On a Subclass of Goodman-Ronning Type

Harmonic Univalent Functions Defined by

Dziok-Srivastava Operator

Ajab Akbarally

Department of Mathematics
Faculty of Computer and Mathematical Sciences
Universiti Teknologi MARA
40450 Shah Alam, Selangor, Malaysia

Suraya Hassan

Department of Mathematics
Centre for Foundation Studies
International Islamic University Malaysia
46350 Petaling Jaya, Selangor, Malaysia

Abstract

The aim of this paper is to investigate a subclass of Goodman-Ronning type of harmonic univalent functions defined by the modified Dziok-Srivastava operator. The properties for this class such as the coefficient conditions, distortions bounds and extreme points are investigated.

Mathematics Subject Classifications: Primary 30C45

Keywords: Harmonic univalent, Dziok-Srivastava operator, coefficient conditions, distortion bounds, extreme points
1 Introduction

Let U denote the open unit disk and S_H denote the class of harmonic univalent functions. Chandrashekhar [5] stated that the continuous function $f = u + iv$ is considered to be a univalent complex-valued harmonic function in a domain $D \subseteq \mathbb{C}$ if both u and v are real harmonic. A harmonic univalent function, $f = h + \overline{g}$ for any connected domain D where h and g are analytic in D can be expressed as

$$h(z) = z + \sum_{k=2}^{\infty} a_k z^k \quad \text{and} \quad g(z) = \sum_{k=1}^{\infty} b_k z^k, \quad |b_k| < 1. \quad (1.1)$$

where h and g are identified as the analytic part and co-analytic part of f correspondingly and normalized by the condition $f(0) = h(0) = f'(0) - 1 = 0$. The family S_H could be reduced to the class S of normalized analytic univalent functions if the co-analytic part of f is identically zero. Clunie and Sheil-Small [6] mentioned that there is a necessary and sufficient condition for f in order to be locally univalent and orientation preserving in U where $|h'(z)| - |g'(z)| > 0$. They also let S_{Π} denote the subclass of S_H where

$$h(z) = z - \sum_{k=2}^{\infty} \left| a_k \right| z^k \quad \text{and} \quad g(z) = \sum_{k=1}^{\infty} \left| b_k \right| z^k, \quad |b_k| < 1. \quad (1.2)$$

There have been several related papers on S_H and its subclasses, see [1], [2], [4], [8], [9].

Dziok and Srivastava [7] introduced a differential operator by using the generalized hypergeometric functions for positive real value of $\alpha_1, \ldots, \alpha_q$ and β_1, \ldots, β_s where $\beta_j \neq 0, -1, -2, \ldots; j = 1, 2, 3, \ldots, s$ defined as

$$qF_s (\alpha_1, \ldots, \alpha_q; \beta_1, \ldots, \beta_s; z) = \sum_{k=0}^{\infty} \frac{\prod_{j=1}^{q} (\alpha_j)_k \prod_{j=1}^{s} (\beta_j)_k}{k!} z^k, \quad q \leq s + 1, q, s \in \mathbb{N}_0 = \mathbb{N} \cup \{0\}; z \in U$$

where $(a)_m$ is the Pochhammer symbol defined in terms of Gamma function, Γ, by

$$(a)_m = \frac{\Gamma(a + m)}{\Gamma(a)} = \begin{cases} 1 & m = 0 \\ a(a+1)(a+m-1) & m \in \mathbb{N} \end{cases}.$$

Hence, the Dziok and Srivastava operator, $H_{q,s} (\alpha_1, \ldots, \alpha_q; \beta_1, \ldots, \beta_s)$ defined by convolution can be written as
On a subclass of Goodman-Ronne type harmonic univalent functions

\[H_{q,s}(\alpha_1,\ldots,\alpha_s; \beta_1,\ldots,\beta_s) f(z) = q F_s(\alpha_1,\ldots,\alpha_s; \beta_1,\ldots,\beta_s; z) = z + \sum_{k=2}^{\infty} \frac{(\alpha_1)_{k-1}\ldots(\alpha_s)_{k-1} a_k z^k}{(\beta_1)_{k-1}\ldots(\beta_s)_{k-1} (k-1)!} = H_{q,s}[\alpha_1] f(z) \]

where * stands for convolution. Al-Kharsani and Al-Khal [3] introduced the modified Dziok-Srivastava operator of the harmonic function \(f = h + \bar{g} \) given by (1.1) as

\[H_{q,s}[\alpha_1] f(z) = H_{q,s}[\alpha_1] h(z) + H_{q,s}[\alpha_1] g(z). \tag{1.4} \]

