Generalized Hyers-Ulam Stability of a 3-Dimensional Quadratic Functional Equation in Modular Spaces

Sun Sook Jin
Department of Mathematics Education
Gongju National University of Education
Gongju 314-711, Republic of Korea

Yang-Hi Lee
Department of Mathematics Education
Gongju National University of Education
Gongju 314-711, Republic of Korea

Abstract
In this paper, we prove the stability problem for a 3-dimensional quadratic functional equation

$$9f\left(\frac{x+y+z}{3}\right) - f(x+y) - f(y+z) - f(x+z) + f(x) + f(y) + f(z) = 0$$

in modular spaces by applying the direct method.

Mathematics Subject Classification: 39B82, 39B52

Keywords: generalized Hyers-Ulam stability, quadratic functional equation, direct method, modular space
1 Introduction

In 1940, Ulam [14] proposed the problem concerning the stability of group homomorphisms. In the following year, Hyers [4] gave an affirmative answer to this problem for additive mappings between Banach spaces. Thereafter, many mathematicians came to deal with this problem (cf. [1, 3, 8, 12]).

A solution of the functional equation

\[f(x + y) - f(x - y) - 2f(x) - 2f(y) = 0 \]

is called a quadratic mapping ([2, 13]). A functional equation is called a quadratic functional equation if every solution of that equation is a quadratic mapping and any quadratic mapping is a solution of the equation ([5, 6, 7]).

In 1959, Nakano [10] and Musielak and Orlicz [9] defined a modular on a vector space to construct a modular structure on the space.

Definition 1.1 Let X be a real vector space.
(a) A functional $\rho : X \rightarrow [0, \infty]$ is called a modular if for arbitrary $x, y \in X$,

(i) $\rho(x) = 0$ if and only if $x = 0$,

(ii) $\rho(\alpha x) = \rho(x)$ for every scaler α with $|\alpha| = 1$,

(iii) $\rho(\alpha x + \beta y) \leq \rho(x) + \rho(y)$ if and only if $\alpha + \beta = 1$ and $\alpha, \beta > 0$,

(b) We say that ρ is a convex modular if the last condition (iii) is replaced by

(iii') $\rho(\alpha x + \beta y) \leq \alpha \rho(x) + \beta \rho(y)$ if and only if $\alpha + \beta = 1$ and $\alpha, \beta > 0$.

A modular ρ defines a corresponding modular space, i.e., the vector space X_ρ given by $X_\rho = \{ x \in X : \rho(\lambda x) \rightarrow 0$ as $\lambda \rightarrow 0 \}$.

Definition 1.2 Let $\{x_n\}$ and x be in X_ρ.

(i) The sequence $\{x_n\}$, with $x_n \in X_\rho$, is ρ-convergent to x and write $x_n \rightarrow x$ if $\rho(x_n - x) \rightarrow 0$ as $n \rightarrow \infty$.

(ii) The sequence $\{x_n\}$, with $x_n \in X_\rho$, is called ρ-Cauchy if $\rho(x_n - x_m) \rightarrow 0$ as $n, m \rightarrow \infty$.

(iii) A subset S of X_ρ is called ρ-complete if and only if every ρ-Cauchy sequence is ρ-convergent to an element of S.

In this paper, we consider the following 3-dimensional functional equation
\[9f\left(\frac{x+y+z}{3}\right) - f(x+y) - f(y+z) - f(x+z) + f(x) + f(y) + f(z) = 0 \quad (2) \]
where \(f \) is a mapping from a real vector space to a \(\rho \)-complete modular space.

Firstly, we show that the functional equation (2) is a quadratic functional equation, and, by applying the direct method in [4], we further prove the stability of that equation. More precisely, starting from the given mapping \(f \) that approximately satisfies the functional equation (2), we explicitly construct an exact solution \(F \) of that equation, which approximates the mapping \(f \), given by
\[F(x) = \lim_{n \to \infty} \frac{f(2^n x)}{2^n} \quad \text{or} \quad F(x) = \lim_{n \to \infty} \frac{f(3^n x)}{3^n}. \]

2 Main results

Throughout this section, let \(V \) and \(W \) be real vector spaces. And let \(\rho \) be a convex modular on a real vector space \(Y \). For a given mapping \(f : V \to W \), we use the following abbreviations
\[
\begin{align*}
Qf(x,y) &:= f(x+y) + f(x-y) - 2f(x) - 2f(y), \\
Df(x,y,z) &:= 9f\left(\frac{x+y+z}{3}\right) - f(x+y) - f(y+z) - f(x+z) \\
&\quad + f(x) + f(y) + f(z)
\end{align*}
\]
for all \(x, y, z \in V \). Notice that the solution of the functional equation \(Qf \equiv 0 \) is called a quadratic mapping.

