On the Exact Sequence and Variety of Polydules

Darmajid
Algebra Research Division
Institut Teknologi Bandung, Indonesia

Intan Muchtadi-Alamsyah
Algebra Research Division
Institut Teknologi Bandung, Indonesia

Dellavitha Nasution
Algebra Research Division
Institut Teknologi Bandung, Indonesia

Copyright © 2015 Darmajid, Intan Muchtadi-Alamsyah and Dellavitha Nasution. This article is distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Let Λ be a finite-dimensional algebra over an algebraically closed field k. We study variety $\mathcal{W}_d^\Lambda(k)$ parameterizing Λ-polydules. This variety carries an action of an algebraic group such that orbits correspond to quasi-isomorphism classes of complexes in the derived category. We investigate some relation between exact triangle of polydules and variety of polydules.

Mathematics Subject Classification: 18E30, 14L30, 16G10

Keywords: variety of polydules; exact triangle of polydules
1 Introduction

Throughout this paper, let \(\Lambda \) be a finite-dimensional algebra over an algebraically closed field \(k \). Keller has observed in [2] that by fixing dimensions in homology \(d = (d_a, \ldots, d_b) \) we obtain a variety, denoted by \(\mathcal{M}_d(\mathcal{k}) \), which parameterizes polydules with homology dimensions \(d \). There is an algebraic group \(\mathfrak{S}_d^{\Lambda}(\mathcal{k}) \) acting on \(\mathcal{M}_d(\mathcal{k}) \) such that the orbits correspond to the quasi-isomorphism classes of polydules. Jensen, Madsen, and Su [1] use variety \(\mathcal{M}_d(\mathcal{k}) \) to study about degeneration for polydules with finite dimension in homology. In this paper we investigate some relation between exact triangle of polydules and varieties of polydules.

2 Preliminary Notes

In this section we recall some definitions on polydules over algebra and the variety that parameterize it. For details, we refer to [1].

Let \(A \) be an algebra over commutative ring \(R \). A polydule over \(A \), or \(A \)-polydule is a \(\mathbb{Z} \)-graded \(R \)-module \(M = \bigoplus M_i \) with \(R \)-linear \(\mathbb{Z} \)-graded maps \(m_i^M : A^{(\otimes_R)t-1} \otimes_R M \to M, \ t \geq 1 \) of degree \(2 - t \) satisfying the polydule structure: \(m_1^M m_1^M = 0; \ m_1^M m_2^M = m_2^M (1 \otimes m_1^M) \); and for \(t \geq 3 \),

\[
\sum_{j=1}^{t} (-1)^{(t-1)} m_{t-j+1}^M (1^{\otimes t-j} \otimes m_j^M) = \sum_{j=1}^{t-2} (-1)^{j-1} m_{t-1}^M (1^{\otimes t-j-2} \otimes \mu \otimes 1^{\otimes j}),
\]

where \(1 \) is the identity map and \(\mu \) is the multiplication in \(A \).

A morphism \(f : M \to N \) between two \(A \)-polydules \(M \) and \(N \) is a family of maps \(f_t : A^{(\otimes_R)t-1} \otimes_R M \to N, \ t \geq 1 \) of degree \(1 - t \) satisfying the rules:

\[
f_t m_i^M = m_i^N f_t; \ f_t m_1^M = m_1^N (1 \otimes f_t) + m_2^N f_t; \ \text{and for } t \geq 3,
\]

\[
\sum_{j=1}^{t} (-1)^{(t-1)} f_{t-j+1} (1^{\otimes t-j} \otimes m_j^M) + \sum_{j=1}^{t-2} (-1)^{j} f_{t-1} (1^{\otimes t-j-2} \otimes \mu \otimes 1^{\otimes j}) = \sum_{r=1}^{t} (-1)^{(t-r+1)} m_{t-r+1}^N (1^{\otimes t-r} \otimes f_t).
\]

Let \(\mathcal{D} (\text{Mod } \Lambda) \) and \(\mathcal{D}_\infty (\Lambda) \) denote the derived category of category \(\Lambda \)-modules and \(\Lambda \)-polydules, respectively. Let \(\mathcal{D} (\text{mod } \Lambda) \) denote the full subcategory of \(\mathcal{D} (\text{Mod } \Lambda) \). We recall Proposition 2.5 in [1].