Motivated from the work of Al-Khal [2], a new class of harmonic univalent function of the form (1.1) denoted as \(S_H(\alpha_1; \rho, \beta) \) is introduced such that the functions in this class satisfy the condition

\[\text{Re} \left((1 + \rho e^{i\theta}) z \left(H_{q,s}[\alpha_1] f(z)' - \rho e^{i\theta} \right) \right) \geq \beta, \tag{1.5} \]

where \(z = re^{i\theta}, (H_{q,s}[\alpha_1] f(z)') = \frac{\partial}{\partial \theta} H_{q,s}[\alpha_1] f(re^{i\theta}), 0 \leq r < 1, 0 \leq \theta < 2\pi, 0 \leq \beta < 1, 0 \leq \rho \leq 1, \gamma \in \mathbb{R} \) and \(H_{q,s}[\alpha_1] f(z) \) is defined by (1.4).

We also let \(S_H(\alpha_1; \rho, \beta) \) denote the subclass of harmonic univalent functions, \(S_H(\alpha_1; \rho, \beta) \) so that \(h \) and \(g \) are in the form (1.2).

2 Main Results

We begin by giving the sufficient condition for functions in \(S_H(\alpha_1; \rho, \beta) \).

Theorem 2.1. Let a function \(f = h + \bar{g} \) be given by (1.1). If,

\[\sum_{k=1}^{\infty} \left[\frac{(1+\rho)k - \rho - \beta}{1-\beta} |a_k| + \frac{(1+\rho)k + \rho + \beta}{1-\beta} |p_k| \right] \Gamma(\alpha_1,k) \leq 2 \tag{2.1} \]

where \(a_k = 1, 0 \leq \beta < 1, 0 \leq \rho \leq 1 \) and \(\Gamma(\alpha_1,k) = \frac{(\alpha_1)_{k-1}\ldots(\alpha_s)_{k-1}}{(\beta_1)_{k-1}\ldots(\beta_s)_{k-1}} \), then \(f \) is a sense-preserving harmonic univalent function in \(U \) and \(f \in S_H(\alpha_1; \rho, \beta) \).

Proof. The inequality \(|h'(z)| \geq |g'(z)| \) is sufficient to show that \(f \) is sense preserving. Notice that

\[|h'(z)| \geq 1 - \sum_{k=2}^{\infty} k |a_k| |z|^{k-1} > 1 - \sum_{k=2}^{\infty} k |a_k| \]

According to the condition (1.5), we just need to show that if (2.1) holds, then

\[\text{Re} \left\{ \frac{(1 + \rho e^{i\gamma}) z [H_{q,s}[\alpha_1]h(z)]' - (H_{q,s}[\alpha_1]g(z))'}{H_{q,s}[\alpha_1]h(z) + H_{q,s}[\alpha_1]g(z)} - \rho e^{i\gamma} \right\} = \text{Re} \left\{ \begin{array}{c} A(z) \\ B(z) \end{array} \right\} \geq \beta, \]

where
On a subclass of Goodman-Ronnee type harmonic univalent functions

\[z = r e^{i\theta}, \quad 0 \leq r < 1, \quad 0 \leq \theta < 2\pi, \quad 0 \leq \beta < 1, \quad 0 \leq \rho \leq 1, \quad \gamma \in R, \quad (H_{q,s} [\alpha_1] f(z))' = \frac{\partial}{\partial \theta} H_{q,s} [\alpha_1] f(re^{i\theta}). \]

Note that

\[A(z) = (1 + \rho e^{i\theta}) z [(H_{q,s} [\alpha_1] h(z))' - \overline{(H_{q,s} [\alpha_1] g(z))'} - \rho e^{i\theta} (H_{q,s} [\alpha_1] h(z) + \overline{H_{q,s} [\alpha_1] g(z)}) \]

and \(B(z) = H_{q,s} [\alpha_1] h(z) + \overline{H_{q,s} [\alpha_1] g(z)} \).