In the next theorem we will show that the functional equation \(Df \equiv 0 \) is a quadratic functional equation.

Theorem 2.1 A mapping \(f : V \to W \) satisfies \(Df(x,y,z) = 0 \) for all \(x,y,z \in V \) if and only if \(f \) is a quadratic mapping.

Proof. If \(f : V \to W \) satisfies \(Df(x,y,z) = 0 \) for all \(x,y,z \in V \), then, since \(Df(0,0,0) = 9f(0) = 0 \), we have \(Df(x,x,x) = 12f(x) - 3f(2x) = 0 \) and \(Df(3x,0,0) = 9f(x) - f(3x) + f(0) = 0 \) for all \(x \in V \). It follows that
\[
Df(-x,-x,2x) = f(2x) + 2f(-x) - f(-2x) - 2f(x) = 2f(x) - 2f(-x) = 0
\]
which implies that \(f(x) = f(-x) \) for all \(x \in V \). Hence, we conclude that \(Qf(x,y) = -Df(x,y,-y) \) for all \(x, y \in V \), and so \(f \) is a quadratic mapping.
Conversely, let \(f : V \rightarrow W \) be a quadratic mapping, i.e., \(Qf(x, y) = 0 \) for all \(x, y \in V \). Then we have the equality \(f(\frac{x}{n}) = \frac{f(x)}{n^2} \) for all \(x \in V \) and \(n \in \mathbb{N} \). Hence we obtain that

\[
Df(x, y, z) = f(x + y + z) - f(x + y) - f(y + z) - f(x + z) + f(x) + f(y) + f(z)
\]

\[
= f(x + y + z) + f(x - y) - 2f\left(x + \frac{z}{2}\right) - 2f\left(y + \frac{z}{2}\right) - f(x + z) - f(x)
\]

\[
+ 2f\left(x + \frac{z}{2}\right) + 2f\left(\frac{z}{2}\right) - f(y + z) - f(y) + 2f\left(y + \frac{z}{2}\right) + 2f\left(\frac{z}{2}\right)
\]

\[
- f(x + y) - f(x - y) + 2f(x) + 2f(y)
\]

\[
= Qf\left(x + \frac{z}{2}, y + \frac{z}{2}\right) - Qf\left(x + \frac{z}{2}, \frac{z}{2}\right) - Qf\left(y + \frac{z}{2}, \frac{z}{2}\right) - Qf(x, y)
\]

\[
= 0
\]

for all \(x, y, z \in V \), as we desired.

In the following lemma, we will show that \(f \) is a quadratic mapping even if \(Df(x, y, z) = 0 \) for all \(x, y, z \in V \setminus \{0\} \).

Lemma 2.2 If a mapping \(f : V \rightarrow W \) satisfies \(Df(x, y, z) = 0 \) for all \(x, y, z \in V \setminus \{0\} \), then \(f \) satisfies \(Df(x, y, z) = 0 \) for all \(x, y, z \in V \).

Proof. Notice that \(f(0) = 0 \) since \(18f(0) = Df(2x, -x, -x) + Df(-2x, x, x) \) for \(x \in V \setminus \{0\} \). And then we have

\[
6f(x) - 6f(-x) = 3Df(2x, -x, -x) + Df(x, x, x) - Df(-x, -x, -x),
\]

\[
9f(x) - f(3x) = Df(-9x, 3x, 3x) + Df(6x, -6x, 3x) - Df(3x, -3x, -3x)
\]

which follow that \(f(3x) = 9f(x) \) and \(f(x) = f(-x) \) for all \(x \in V \setminus \{0\} \). So, we can say that

\[
Df(x, y, 0) = 9f\left(\frac{x + y}{3}\right) - f(x + y) - f(y) - f(x) + f(x) + f(y) + f(0) = 0,
\]

\[
Df(x, 0, 0) = 9f\left(\frac{x}{3}\right) - f(x) = 0
\]

for all \(x, y \in V \setminus \{0\} \). Similarly we easily get the equalities \(Df(x, 0, z) = 0, Df(0, y, z) = 0, Df(0, y, 0) = 0, Df(0, 0, z) = 0 \) for all \(x, y, z \in V \setminus \{0\} \). Therefore, we have proved \(Df(x, y, z) = 0 \) for all \(x, y, z \in V \) as we desired.