Lemma 2.1. Let \(\Lambda \) be a finite dimensional \(\mathcal{k} \)-algebra. A \(\Lambda \)-polydule \(M \) is in the essential image of the composed functor \(\mathcal{D}^b (\text{mod } \Lambda) \hookrightarrow \mathcal{D} (\text{Mod } \Lambda) \xrightarrow{\sim} \mathcal{D}_\infty (\Lambda) \) if and only if it is quasi-isomorphic to a \(\Lambda \)-polydule \(N \) with \(m_i^N = 0 \) and \(\text{dim}_k (M) \) finite.

We denote by \(\mathcal{D}_\infty^{\text{fin}} (\Lambda) \) the full subcategory of \(\mathcal{D}_\infty (\Lambda) \) consisting of objects in this image of that composed functor.
Let $\mathfrak{B}_\Lambda = \{v_1 = 1, v_2, \ldots, v_n\}$ be a k-basis for Λ. Define $\ell (\mathfrak{B}_\Lambda)$ as a collection of all finite non-empty sequences of elements in \mathfrak{B}_Λ, that is

$$\ell (\mathfrak{B}_\Lambda) := \{S = (\lambda_{S1}, \lambda_2, \lambda_1) \mid \lambda_i \in \mathfrak{B}_\Lambda, \forall i \in \{1, 2, \ldots, |S|\}\}.$$

We also define $\ell^0 (\mathfrak{B}_\Lambda) = \ell (\mathfrak{B}_\Lambda) \cup \{\emptyset\}$. Following [1], we fix two integers $a < b$ and a finite dimensional k-vector space $W = \bigoplus_{i=a}^{b} \mathcal{W}^i$ with $\dim_k (\mathcal{W}^i) = d_i$ for $i = a, \ldots, b$. Let d denote the vector $d = (d_a, \ldots, d_a)$. We denote the affine variety $\mathcal{M}_d^\Lambda (k)$ which parameterize the possible Λ-polydules structures on W. A point $w = (W(S, i))$ in the variety $\mathcal{M}_d^\Lambda (k)$ is a collection of matrices $W(S, i) \in M_{d_i-|S|+1 \times d_i} (k)$, one for each sequence $S \in \ell (\mathfrak{B}_\Lambda)$ and integer i which satisfy $a + |S| - 1 \leq i \leq b$. We also define the algebraic group $\mathfrak{G}_d^\Lambda (k)$ which act on $\mathcal{M}_d^\Lambda (k)$. An element $f = (F(S, i))$ in $\mathfrak{G}_d^\Lambda (k)$ is a collection of matrices $F(S, i) \in M_{d_i-|S| \times d_i} (k)$, one for each sequence $S \in \ell^0 (\mathfrak{B}_\Lambda)$ and integer i which satisfy $a + |S| \leq i \leq b$. The $\mathfrak{G}_d^\Lambda (k)$-orbits in $\mathcal{M}_d^\Lambda (k)$ correspond to isomorphism classes of Λ-polydules with given dimension in homology.

3 Main Results

We have the following result about the point in variety of polydules.