Considering the fact that \(\text{Re } w \geq \beta \) if and only if \(|1 - \beta + w| \geq |1 + \beta - w| \), it suffices to show that

\[|A(z) + (1 - \beta) B(z)| - |A(z) - (1 + \beta) B(z)| \geq 0. \] (2.2)

Substituting \(A(z) \) and \(B(z) \) in (2.2) yields

\[
(1 - \beta - \rho e^{i\theta}) H_{q,s} [\alpha_1] h(z) + (1 + \rho e^{i\theta}) (z (H_{q,s} [\alpha_1] h(z))') + (1 - \beta - \rho e^{i\theta}) \overline{H_{q,s} [\alpha_1] g(z)} - (1 + \rho e^{i\theta}) (\overline{(H_{q,s} [\alpha_1] g(z))'})
\]

\[
-((1 + \beta + \rho e^{i\theta}) H_{q,s} [\alpha_1] h(z) - (1 + \rho e^{i\theta}) z (H_{q,s} [\alpha_1] h(z))') + (1 + \beta + \rho e^{i\theta}) (H_{q,s} [\alpha_1] g(z) + \overline{(H_{q,s} [\alpha_1] g(z))'})
\]

\[
\geq (2 - \beta)|z| - \sum_{k=2}^{\infty} [1 - \beta + k + \rho k - \rho] \Gamma(\alpha_1, k) |a_k| z^k
\]

\[
- \sum_{k=2}^{\infty} [k + \beta - 1 + \rho k - \rho] \Gamma(\alpha_1, k) |b_k| z^k - \beta|z|
\]

\[
- \sum_{k=2}^{\infty} [k - \beta - 1 + \rho k - \rho] \Gamma(\alpha_1, k) |a_k| z^k - \sum_{k=2}^{\infty} [k + 1 + \beta + \rho k + \rho] \Gamma(\alpha_1, k) |b_k| z^k
\]

\[
= 2(1 - \beta)|z| \left\{ 1 - \sum_{k=2}^{\infty} \frac{(k + \beta + \rho k - \rho)}{(1 - \beta)} \Gamma(\alpha_1, k) |a_k| z^{k-1}
\]

\[
- \sum_{k=1}^{\infty} \frac{(k + \beta + \rho k + \rho)}{(1 - \beta)} \Gamma(\alpha_1, k) |b_k| z^{k-1} \right\} \geq 0 \text{ by (2.1).}
\]

The harmonic function

\[
f(z) = z + \sum_{k=2}^{\infty} \frac{1 - \beta}{(1 + \rho) k - \beta} \Gamma(\alpha_1, k) \chi_k z^k
\]

\[
+ \sum_{k=1}^{\infty} \frac{1 - \beta}{(1 + \rho) k + \beta} \Gamma(\alpha_1, k) \psi_k z^k \] (2.3)
where \(\sum_{k=2}^{\infty} |x_k| + \sum_{k=1}^{\infty} |y_k| = 1 \), shows that the coefficient bound given by (2.1) is sharp. Thus, the functions in the form of the harmonic function \(f(z) \) above are in the class of \(S_H(\alpha; \rho; \beta) \) because

\[
\sum_{k=1}^{\infty} \left[\frac{(1+\rho)k - \rho - \beta}{1 - \beta} \Gamma(\alpha, k) |a_k| + \frac{(1+\rho)k + \rho + \beta}{1 - \beta} \Gamma(\alpha, k) |b_k| \right] = 1 + \sum_{k=2}^{\infty} |x_k| + \sum_{k=1}^{\infty} |y_k| = 2.
\]

Next, we show the condition (2.1) is also necessary for functions in \(S_H(\alpha; \rho; \beta) \).

