Absolute Summability Factor $\varphi - |C, 1; \delta|_k$

of Infinite Series

Smita Sonker

Department of Mathematics
National Institute of Technology, Kurukshetra
Haryana, India

Alka Munjal1

Department of Mathematics
National Institute of Technology, Kurukshetra
Haryana, India

Copyright © 2016 Smita Sonker and Alka Munjal. This article is distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In this paper, we established a generalized theorem on absolute summability factors by applying a recently defined absolute Cesàro summability $\varphi - |C, 1; \delta|_k$ and the concept of a quasi-f-power increasing sequence for infinite series. We further obtained a well-known result under suitable conditions.

Mathematics Subject Classification: Primary 40F05; Secondary 40D20, 40G05

Keywords: Absolute Summability, Infinite Series, Quasi-f-power increasing sequence, Sequence Space

1Corresponding author
1 Introduction

Let \(\{s_n\} \) be a sequence of partial sums of the infinite series \(\sum_{n=0}^{\infty} a_n \) and \(n^{th} \) sequence to sequence transformation (mean) of \(\{s_n\} \) is given by \(t_n \) s.t.

\[
t_n = \sum_{k=0}^{\infty} t_{nk}s_k
\]

where \(\{t_{nk}\} \) is the sequence of the coefficients of the matrix. The series \(\sum_{n=0}^{\infty} a_n \) is said to be absolute summable, if

\[
\lim_{n \to \infty} t_n = s,
\]

and

\[
\sum_{n=1}^{\infty} |t_n - t_{n-1}| < \infty.
\]

If \(\tau_n \) represent the \(n^{th} \) \((C,1)\) means of the sequence \((na_n)\), then series \(\sum_{n=0}^{\infty} a_n \) is said to be summable \(|C, 1|_k, k \geq 1 \) [11], if

\[
\sum_{n=1}^{\infty} \frac{1}{n} |\tau_n|^k < \infty.
\]

Let \((\varphi_n) \) be a sequence of positive real numbers, then the series \(\sum_{n=0}^{\infty} a_n \) is said to be summable \(\varphi - |C, 1|_k, k \geq 1 \), if

\[
\sum_{n=1}^{\infty} \frac{\varphi_n^{k-1}}{n^k} |\tau_n|^k < \infty
\]

and is also summable \(\varphi - |C, 1; \delta|_k, k \geq 1, \delta \geq 0 \), if

\[
\sum_{n=1}^{\infty} \frac{\varphi_n^{k-1}}{n^k - \delta k} |\tau_n|^k < \infty.
\]

Note: If we take \(\varphi = n \), then \(\varphi - |C, 1, \delta|_k \) summability reduces to \(|C, 1|_k \) summability and if \(\delta = 0 \), then \(|C, 1, \delta|_k \) reduces to \(|C, 1|_k \).

Bor gave a number of theorems on absolute summability. In 1991 [1], he established a theorem for infinite series with the help of \(\varphi - |C, 1|_k \) summability. In 1994 [2], he estimated the result by using the absolute summability of index \(k \) for infinite series which is generalization of its own result [3]. Özarslan [4] generalized the result of Bor [1] by a more general absolute summability \(\varphi - |C, \alpha|_k \) and in [5], he used absolute matrix summability \(\varphi - |A, \delta|_k \) and improve some known results. In 2013, Suciu [6] used the Cesáro mean of higher order for extending the result of Lin et. al. [7] and obtained the boundness conditions for Cesáro mean. Concerning the \(\varphi - |N, p_n|_k \) summability factors, Saxena [8] gave a general theorem for infinite series.
2 Known results

By using $\varphi - |C, 1|_k$ summability and a positive non-decreasing sequence X_n, Saxena [9] generalized the results of Mazhar [10] and gave the following results.

Theorem 2.1 Let φ_n be a sequence of positive real numbers and satisfy

$$\lambda_m = O(1), \ m \to \infty,$$

$$\sum_{n=v}^{m} \varphi_n^{k-1} = O\left(\frac{\varphi_{v}^{k-1}}{v^k}\right),$$

and X_n be a positive non-decreasing sequence and (λ_n) a sequence such that

$$|\lambda_n|X_n = O(1), \ as \ n \to \infty,$$

$$\sum_{n=1}^{m} n|\Delta^2 \lambda_n|X_n = O(1), \ m \to \infty,$$

$$\sum_{v=1}^{m} \varphi_v^{k-1} |t_v|^k = O(X_m \mu_m), \ as \ m \to \infty,$$

where (μ_m) is a positive non-decreasing sequence such that

$$nX_m \mu_n \Delta\left(\frac{1}{\mu_n}\right) = O(1), \ m \to \infty.$$

Then the series $\sum a_n \lambda_n / \mu_n$ is summable $\varphi - |C, 1|_k$, $k \geq 1$.