Theorem 3.1. Let $d = (d_a, d_{a+1}, \ldots, d_b), d' = (d'_a, d'_{a+1}, \ldots, d'_b), d'' = (d''_a, d''_{a+1}, \ldots, d''_b)$ with $d = d' + d''$. Then, $u \in \mathcal{M}_d^\Lambda (k)$ and $v \in \mathcal{M}_{d'}^\Lambda (k)$ if and only if $w \in \mathcal{M}_{d''}^\Lambda (k)$ where for each pairs $(S, i), W(S, i) = \begin{bmatrix} U(S, i) & Z(S, i) \\ 0 & V(S, i) \end{bmatrix}$ for some $Z(S, i) \in M_{d_i-|S|+1 \times d_i'} (k)$ and $(Z(S, i))$ satisfying the relation

$$\sum_{S = [S_1, S_2], S_1, S_2 \neq \emptyset} (-1)^{|S_1|(|S_2|+1)} (U(S_1, i - |S_2| + 1) Z(S_2, i) + Z(S_1, i - |S_2| + 1) V(S_2, i))$$

$$= \sum_{l=1}^{n} \sum_{r=1}^{\ell - 1} (-1)^{l-1} c^{S,l}_r Z(S_{l/r}, i).$$

(1)

Moreover, if u and v correspond to a Λ-polydules U and V, respectively with $m^U_1 = 0 = m^V_1$ then w correspond to a Λ-polydule W where $W^i = U^i \oplus V^i$ for any $i \in \mathbb{Z}$.

Proof. (⇒) Let $u \in \mathcal{M}_d^\Lambda (k)$ and $v \in \mathcal{M}_{d'}^\Lambda (k)$. We construct a collection of matrices $w = (W(S, i))$ as follow. For each pair (S, i), let $W(S, i) = \begin{bmatrix} U(S, i) & Z(S, i) \\ 0 & V(S, i) \end{bmatrix}$ for some $Z(S, i) \in M_{d_i-|S|+1 \times d_i'} (k)$ where $(Z(S, i))$ satisfying the relation 1. The collection of matrices $(Z(S, i))$ is not empty since the collection of zeroes matrices is satisfying that condition. We will
show that $\mathbf{w} \in \mathcal{M}_{d_2}^A(k)$. Since $(Z(S, i))$ satisfying the relation 1, then by the properties of matrices we obtain

$$\sum_{S=[S_1,S_2]}(-1)^{S_1(|S_2|+1)}W(S_1,i-|S_2|+1)W(S_2,i)=\sum_{l=1}^{[S]-1}\sum_{r=1}^{n}(-1)^{l-1}c_r^{S,i}W(S_{l/r},i).$$

Hence, $\mathbf{w} \in \mathcal{M}_{d_2}^A(k)$.

(\Leftarrow) Let $\mathbf{w} \in \mathcal{M}_{d_2}^A(k)$ where for each pair $(S, i), W(S, i) = \begin{bmatrix} U(S, i) & Z(S, i) \\ 0 & V(S, i) \end{bmatrix}$ for some $Z(S, i) \in \mathcal{M}_{d_1-|S|+1 \times d_2'}(k)$. By calculation, we obtain that both $U(S, i)$ and $V(S, i)$ satisfy the same equation as equation in $W(S, i)$ for each (S, i). Therefore, $\mathbf{w} \in \mathcal{M}_{d_2}^A(k)$ and $\mathbf{v} \in \mathcal{M}_{d_2'}^A(k)$. Now assume that \mathbf{u} and \mathbf{v} correspond to a Λ-polydual U and V, respectively with respect to the k-basis $\mathfrak{B}_U^i = \{e_{1U}^i, e_{2U}^i, \ldots, e_{d_1U}^i\}$ for U^i and $\mathfrak{B}_V^i = \{e_{1V}^i, e_{2V}^i, \ldots, e_{d_2V}^i\}$ for V^i, $i \in \{a, \ldots, b\}$. Define $W^i = U^i \oplus V^i$. Let $\mathfrak{B}_V^i = \{e_{1W}^i, e_{2W}^i, \ldots, e_{d_W}^i\}$ where $e_{jW}^i = \begin{bmatrix} e_{jU}^i \\ 0 \end{bmatrix}$ for $j \in \{1, 2, \ldots, d_1^i\}$ and $e_{jW}^i = \begin{bmatrix} 0 \\ e_{j-d_1^i}^i \end{bmatrix}$ for $j \in \{d_1^i+1, d_1^i+2, \ldots, d^i\}$ be a k-basis for W^i. Define Λ-polydual structure in W by the formula $m_W^{|S|-1+i}(S, -) : W^i \rightarrow W^{|S|+1}$ given by sending $\sum_{j=1}^{d^i} \alpha_j e_{jW}^i$ to $\begin{bmatrix} e_{1W}^i \\ \vdots \\ e_{d^i-1-|S|+1W}^i \end{bmatrix} W(S, i) \begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_{d^i} \end{bmatrix}$. Then, $W(S, i)$ is representative matrix of linear map $m_W^{|S|-1+i}(S, -)$. Hence, \mathbf{w} correspond to a Λ-polydual W where $W^i = U^i \oplus V^i$ for any $i \in \mathbb{Z}$. \hfill \Box