Remark Note that \(\rho \) is an increasing function since it is a convex modular on a real vector space \(Y \). Suppose \(0 < \alpha < \beta \), then property (iii) of Definition 1.1 with \(y = 0 \) shows that \(\rho(\alpha x) = \rho((\alpha/\beta)\beta x) \leq \rho(\beta x) \) for all \(x \in X \).
Moreover, if ρ is a convex modular on X, then property (iii') of Definition 1.1 shows that
\[
\rho \left(\sum_{i=1}^{n} \alpha_i x_i \right) = \rho \left(\alpha_1 x_1 + (1 - \alpha_1) \left(\frac{\alpha_2}{1 - \alpha_1} x_2 + \ldots + \frac{\alpha_n}{1 - \alpha_1} x_n \right) \right)
\leq \alpha_1 \rho(x_1) + (1 - \alpha_1) \rho \left(\frac{\alpha_2}{1 - \alpha_1} x_2 \right)
+ \left(1 - \frac{\alpha_2}{1 - \alpha_1} \right) \rho \left(\frac{\alpha_3}{1 - \alpha_1 - \alpha_2} x_3 + \ldots + \frac{\alpha_n}{1 - \alpha_1 - \alpha_2} x_n \right)
\leq \alpha_1 \rho(x_1) + \alpha_2 \rho(x_2) + (1 - \alpha_1 - \alpha_2) \rho \left(\frac{\alpha_3}{1 - \alpha_1 - \alpha_2} x_3 + \ldots + \frac{\alpha_n}{1 - \alpha_1 - \alpha_2} x_n \right)
\leq \ldots \leq \sum_{i=1}^{n} \alpha_i \rho(x_i)
\tag{3}
\]
for all $x_1, \ldots, x_n \in X$ and all $\alpha_i > 0$ with $\sum_{i=1}^{n} \alpha_i = 1$.

Now we will prove the generalized Hyers-Ulam stability of the functional equation $Df(x, y, z) = 0$.

Theorem 2.3 Let V be a real vector space and let Y_ρ be a ρ-complete modular space. Suppose $f : V \to Y_\rho$ satisfies the condition $f(0) = 0$ and an inequality of the form
\[
\rho(Df(x, y, z)) \leq \varphi(x, y, z)
\tag{4}
\]
for all $x, y, z \in V \setminus \{0\}$, where $\varphi : (V \setminus \{0\})^3 \to [0, \infty)$ be a function such that
\[
\sum_{i=0}^{\infty} \varphi(2^i x, 2^i y, 2^i z) \frac{4^i}{3^{i+1}} < \infty
\tag{5}
\]
for all $x, y, z \in V \setminus \{0\}$. Then there exists a unique quadratic mapping such that
\[
\rho(f(x) - F(x)) \leq \sum_{i=0}^{\infty} \tilde{\varphi}(2^i x) \frac{4^i}{3^{i+1}}
\tag{6}
\]
for all $x \in V$, where $\tilde{\varphi} : V \to [0, \infty)$ is a function defined by $\tilde{\varphi}(x) = \varphi(x, x, x)$ if $x \in V \setminus \{0\}$ and $\tilde{\varphi}(0) = 0$.

Proof. It follows from (3) and (4) that
\[
\rho \left(\frac{f(2^n x)}{4^n} - \frac{f(2^{n+m} x)}{4^{n+m}} \right) = \rho \left(\sum_{i=n}^{n+m-1} \left(\frac{f(2^i x)}{4^i} - \frac{f(2^{i+1} x)}{4^{i+1}} \right) \right)
\]
can define mappings J, F and obtain the inequality (6). From the definition of x for all $x \in V \setminus \{0\}$ and $f(0) = 0$, the sequence $\left\{ \frac{f(2^n x)}{4^n} \right\}$ converges for all $x \in V$. Hence, we can define mappings $J_n f, F : V \to Y_\rho$ by $J_n f(x) := \frac{f(2^n x)}{4^n}$ and $F(x) := \lim_{n \to \infty} \frac{f(2^n x)}{4^n}$ for all $x \in V$. Also we obtain the inequality

$$\rho(J_n f(x) - F(x)) \leq \sum_{i=n}^{\infty} \frac{\varphi(2^i x, 2^i x, 2^i x)}{3 \cdot 4^{i+1}}$$