3 Main results

A quasi-f-power increasing sequence is a positive sequence $\chi = (\chi_m)$ which satisfy the following

$$K f_n \chi_n \geq f_m \chi_m,$$

where $K = K(f, \chi) \geq 1$ and $n \geq m \geq 1$. With the help of generalized Cesáro summability $\varphi - |C, 1|_k$ and quasi-f-power increasing sequence, we established the following theorem.

Theorem 3.1 Let φ_n be a sequence of positive real numbers. Let (Υ_n) be a quasi-f-power increasing sequence, $f = (f_n)$, $f_n = n^\beta (\log n)^\gamma$, $0 < \beta \leq 1$, $\gamma \geq 0$, and (λ_n) & (μ_n) be sequences of numbers such that (μ_n) is positive non-decreasing sequence satisfying the following

$$\sum_{n=1}^{m} \varphi_n^{k-1} = O\left(\frac{\varphi_{v}^{k-1}}{v^k}\right),$$

where

$$nX_m \mu_n \Delta\left(\frac{1}{\mu_n}\right) = O(1), \ m \to \infty.$$
\[
\sum_{n=1}^{\infty} n^{\beta+1} (\log n)^{\gamma} \sum_{n} |\Delta^2 \lambda_n| < \infty,
\]

(13)

\[
\lambda_m = O(1), \quad m \to \infty,
\]

(14)

\[
n^{1+\beta} (\log n)^{\gamma} \sum_{n} \mu_n \Delta\left(\frac{1}{\mu_n}\right) = O(1), \quad n \to \infty,
\]

(15)

\[
\sum_{n=2}^{m} \frac{\varphi_{n,k-1}^{-1}}{n^{k-\delta} (n^{\beta} (\log n)^{\gamma} \sum_{n})^{k-1}} = O(m^\beta (\log m)^{\gamma} \sum_{m,\mu_m}), \quad m \to \infty,
\]

(16)

\[
\sum_{n=1}^{\infty} \frac{\lambda_n}{n} < \infty,
\]

(17)

\[
\mu_n \Delta^2 \left(\frac{1}{\mu_n}\right) = O\left(\frac{|\Delta \lambda_n|}{n|\lambda_{n+1}|}\right).
\]

(18)

Then the series \(\sum a_n \lambda_n/\mu_n \) is summable \(\varphi - |C, 1; \delta|_k, \ k \geq 1, \ \delta \geq 0 \).

4 Proof of the Theorem

Let \(T_n \) be the \(n^{th} \) \((C, 1) \) mean of the sequence \((na_n \lambda_n/\mu_n) \). The series is \(\varphi - |C, 1; \delta|_k \) summable, if

\[
\sum_{n=1}^{\infty} \frac{\varphi_{n,k-1}^{-1}}{n^{k-\delta} k} |T_n|^k < \infty.
\]

(19)

Applying Able’s transformation, we have

\[
T_n = \frac{1}{n+1} \sum_{v=1}^{n} v a_v \lambda_v/\mu_v
\]

\[
= \frac{1}{n+1} \left(\sum_{v=1}^{n-1} \left(\sum_{r=1}^{v} r a_r \right) \Delta\left(\frac{\lambda_v}{\mu_v}\right) + \left(\frac{\lambda_n}{\mu_v}\right) \sum_{v=1}^{n} v a_v \right)
\]

\[
= \frac{1}{n+1} \left(\sum_{v=1}^{n-1} (v+1) t_v \Delta\left(\frac{1}{\mu_v}\right) \lambda_v \right) + \frac{1}{n+1} \sum_{v=1}^{n-1} (v+1) t_v \Delta\lambda_v + \frac{t_n \lambda_n}{\mu_n}
\]

\[
= T_{n,1} + T_{n,2} + T_{n,3}.
\]

(20)

Using Minkowski’s inequality,

\[
|T_n|^k = |T_{n,1} + T_{n,2} + T_{n,3}|^k < 3^k \left(|T_{n,1}|^k + |T_{n,2}|^k + |T_{n,3}|^k \right).
\]

(21)

In order to complete the proof of the theorem, it is sufficient to show that

\[
\sum_{n=1}^{\infty} \frac{\varphi_{n,k-1}^{-1}}{n^{k-\delta} k} |T_{n,r}|^k < \infty, \ for \ r = 1, 2, 3.
\]