Theorem 2.2. Let \(f = h + \bar{g} \) be given by (1.3). Hence, \(f \in S_H(\alpha; \rho; \beta) \) if and only if

\[
\sum_{k=1}^{\infty} \left[\frac{(1+\rho)k - \rho - \beta}{1 - \beta} |a_k| + \frac{(1+\rho)k + \rho + \beta}{1 - \beta} |b_k| \right] \Gamma(\alpha, k) \leq 2
\]

(2.4)

where \(\alpha_1 = 1, 0 \leq \beta < 1, 0 \leq \rho \leq 1 \).

Proof. Since \(S_H(\alpha; \rho; \beta) \subset S_H(\alpha; \rho; \beta) \), we just need to prove the “only if” part of the theorem. A necessary and sufficient bound for \(f = h + \bar{g} \) given by (1.2) to be in the class \(S_H(\alpha; \rho; \beta) \) is that

\[
\text{Re} \left\{ (1+\rho e^{i\gamma}) \frac{z(H_{\alpha_1}[\alpha_1]f(z))' - \rho e^{i\gamma}}{H_{\alpha_1}[\alpha_1]f(z)} \right\} \geq \beta.
\]

This is equivalent to

\[
\text{Re} \left\{ (1+\rho e^{i\gamma}) \frac{(z H_{\alpha_1}[\alpha_1]h(z) - (z H_{\alpha_1}[\alpha_1]g(z))' - \rho e^{i\gamma} (H_{\alpha_1}[\alpha_1]h(z) + H_{\alpha_1}[\alpha_1]g(z)) - \beta}{H_{\alpha_1}[\alpha_1]h(z) + H_{\alpha_1}[\alpha_1]g(z)} \right\}
\]

\[
= \text{Re} \left\{ z - \sum_{k=2}^{\infty} \Gamma(\alpha_1, k) k |a_k| z^k + \rho e^{i\gamma} z - \rho e^{i\gamma} \sum_{k=2}^{\infty} \Gamma(\alpha_1, k) k |a_k| z^k - \sum_{k=1}^{\infty} \Gamma(\alpha_1, k) k |b_k| z^k - \rho e^{i\gamma} \sum_{k=1}^{\infty} \Gamma(\alpha_1, k) |b_k| z^k
\]

\[
- \rho e^{i\gamma} \sum_{k=1}^{\infty} \Gamma(\alpha_1, k) |b_k| z^k - \beta z + \beta \sum_{k=2}^{\infty} \Gamma(\alpha_1, k) |a_k| z^k + \beta \sum_{k=1}^{\infty} \Gamma(\alpha_1, k) |b_k| z^k
\]

\[
= \text{Re} \left\{ z - \sum_{k=2}^{\infty} \Gamma(\alpha_1, k) |a_k| z^k + \sum_{k=1}^{\infty} \Gamma(\alpha_1, k) |b_k| z^k
\]

\[
- \rho e^{i\gamma} \sum_{k=1}^{\infty} \Gamma(\alpha_1, k) |b_k| z^k - \beta z + \beta \sum_{k=2}^{\infty} \Gamma(\alpha_1, k) |a_k| z^k + \beta \sum_{k=1}^{\infty} \Gamma(\alpha_1, k) |b_k| z^k
\]
Let

\[
(1-\beta)z - \sum_{k=2}^{\infty} \left[k + kpe^{i\gamma} - \rho e^{j\gamma} - \beta \right] \Gamma(\alpha, k) |a_k|^2 z^k
- \sum_{k=2}^{\infty} \left[k + kpe^{i\gamma} + \rho e^{j\gamma} + \beta \right] \Gamma(\alpha, k) |b_k|^2 z^k
\]

\[
z - \sum_{k=2}^{\infty} \Gamma(\alpha, k) |a_k|^2 z^k + \sum_{k=2}^{\infty} \Gamma(\alpha, k) |b_k|^2 z^k
\]

\[
x - \sum_{k=2}^{\infty} \Gamma(\alpha, k) |a_k|^2 z^k + \sum_{k=2}^{\infty} \Gamma(\alpha, k) |b_k|^2 z^k
\]

\[
\geq 0
\]

By choosing \(z \) on the positive real axis \(0 \leq z = r < 1 \) and \(\Re (-e^{i\gamma}) \geq -|e^{i\gamma}| = -1 \),

\[
\Re \left[\frac{1}{1} \left(\frac{1}{1} \right) \right] \geq 0.
\]

If the condition (2.4) does not hold, then the numerator in (2.5) is negative for \(r \) sufficiently close to 1. Hence there exist a \(z_0 = r_0 \) in \((0, 1)\) for which the quotient in (2.5) is negative. This contradicts the condition for \(f \in S_{\Pi}(\alpha; \rho; \beta) \). Hence, the proof is complete.