Now, we have the relation between exact sequence and variety of Λ-polydules.

Theorem 3.2. Let $\mathbf{u} \in \mathcal{M}_{d_2}^A(k)$ and $\mathbf{v} \in \mathcal{M}_{d_2'}^A(k)$. Define $d = d_1 + d_2'$. Then, $\mathbf{w} \in \mathcal{M}_{d_2}^A(k)$ where for each pair $(S, i), W(S, i) = \begin{bmatrix} U(S, i) & Z(S, i) \\ 0 & V(S, i) \end{bmatrix}$ for some $Z(S, i) \in \mathcal{M}_{d_1-|S_i|+1 \times d_2'}(k)$ if and only if there is an exact sequence of Λ-polydules $\Sigma : 0 \rightarrow U \xrightarrow{f_1} W \xrightarrow{f_2} V \rightarrow 0$ with $W^i = U^i \oplus V^i$.

Proof. (\Rightarrow) By Theorem 3.1, let U, V and W be a Λ-polydules which correspond to points $\mathbf{u} \in \mathcal{M}_{d_2}^A(k)$, $\mathbf{v} \in \mathcal{M}_{d_2'}^A(k)$ and $\mathbf{w} \in \mathcal{M}_{d_2}^A(k)$, respectively with $W^i = U^i \oplus V^i$ for any $i \in \mathbb{Z}$. We define an injection map $f = (f_i)$ from U to W recursively given by

$$f_1(\emptyset, -) : U^i \rightarrow W^i, \quad u \mapsto (u, 0), \quad \text{for} \quad i \in \{a, \ldots, b\},$$

$$f_2(1 \otimes m_U^i) = f_1(m_U^i) - m_W^i(1 \otimes f_1),$$

and for $t \geq 3$,

$$f_t(1 \otimes t-1 \otimes m_U^i) = -\sum_{j=2}^{t} (-1)^{j(t-1)} f_{t-j+1}(1 \otimes t-j \otimes m_U^j).$$
\[- \sum_{j=1}^{t-2} (-1)^j f_{t-1} (1^{\otimes t-j-2} \otimes \mu \otimes 1^{\otimes j}) + \sum_{r=1}^{t-1} (-1)^{t+r+1} m_{t-r+1} (1^{\otimes t-r} \otimes f_r). \]

Note that \(f \) is strict monomorphism of \(\Lambda \)-polydules. Dually, we also define projection map \(g = (g_i) \) from \(W \) to \(V \) recursively analogous as \(f \) before so that we obtain strict epimorphism of \(\Lambda \)-polydules \(g \). Hence, \(\im (f) = \ker (g) \).

Therefore, \(0 \rightarrow U \rightarrow W \rightarrow V \rightarrow 0 \) is an exact sequence of \(\Lambda \)-polydules.