(7)

for all $x \in V \setminus \{0\}$ as $m \to \infty$ in (9). Moreover, if we put $n = 0$ in (8), we obtain the inequality (6). From the definition of F and (3), we get

$$\rho\left(\frac{1}{16} DF(x, y, z) \right)$$

$$= \rho\left(\frac{9}{16} (F - J_n f) \left(\frac{x + y + z}{3} \right) + \frac{1}{16} (J_n f - F)(x + y) \right.$$

$$+ \frac{1}{16} (J_n f - F)(x + z) + \frac{1}{16} (J_n f - F)(y + z) - \frac{1}{16} (J_n f - F)(x)$$

$$- \frac{1}{16} (J_n f - F)(y) - \frac{1}{16} (J_n f - F)(z) + \frac{1}{16} DJ_n f(x, y, z) \right)$$

$$\leq \frac{9}{16} \rho\left(\left(F - J_n f \right) \left(\frac{x + y + z}{3} \right) \right) + \frac{1}{16} \rho((J_n f - F)(x + y))$$

$$+ \frac{1}{16} \rho((J_n f - F)(x + z)) + \frac{1}{16} \rho((J_n f - F)(y + z)) + \frac{1}{16} \rho((J_n f - F)(x))$$

$$+ \frac{1}{16} \rho((J_n f - F)(y)) + \frac{1}{16} \rho((J_n f - F)(z)) + \frac{1}{16} \rho(DJ_n f(x, y, z))$$

$$\leq \frac{9}{16} \sum_{i=n}^{\infty} \frac{\varphi(2^i(x + y + z)/3)}{3 \cdot 4^{i+1}} + \frac{1}{16} \sum_{i=n}^{\infty} \frac{\varphi(2^i(x + y))}{3 \cdot 4^{i+1}}$$

$$+ \frac{1}{16} \sum_{i=n}^{\infty} \frac{\varphi(2^i(x + z))}{3 \cdot 4^{i+1}} + \frac{1}{16} \sum_{i=n}^{\infty} \frac{\varphi(2^i(y + z))}{3 \cdot 4^{i+1}} + \frac{1}{16} \sum_{i=n}^{\infty} \frac{\varphi(2^i x)}{3 \cdot 4^{i+1}}$$

$$+ \frac{1}{16} \sum_{i=n}^{\infty} \frac{\varphi(2^i y)}{3 \cdot 4^{i+1}} + \frac{1}{16} \sum_{i=n}^{\infty} \frac{\varphi(2^i z)}{3 \cdot 4^{i+1}} + \frac{1}{16} \frac{\varphi(2^n x, 2^n y, 2^n z)}{4^n}$$

$\to 0$, as $n \to \infty$,.
for all $x, y, z \in V \setminus \{0\}$. Hence we obtain the equality $DF(x, y, z) = 0$ for all $x, y, z \in V$ by Lemma 2.2. Moreover, according to Theorem 2.1, f is a quadratic mapping. To prove the uniqueness, we assume now that there is another quadratic mapping $F' : V \to Y_\rho$ which satisfies the inequality in (6). Notice that $F'(x) = \frac{F'(2^n x)}{4^n}$ holds for all $x \in V$ and all $n \in \mathbb{N}$. From the relation

$$\rho \left(\frac{f(2^n x)}{4^n} - F'(x) \right) = \rho \left(\frac{f(2^n x) - F'(2^n x)}{4^n} \right) \leq \frac{1}{4^n} \rho(f(2^n x) - F'(2^n x)) \leq \frac{1}{4^n} \sum_{i=0}^{\infty} \tilde{\varphi}(2^{n+i} x) 3 \cdot 4^{i+1} \leq \sum_{i=n}^{\infty} \tilde{\varphi}(2^i x) 3 \cdot 4^{i+1} \to 0, \quad n \to \infty$$

for all $x \in V \setminus \{0\}$, we get the equality $F'(x) = \lim_{n \to \infty} \frac{f(2^n x)}{4^n} = F(x)$ for all $x \in V$, as we desired.