(22)
By using Hölder’s inequality and Abel’s transformation, we have

\[
\sum_{n=2}^{m} \frac{\varphi_{n}^{k-1}}{n^{k-\delta k}} |T_{n,1}|^{k} = \sum_{n=2}^{m} \frac{\varphi_{n}^{k-1}}{n^{k-\delta k}} \left| \frac{1}{n+1} \sum_{v=1}^{n-1} (v+1)t_v \Delta \left(\frac{1}{\mu_v} \right) \lambda_v \right|^{k}
\]

\[
= O(1) \sum_{n=2}^{m} \frac{\varphi_{n}^{k-1}}{n^{2k-\delta k}} \sum_{v=1}^{n-1} v^k |t_v|^k \Delta \left(\frac{1}{\mu_v} \right) |\lambda_v|^k \left(\sum_{v=1}^{n-1} \Delta \left(\frac{1}{\mu_v} \right) \right)^{k-1}
\]

\[
= O(1) \sum_{v=1}^{m} |t_v|^k \Delta \left(\frac{1}{\mu_v} \right) |\lambda_v|^k \varphi_{n}^{k-1}
\]

\[
= O(1) \sum_{v=1}^{m} \frac{v^{1+k-\delta k} |t_v|^k |\lambda_v|^k \varphi_{n}^{k-1}}{(v^\beta (log v)^\gamma \ Y_v)^{k-1}} \Delta \left(\frac{1}{\mu_v} \right) (|\lambda_v|^v^\beta (log v)^v^\gamma \ Y_v)^{k-1}
\]

\[
= O(1) \sum_{v=1}^{m} \frac{v^{1+k-\delta k} |t_v|^k |\lambda_v|^k \varphi_{n}^{k-1}}{(v^\beta (log v)^\gamma \ Y_v)^{k-1}} \Delta \left(\frac{1}{\mu_v} \right) \left(\sum_{r=v}^{\infty} r^\beta (log r)^\gamma \ Y_r |\Delta \lambda_r| \right)^{k-1}
\]

\[
= O(1) \sum_{v=1}^{m} \frac{v^{1+k-\delta k} |t_v|^k |\lambda_v|^k \varphi_{n}^{k-1}}{(v^\beta (log v)^\gamma \ Y_v)^{k-1}} \Delta \left(\frac{1}{\mu_v} \right) \left(\sum_{r=v}^{\infty} r^\beta (log r)^\gamma \ Y_r |\Delta \lambda_r| \right)^{k-1}
\]

\[
= O(1) \sum_{v=1}^{m} \frac{|t_v|^k |\lambda_v|^k \varphi_{n}^{k-1}}{(v^\beta (log v)^\gamma \ Y_v)^{k-1}} \Delta \left(\frac{1}{\mu_v} \right)
\]

\[
= O(1) \sum_{v=1}^{m} \left(\sum_{r=1}^{v} r^{k-\delta k} (v^\beta (log r)^\gamma \ Y_r)^{k-1} \right) \Delta \left(|\lambda_v| \Delta \left(\frac{1}{\mu_v} \right) \right)
\]

\[+ O(1) \left(\sum_{v=1}^{m} \frac{|t_v|^k |\lambda_v|^k \varphi_{n}^{k-1}}{(v^\beta (log v)^\gamma \ Y_v)^{k-1}} \right) v |\lambda_v| \Delta \left(\frac{1}{\mu_v} \right)
\]

\[
= O(1) \sum_{v=1}^{m} \frac{|\lambda_v|}{v} + O(1) \sum_{v=1}^{m-1} v^\beta (log v)^\gamma \ Y_v |\Delta \lambda_v| + O(|\lambda_m|)
\]

\[
= O(1).
\]