\((\Leftarrow) \) Suppose there exist an exact sequence of \(\Lambda \)-polydules \(\Sigma : 0 \rightarrow U \xrightarrow{f} W \xrightarrow{g} V \rightarrow 0 \) with \(W^i = U^i \oplus V^i \). We apply functor \(\mathcal{D} \) to get \(\alpha \) where the morphism \(f \rightarrow \mathcal{D} \alpha \) is a sequence of zero numbers for any object \(X \).

Therefore, \(0 \rightarrow U \rightarrow W \rightarrow V \rightarrow 0 \) is an exact sequence of \(\Lambda \)-polydules.

Following Zvara in [3], we define additive function from derived category \(\mathcal{D}_{\infty}^{\text{fin}} (\Lambda) \) of \(\Lambda \)-polydules. Let \(\Delta : L \xrightarrow{f} M \xrightarrow{g} N \xrightarrow{h} L[1] \) be distinguished triangle in \(\mathcal{D}_{\infty}^{\text{fin}} (\Lambda) \). Define additive function \(\vartheta_{\Delta} \) from any object in \(\mathcal{D}_{\infty}^{\text{fin}} (\Lambda) \) to the set of sequence of integers given by sending each object \(X \) in \(\mathcal{D}_{\infty}^{\text{fin}} (\Lambda) \) to \(\left(\dim_k \text{Hom}_{\mathcal{D}_{\infty}^{\text{fin}} (\Lambda)} (N[j] \oplus L[j], X) \right) \).

Theorem 3.3. If \(\Delta : L \xrightarrow{f} M \xrightarrow{g} N \xrightarrow{h} T[L] \) is distinguished triangle in \(\mathcal{D}_{\infty}^{\text{fin}} (\Lambda) \) then \(\vartheta_{\Delta} (X) \) is a sequence of nonnegative integers for any object \(X \) in \(\mathcal{D}_{\infty}^{\text{fin}} (\Lambda) \). Moreover, the distinguished triangle \(\Delta \) is split if and only if \(\vartheta_{\Delta} (X) \) is a sequence of zero numbers for any object \(X \) in \(\mathcal{D}_{\infty}^{\text{fin}} (\Lambda) \).

Proof. We apply functor \(\text{Hom}_{\mathcal{D}_{\infty}^{\text{fin}} (\Lambda)} (-, X) \) to distinguished triangle \(\Delta \),

\[\cdots \rightarrow \text{Hom}_{\mathcal{D}_{\infty}^{\text{fin}} (\Lambda)} (T[L], X) \xrightarrow{h^*} \text{Hom}_{\mathcal{D}_{\infty}^{\text{fin}} (\Lambda)} (N, X) \xrightarrow{g^*} \text{Hom}_{\mathcal{D}_{\infty}^{\text{fin}} (\Lambda)} (M, X) \xrightarrow{f^*} \text{Hom}_{\mathcal{D}_{\infty}^{\text{fin}} (\Lambda)} (L, X) \rightarrow \cdots \]

where the morphism \(f^* \) is defined by the formula \(f^* (\alpha) = \alpha \circ f \) for every \(\alpha \in \text{Hom}_{\mathcal{D}_{\infty}^{\text{fin}} (\Lambda)} (M, X) \) and both of morphism \(g^* \) and \(h^* \) are defined analogous with the definition of \(f^* \). Since \(f^* : \text{Hom}_{\mathcal{D}_{\infty}^{\text{fin}} (\Lambda)} (M, X) \rightarrow \text{Hom}_{\mathcal{D}_{\infty}^{\text{fin}} (\Lambda)} (L, X) \) then \(\dim_k \left(\text{Hom}_{\mathcal{D}_{\infty}^{\text{fin}} (\Lambda)} (L, X) \right) - \text{rank} (f^*) \geq 0 \). Without loss of generality, it is enough to consider in position with index zero in the sequence \(\vartheta_{\Delta} (X) \),
that is
\[
\dim_k \left(\text{Hom}_{D_{\infty}^{\text{fin}}(\Lambda)}(N \oplus L, X) \right) = \text{rank} (g^*) + \text{null} (g^*) + \dim_k \left(\text{Hom}_{D_{\infty}^{\text{fin}}(\Lambda)}(L, X) \right)
\]
\[
= \dim_k \left(\text{Hom}_{D_{\infty}^{\text{fin}}(\Lambda)}(W, X) \right) - \text{rank} (f^*) + \text{null} (g^*) + \dim_k \left(\text{Hom}_{D_{\infty}^{\text{fin}}(\Lambda)}(L, X) \right).
\]