Corollary 2.4 Let X be a real normed space and let p, θ be real constants such that $p < 2$ and $\theta > 0$. If a mapping $f : X \to Y_\rho$ satisfies the inequality

$$\rho(df(x, y, z)) \leq \theta(\|x\|^p + \|y\|^p + \|z\|^p)$$

for all $x, y, z \in X \setminus \{0\}$ (with $f(0) = 0$ when $p = 0$), then there exists a unique quadratic mapping $F : X \to Y$ such that

$$\rho(f(x) - F(x)) \leq \frac{\theta}{4 - 2p} \|x\|^p$$

for all $x \in X \setminus \{0\}$. In particular, if $p < 0$, then f is a quadratic mapping.

Proof. Choose a $x \in V \setminus \{0\}$. Then it follows from (9) that

$$\rho(f(0)) = \rho \left(\frac{Df(2kx, -kx, -kx) + Df(-2kx, kx, kx)}{18} \right) \leq \frac{1}{18} \rho(Df(2kx, -kx, -kx)) + \frac{1}{18} \rho(Df(-2kx, kx, kx)) \leq \frac{2p + 2}{9} |k|^p \|x\|^p$$

for all nonzero real numbers k, i.e., $f(0) = 0$ when $p \neq 0$. If we put $\varphi(x, y, z) := \theta(\|x\|^p + \|y\|^p + \|z\|^p)$ for all $x, y, z \in X \setminus \{0\}$, then φ satisfies (5). Therefore, by Theorems 2.3, there exists a unique quadratic mapping F satisfying the
inequality (10) for all \(x \in X \setminus \{0\} \). Moreover, if \(p < 0 \) then it follows from (3), (9), \(DF \equiv 0 \), and (10) that

\[
\rho \left(\frac{1}{14}(f(x) - F(x)) \right) \\
\leq \rho \left(\frac{1}{14}(Df - DF)((k + 1)x, -kx, -kx) + \frac{9}{14}(F - f)\left(\frac{(-k + 1)x}{3} \right) \right) \\
+ \frac{1}{14}(f - F)(-2kx) + \frac{1}{14}(F - f)((k + 1)x) + \frac{2}{14}(F - f)(-kx) \\
\leq \frac{1}{14} \rho((Df - DF)((k + 1)x, -kx, -kx)) \\
+ \frac{9}{14} \rho\left((F - f)\left(\frac{(-k + 1)x}{3} \right) \right) + \frac{1}{14} \rho((f - F)(-2kx)) \\
+ \frac{1}{14} \rho((F - f)((k + 1)x)) + \frac{2}{14} \rho((F - f)(-kx)) \\
\leq \left((k + 1)^p + 2 \cdot k^p + \frac{9(-k + 1)^p}{3^p} + \frac{(2k)^p + (k + 1)^p + 2 \cdot k^p}{|4 - 2^p|} \right) \frac{\theta \|x\|^p}{14} \\
\rightarrow 0, \text{ as } k \rightarrow \infty,
\]

for all \(x \in X \setminus \{0\} \). Since \(f(0) = 0 = F(0) \), the equality \(f(x) = F(x) \) holds for all \(x \in X \), as we desired.

Now we will establish another type of stability of the functional equation \(Df(x, y, z) = 0 \).

Theorem 2.5 Let \(V \) be a real vector space and let \(Y_\rho \) be a \(\rho \)-complete modular space. Suppose \(f : V \rightarrow Y_\rho \) satisfies the condition \(f(0) = 0 \) and the inequality (4) for all \(x, y, z \in V \), where \(\varphi : V^3 \rightarrow [0, \infty) \) be a function such that

\[
\sum_{i=0}^{\infty} \varphi(3^i x, 3^i y, 3^i z) \frac{9^i}{9^i} < \infty \tag{11}
\]

for all \(x, y, z \in V \). Then there exists a unique quadratic mapping such that

\[
\rho(f(x) - F(x)) \leq \sum_{i=0}^{\infty} \varphi(3^{i+1} x) \frac{3 \cdot 9^{i+1}}{3 \cdot 9^{i+1}} \tag{12}
\]

for all \(x \in V \), where \(\varphi : V \rightarrow [0, \infty) \) is a function defined by \(\varphi(x) = \varphi(x, 0, 0) \).