The following theorem is on the distortion bounds for the class \(S_{\Pi}(\alpha; \rho; \beta) \).

Theorem 2.3: If \(f \in S_{\Pi}(\alpha; \rho; \beta) \), \(|z| < 1\), then

\[
|f(z)| \leq (1 + |b_1|) r + \frac{1}{\Gamma(\alpha, 2)} \left[\frac{1-\beta}{1+2\rho+\beta} |b_1|^2 \right] r^2, \quad |z| = r < 1
\]

and

\[
|f(z)| \geq (1 - |b_1|) r - \frac{1}{\Gamma(\alpha, 2)} \left[\frac{1-\beta}{1+2\rho+\beta} |b_1|^2 \right] r^2, \quad |z| = r < 1.
\]

Proof. Let \(f \in S_{\Pi}(\alpha; \rho; \beta) \), \(|z| < 1\). Taking the absolute value of \(f \), we have

\[
|f(z)| \leq (1 + |b_1|) r + \sum_{k=2}^{\infty} \left[|a_k|^2 + |b_k|^2 \right] r^k
\]

\[
= (1 + |b_1|) r + \frac{1-\beta}{(2+\rho-\beta) \Gamma(\alpha, 2)} \left[\sum_{k=2}^{\infty} \left(\frac{2+\rho-\beta}{1-\beta} |a_k|^2 + \frac{2\rho+\beta}{1-\beta} |b_k|^2 \right) \Gamma(\alpha, k) r^k \right]
\]

\[
\leq (1 + |b_1|) r + \frac{1-\beta}{(2+\rho-\beta) \Gamma(\alpha, 2)} \left[\sum_{k=2}^{\infty} \left[(1+p)k - \rho - \beta \right] |a_k|^2 + \frac{1+p+k+\rho+\beta}{1-\beta} |b_k|^2 \right] \Gamma(\alpha, k) r^k
\]
\[\leq (1+|b_1|)r + \frac{1-\beta}{(2+\rho-\beta)\Gamma(\alpha,2)} \left(1 - \frac{1+2\rho+\beta}{1-\beta} |b_1| \right) r^2 \]

\[= (1+|b_1|)r + \frac{1}{\Gamma(\alpha,2)} \left(\frac{1-\beta}{(2+\rho-\beta)} - \frac{1+2\rho+\beta}{2+\rho-\beta} |b_1| \right) r^2. \]

and

\[|f(z)| \geq (1-|b_1|)r - \sum_{k=2}^{\infty} \left[|a_k| + |b_k| \right] r^k \]

\[\geq (1-|b_1|)r - \sum_{k=2}^{\infty} \left[|a_k| + |b_k| \right] r^k \]

\[= (1-|b_1|)r - \frac{1-\beta}{(2+\rho-\beta)\Gamma(\alpha,2)} \left\{ \sum_{k=2}^{\infty} \left(\frac{2+p-\beta}{1-\beta} |a_k| + \frac{2+p-\beta}{1-\beta} |b_k| \right) \Gamma(\alpha,2) r^2 \right\} \]

\[\geq (1-|b_1|)r - \frac{1}{(2+\rho-\beta)\Gamma(\alpha,2)} \left[\sum_{k=2}^{\infty} \left(\frac{1+\rho k-p-\beta}{1-\beta} |a_k| + \frac{1+\rho k+p+\beta}{1-\beta} |b_k| \right) \Gamma(\alpha,k) r^2 \right] \]

\[\geq (1-|b_1|)r - \frac{1-\beta}{(2+\rho-\beta)\Gamma(\alpha,2)} \left(1 - \frac{1+2\rho+\beta}{1-\beta} |b_1| \right) r^2 \]

\[= (1-|b_1|)r - \frac{1}{\Gamma(\alpha,2)} \left(\frac{1-\beta}{(2+\rho-\beta)} - \frac{1+2\rho+\beta}{(2+\rho-\beta)} |b_1| \right) r^2. \]

Now, the extreme points will be examined. The closed convex cover (or hull) is denoted as \(\text{cloc}\) of \(S_\Gamma(\alpha; \rho; \beta)\).