\[\sum_{n=2}^{m} \frac{\varphi_{n}^{k-1}}{n^{k-\delta k}} |T_{n,2}|^{k} = \sum_{n=2}^{m} \frac{\varphi_{n}^{k-1}}{n^{k-\delta k}} \left| \frac{1}{n+1} \sum_{v=1}^{n-1} (v+1)t_v \Delta \frac{\lambda_v}{\mu_v+1} \right|^{k}
\]
\begin{align*}
&= O(1) \sum_{n=2}^{m} \varphi_n^{k-1} n^{2k-\delta k} \sum_{v=1}^{n-1} \frac{v^k |t_v|^k \Delta \lambda_v}{\mu_v^{k+1} (\nu^\beta (\log v)^\gamma \mathcal{Y}_v)^{k-1}} \times \\
&\times \left(\sum_{v=1}^{n-1} \nu^\beta (\log v)^\gamma \mathcal{Y}_v \Delta \lambda_v \right)^{k-1} \\
&= O(1) \sum_{v=1}^{m} \frac{|t_v|^k \Delta \lambda_v}{\mu_v^{k+1} (\nu^\beta (\log v)^\gamma \mathcal{Y}_v)^{k-1}} \sum_{n=1}^{m} \varphi_n^{k-1} n^{1+k-\delta k} \\
&= O(1) \sum_{v=1}^{m} \frac{|t_v|^k \Delta \lambda_v}{\mu_v^{k+1} (\nu^\beta (\log v)^\gamma \mathcal{Y}_v)^{k-1}} \text{Var}_{\nu} \left(\frac{\nu^\beta (\log v)^\gamma \mathcal{Y}_v}{\mu_v} \right) \\
&= O(1) \sum_{v=1}^{m} \frac{|t_v|^k \Delta \lambda_v}{\mu_v^{k+1} (\nu^\beta (\log v)^\gamma \mathcal{Y}_v)^{k-1}} \text{Var}_{\nu} \left(\frac{\nu^\beta (\log v)^\gamma \mathcal{Y}_v}{\mu_v} \right) + O(1) m \mathcal{Y}_m |\Delta \lambda_m| \\
&= O(1) \sum_{v=1}^{m} \nu^\beta (\log v)^\gamma \mathcal{Y}_v \mu_v |\Delta \lambda_v| + O(1) \sum_{v=1}^{m} \nu^\beta (\log v)^\gamma \mathcal{Y}_v \mu_v |\Delta \lambda_v| \\
&\quad + O(1) \sum_{v=1}^{m} \nu^\beta (\log v)^\gamma \mathcal{Y}_v |\Delta^2 \lambda_v| + O(1) m \mathcal{Y}_m |\Delta \lambda_m| + O(1) \\
&= O(1).
\end{align*}
\begin{align*}
\sum_{n=1}^{m} \frac{\varphi_n^{k-1}}{n^{k-\delta k}} |T_{n,3}|^k &= \sum_{n=1}^{m} \frac{\varphi_n^{k-1}}{n^{k-\delta k}} \left| \frac{t_n \lambda_n}{\mu_n} \right|^k \\
&= O(1) \sum_{n=1}^{m} \frac{\varphi_n^{k-1}}{n^{k-\delta k}} \left(\nu^\beta (\log n)^\gamma \mathcal{Y}_n \right)^{k-1} \times \\
&\times \left(\nu^\beta (\log n)^\gamma \mathcal{Y}_n |\lambda_n| \right)^{k-1} \\
&= O(1) \sum_{n=1}^{m} \frac{\varphi_n^{k-1}}{n^{k-\delta k}} \left(\nu^\beta (\log n)^\gamma \mathcal{Y}_n \right)^{k-1} |\lambda_n| \\
&\quad + \sum_{n=1}^{m} \left(\frac{\nu^\beta (\log n)^\gamma \mathcal{Y}_n}{\mu_n} \right)^{k-1} |\lambda_m| \\
&= O(1) \sum_{n=1}^{m} \nu^\beta (\log n)^\gamma \mathcal{Y}_n \mu_n |\lambda_n| + O(1) \mathcal{Y}_m |\lambda_m|
\end{align*}
Collecting (20) - (25), we have

\[
\sum_{n=1}^{\infty} \frac{\varphi_n^{k-1}}{n^{k-\delta k}} |T_n|^k < \infty.
\]

(26)

Hence proof of the theorem is complete.

5 Corollary

Corollary 5.1 Let \(\varphi_n \) be a sequence of positive real numbers. Let \((\Upsilon_n)\) be a quasi-\(f\)-power increasing sequence, \(f = (f_n), f_n = n^\beta (\log n)^\gamma, 0 < \beta \leq 1, \gamma \geq 0\), and let \((\lambda_n), (\mu_n)\) be sequences of numbers such that \((\mu_n)\) is positive non-decreasing sequence satisfying (13)-(15), (17), (18) and following

\[
\sum_{n=v}^{m} \frac{\varphi_n^{k-1}}{n^{1+k}} = O\left(\frac{\varphi_n^{k-1}}{n^k}\right),
\]

(27)

\[
\sum_{n=2}^{m} \frac{\varphi_n^{k-1}|t_n|^k}{n^k(n^\beta (\log n)^\gamma \Upsilon_n)^{k-1}} = O(m^\beta (\log m)^\gamma \Upsilon_m \mu_m), \ m \to \infty.
\]

(28)

Then the series \(\sum a_n \lambda_n/\mu_n \) is summable \(\varphi - |C, 1|_k, k \geq 1 \).

Proof: On putting \(\delta = 0 \) in Theorem 3.1, we will get (27) and (28). We omit the details as the proof is similar to that of Theorem 3.1 and we use (27) - (28) instead of (12) and (16).

6 Conclusion

The aim of this research article is to formulate the problem of generalization of absolute Cesáro summability factor \((\varphi - |C, 1; \delta|_k, k \geq 1, \delta \geq 0) \) of infinite series which is a motivation for the researchers, interested in theoretical studies of infinite series.

Acknowledgements. The authors express their sincere gratitude to the Department of Science and Technology (India) for providing financial support to the second author under INSPIRE Scheme (Innovation in Science Pursuit for Inspired Research Scheme).
References

Received: June 29, 2016; Published: September 19, 2016