Proof. It follows from (3) and (4) that

\[
\rho \left(\frac{f(3^n x)}{9^n} - \frac{f(3^{n+m} x)}{9^{n+m}} \right) = \rho \left(\sum_{i=n}^{n+m-1} \frac{Df(3^{i+1} x, 0, 0)}{9^{i+1}} \right)
\]
for all $x \in V$. So, it is easy to show that the sequence $\{\frac{f(3^n x)}{g^n}\}$ is a Cauchy sequence for all $x \in V$. Since Y_ρ is complete, the sequence $\{\frac{f(3^n x)}{g^n}\}$ converges for all $x \in V$. Hence, we can define mappings $J_n f, F : V \to Y_\rho$ by $J_n f(x) := \frac{f(3^n x)}{g^n}$ and $F(x) := \lim_{n \to \infty} \frac{f(3^n x)}{g^n}$ for all $x \in V$. Also we obtain the inequality

$$\rho(J_n f(x) - F(x)) \leq \sum_{i=n}^{\infty} \frac{\varphi(3^{i+1} x)}{g^{i+1}}$$

(14)

for all $x \in V$ as $m \to \infty$ in (13). Moreover, if we put $n=0$ in (14), we obtain the inequality (12). From the definition of F and (3), we get

$$\rho\left(\frac{1}{16} DF(x, y, z)\right) \leq \frac{9}{16} \sum_{i=n}^{\infty} \frac{\varphi(3^i (x + y + z))}{g^{i+1}} + \frac{1}{16} \sum_{i=n}^{\infty} \frac{\varphi(3^i (x + y))}{g^{i+1}}$$

$$+ \frac{1}{16} \sum_{i=n}^{\infty} \frac{\varphi(3^i (x + z))}{g^{i+1}} + \frac{1}{16} \sum_{i=n}^{\infty} \frac{\varphi(3^i (y + z))}{g^{i+1}}$$

$$+ \frac{1}{16} \sum_{i=n}^{\infty} \frac{\varphi(3^i x)}{g^{i+1}} + \frac{1}{16} \sum_{i=n}^{\infty} \frac{\varphi(3^i y)}{g^{i+1}}$$

$$+ \frac{1}{16} \sum_{i=n}^{\infty} \frac{\varphi(3^i z)}{g^{i+1}} + \frac{1}{16} \varphi(3^n x, 3^n y, 3^n z)$$

$$\to 0, \text{ as } n \to \infty,$$

for all $x, y, z \in V$ i.e., $DF(x, y, z) = 0$ for all $x, y, z \in V$. By Theorem 2.1, f is a quadratic mapping. To prove the uniqueness, we assume now that there is another quadratic mapping $F' : V \to Y$ which satisfies the inequality in (12). Notice that $F'(x) = \frac{F'(3^n x)}{g^n}$ for all $x \in V$. From the relations

$$\rho\left(\frac{f(3^n x)}{g^n} - F'(x)\right) \leq \frac{1}{g^n} \rho(f(3^n x) - F'(3^n x))$$

$$\leq \sum_{i=n}^{\infty} \frac{\varphi(3^{i+1} x)}{g^{i+1}} \to 0, \text{ as } n \to \infty$$

for all $x \in V$, we get the equality $F'(x) = \lim_{n \to \infty} \frac{f(3^n x)}{g^n} = F(x)$ for all $x \in V$, as we desired.

Corollary 2.6 Let X be a real normed space and let p, θ be nonnegative real constants such that $p < 2$. If a mapping $f : X \to Y_\rho$ satisfies the inequality
(9) for all $x, y, z \in X$ (with $f(0) = 0$ when $p = 0$), then there exists a unique quadratic mapping $F : X \to Y$ such that
\[
\rho(f(x) - F(x)) \leq \frac{3^p \theta}{9 - 3^p} \|x\|^p
\]
for all $x \in X$.

Proof. If we set $\varphi(x, y, z) := \theta(\|x\|^p + \|y\|^p + \|z\|^p)$ for all $x, y, z \in X$, then there exists a unique quadratic mapping F satisfying the inequality (15) for all $x \in X$ by Theorem 2.5.

Acknowledgements. This work was supported by Gongju National University of Education Grant.

References

Received: April 21, 2016; Published: July 5, 2016