Theorem 2.4 \(f \in \text{cloc} S_\Gamma(\alpha; \rho; \beta)\) if and only if \(f\) can be expressed as

\[f(z) = \sum_{k=1}^{\infty} \left(X_k h_k(z) + Y_k g_k(z) \right), \] (2.6)

where \(h_k(z) = z + \frac{1-\beta}{[(1+\rho)k-\rho-\beta]\Gamma(\alpha,k)} z^k, (k = 2, 3, \ldots),\)

\[g_k(z) = z + \frac{1-\beta}{[(1+\rho)k+\rho+\beta]\Gamma(\alpha,k)} z^k, (k = 1, 2, 3, \ldots) \sum_{k=1}^{\infty} (X_k + Y_k) = 1, X_k \geq 0, Y_k \geq 0.\]

In particular, the extreme points of \(f \in S_\Gamma(\alpha; \rho; \beta)\) are \(\{h_k\}\) and \(\{g_k\}\).

Proof. For the function \(f\) of the form (2.6), we have

\[f(z) = \sum_{k=1}^{\infty} \left(X_k h_k(z) + Y_k g_k(z) \right) \]
\[
= \sum_{k=1}^{\infty} \left[X_k + Y_k \right] z - \sum_{k=2}^{\infty} \left[\frac{1-\beta}{(1+\rho)k - \rho - \beta} \Gamma(\alpha, k) \right] X_k z^k + \sum_{k=1}^{\infty} \left[\frac{1-\beta}{(1+\rho)k + \rho + \beta} \Gamma(\alpha, k) \right] Y_k z^k.
\]

Then,
\[
\sum_{k=2}^{\infty} \frac{(1+\rho)k - \rho - \beta}{1-\beta} \Gamma(\alpha, k) \left(\frac{1-\beta}{(1+\rho)k - \rho - \beta} \Gamma(\alpha, k) X_k \right) + \sum_{k=1}^{\infty} \frac{(1+\rho)k + \rho + \beta}{1-\beta} \Gamma(\alpha, k) \left(\frac{1-\beta}{(1+\rho)k - \rho - \beta} \Gamma(\alpha, k) Y_k \right) = \sum_{k=2}^{\infty} X_k + \sum_{k=1}^{\infty} Y_k = 1 - X_1 \leq 1.
\]

Hence, \(f \in c\ell_{c} S_{\frac{\alpha}{\rho}}(\alpha_1; \rho, \beta) \). Conversely, suppose that \(f \in c\ell_{c} S_{\frac{\alpha}{\rho}}(\alpha_1; \rho, \beta) \). Set \(X_k = \frac{(1+\rho)k - \rho - \beta}{1-\beta} \Gamma(\alpha, k) | a_k | \); \(Y_k = \frac{(1+\rho)k + \rho + \beta}{1-\beta} \Gamma(\alpha, k) | b_k | ; \ k = (2, 3, ...) \).

Note that by Theorem 2.2, \(0 \leq X_k \leq 1 \) and \(0 \leq Y_k \leq 1 \).

Define \(X_1 = 1 - \sum_{k=2}^{\infty} X_k - \sum_{k=1}^{\infty} Y_k \) and since \(X_1 \geq 0 \), we have \(f(z) = \sum_{k=1}^{\infty} \left(X_k h_k(z) + Y_k g_k(z) \right) \).

This complete the proof of the theorem.

Acknowledgements. The first author would like to thank Universiti Teknologi MARA and the support of the grant 600-RMI/FRGS5/3/(7/2013) in the preparation of this paper.

References

Received: April 12, 2016; Published: October 18, 2016