS), S/O number 13558 to enable us pursue this research.

\textbf{References}

\textbf{Received: September 15, 2016; Published: October 18, 2016}