Then,
\[
\dim_k \left(\text{Hom}_{D_{\infty}^{\text{fin}}(\Lambda)}(N \oplus L, X) \right) - \dim_k \left(\text{Hom}_{D_{\infty}^{\text{fin}}(\Lambda)}(W, X) \right)
= \text{null} (g^*) + \dim_k \left(\text{Hom}_{D_{\infty}^{\text{fin}}(\Lambda)}(L, X) \right) - \text{rank} (f^*) \geq \text{null} (g^*) \geq 0.
\]

Moreover, let Δ be a splittable sequence. Then, $h = 0$ so that we obtain $(T^j(h))^* = 0$ for any object X in $D_{\infty}^{\text{fin}}(\Lambda)$ and $j \in \mathbb{Z}$. Hence, $(T^j(f))^*$ and $(T^j(g))^*$ are epimorphism and monomorphism, respectively whence we have $\text{null} (T^j(g))^* = 0$. Therefore, for each $j \in \mathbb{Z}$, we obtain
\[
\dim_k \left(\text{Hom}_{D_{\infty}^{\text{fin}}(\Lambda)}(T^j(N) \oplus T^j(L), X) \right) = \dim_k \left(\text{Hom}_{D_{\infty}^{\text{fin}}(\Lambda)}(T^j(W), X) \right).
\]

Hence, $\vartheta_\Delta(X)$ is a sequence of zero numbers.

Conversely, let $\vartheta_\Delta(X)$ is a sequence of zero numbers. Then
\[
\dim_k \left(\text{Hom}_{D_{\infty}^{\text{fin}}(\Lambda)}(T^j(L), X) \right) - \text{rank} (T^j(f))^* + \text{null} (T^j(g))^* = 0.
\]
Since $\text{null} (T^j(g))^* \geq 0$, and
\[
\dim_k \left(\text{Hom}_{D_{\infty}^{\text{fin}}(\Lambda)}(T^j(L), X) \right) - \text{rank} (T^j(f))^* \geq 0
\]
then for each $j \in \mathbb{Z}$, we obtain
\[
\dim_k \left(\text{Hom}_{D_{\infty}^{\text{fin}}(\Lambda)}(T^j(L), X) \right) = \text{rank} (T^j(f))^* \text{ and } \text{null} (T^j(g))^* = 0.
\]
Hence, for each $j \in \mathbb{Z}$, $\ker (T^j(g))^* = 0$ whence we obtain $(T^j(h))^* = 0$. In particular, if we take $X = T^{j+1}(L)$ and evaluate identity morphism $id_{T^{j+1}(L)} \in \text{Hom}_{D_{\infty}^{\text{fin}}(\Lambda)}(T^{j+1}(L), T^{j+1}(L))$, then we obtain
\[
0 = (T^j(h))^* \left(id_{T^{j+1}(L)} \right) = id_{T^{j+1}(L)} \circ T^j(h) = T^j(h).
\]

Hence, Δ is splittable sequence. \qed

Acknowledgements. This research is supported by Hibah Desentralisasi DIKTI 2015.

References

http://dx.doi.org/10.1090/s0002-9947-09-04693-5

Received: November 1, 2015; Published: June 20, 2016