On Fuzzy Almost r-M β-Continuous Mappings on Fuzzy r-Minimal Structures

Myeong Hwan Kim*

Department of Mathematics
MyongJi University, Yongin 449-728, Korea
*Corresponding author

Won Keun Min

Department of Mathematics
Kangwon National University
Chuncheon, 200-701, Korea

Copyright © 2016 Myeong Hwan Kim and Won Keun Min. This article is distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

We introduce the concept of fuzzy almost r-M β-continuous mappings on fuzzy r-minimal structures, and investigate its properties and the relationships among fuzzy r-M β-continuity, fuzzy weakly r-M β-continuity and fuzzy almost r-M β-continuity. In particular, we investigate characterizations for the continuity in terms of fuzzy r-minimal semiopen sets, fuzzy r-minimal preopen sets and fuzzy r-minimal regular-open sets in fuzzy r-minimal spaces.

Mathematics Subject Classification: 54C08

Keywords: fuzzy r-minimal structures, fuzzy r-minimal β-open, fuzzy r-M β-continuous, fuzzy weakly r-M β-continuous, fuzzy almost r-M β-continuous

1. Introduction

The concept of fuzzy set was introduced by Zadeh [10]. Chang [1] defined fuzzy topological spaces by using fuzzy sets. In [7], Ramadan introduced the
concept of smooth topological space, which is a generalization of fuzzy topological space. We introduced the concept of fuzzy r-minimal space [8] which is an extension of the smooth fuzzy topological space. The concepts of fuzzy r-minimal open sets and fuzzy r-M continuous mappings are also introduced and studied. In [5,6], we introduced the concepts of fuzzy r-minimal semiopen (β-open) sets and fuzzy r-M semicontinuous (β-continuous) mappings, and investigate properties of such concepts. In [3], we introduced the concept of fuzzy r-minimal preopen set and fuzzy r-M precontinuous mapping on fuzzy r-minimal spaces. In this paper, we introduce the concept of fuzzy almost r-M β-continuous mapping, which is an extended fuzzy r-M β-continuous mapping. We also investigate characterizations of such mappings in terms of generalized fuzzy r-minimal open sets-fuzzy r-minimal semiopen sets, fuzzy r-minimal pre-open sets and fuzzy r-minimal regular-open sets- in a fuzzy r-minimal space. And we study the relationships among fuzzy r-M β-continuity, fuzzy weakly r-M β-continuity and fuzzy almost r-M β-continuity.

2. Preliminaries

Let I be the unit interval $[0,1]$ of the real line. A member A of I^X is called a fuzzy set [10] of X. By $\tilde{0}$ and $\tilde{1}$, we denote constant maps on X with value 0 and 1, respectively. For any $A \in I^X$, A^c denotes the complement $\tilde{1} - A$. All other notations are standard notations of fuzzy set theory. An fuzzy point x_α in X is a fuzzy set x_α defined as follows

$$x_\alpha(y) = \begin{cases} \alpha & \text{if } y = x \\ 0 & \text{if } y \neq x. \end{cases}$$

A smooth topology [7] on X is a map $T : I^X \rightarrow I$ which satisfies the following properties:

1. $T(\tilde{0}) = T(\tilde{1}) = 1$.
2. $T(A_1 \cap A_2) \geq T(A_1) \land T(A_2)$.
3. $T(\cup A_i) \geq \land T(A_i)$.

The pair (X,T) is called a smooth topological space [7].

Let X be a nonempty set and $r \in (0,1] = I_0$. A fuzzy family $M : I^X \rightarrow I$ on X is said to have a fuzzy r-minimal structure [8] if the family $M_r = \{ A \in I^X \mid M(A) \geq r \}$ contains $\tilde{0}$ and $\tilde{1}$.

Then the (X,M) is called a fuzzy r-minimal space [8] (simply r-FMS). Every member of M_r is called a fuzzy r-minimal open set. A fuzzy set A is called a fuzzy r-minimal closed set if the complement of A (simply, A^c) is a fuzzy r-minimal open set. The fuzzy r-minimal closure of A, denoted by $mC(A,r)$, is defined as $mC(A,r) = \cap\{ B \in I^X : B^c \in M_r \text{ and } A \subseteq B \}$. The fuzzy r-minimal interior of A, denoted by $mI(A,r)$, is defined as $mI(A,r) = \cup\{ B \in I^X : B \in M_r \text{ and } B \subseteq A \}$.

Theorem 2.1 ([8]). Let (X,M) be an r-FMS and $A, B \in I^X$.

1. $mI(A,r) \subseteq A$ and if A is a fuzzy r-minimal open set, then $mI(A,r) = A$.
Fuzzy almost r-M β-continuous mappings

(2) $A \subseteq mC(A, r)$ and if A is a fuzzy r-minimal closed set, then $mC(A, r) = A$.

(3) If $A \subseteq B$, then $mI(A, r) \subseteq mI(B, r)$ and $mC(A, r) \subseteq mC(B, r)$.

(4) $mI(A, r) \cap mI(B, r) \supseteq mI(A \cap B, r)$ and $mC(A, r) \cup mC(B, r) \subseteq mC(A \cup B, r)$.

(5) $mI(mI(A, r), r) = mI(A, r)$ and $mC(mC(A, r), r) = mC(A, r)$.

(6) $\bar{I} - mC(A, r) = mI(\bar{I} - A, r)$ and $\bar{I} - mI(A, r) = mC(\bar{I} - A, r)$.

Let (X, \mathcal{M}) be an r-FMS and $A \in I^X$. Then a fuzzy set A is called a fuzzy r-minimal β-open set [6] in X if

$$A \subseteq mC(mI(mC(A, r), r), r).$$

A fuzzy set A is called a fuzzy r-minimal β-closed set if the complement of A is fuzzy r-minimal β-open.

Then any union of fuzzy r-minimal β-open sets is fuzzy r-minimal β-open and in general, the intersection of two fuzzy r-minimal β-open sets is not fuzzy r-minimal β-open (see [6]). For $A \in I^X$, $m\beta C(A, r)$ and $m\beta I(A, r)$, respectively, are defined as the following:

- $m\beta C(A, r) = \cap \{ F \in I^X : A \subseteq F, F \text{ is fuzzy } r\text{-minimal } \beta\text{-closed} \}$;
- $m\beta I(A, r) = \cup \{ U \in I^X : U \subseteq A, U \text{ is fuzzy } r\text{-minimal } \beta\text{-open} \}$.

Let (X, \mathcal{M}) and (Y, \mathcal{N}) be r-FMS’s. Then $f : X \rightarrow Y$ is said to be

- (1) fuzzy r-M continuous mapping [8] if for every $A \in \mathcal{N}_r$, $f^{-1}(A)$ is in \mathcal{M}_r.
- (2) fuzzy r-M β-continuous [6] if for each point x_α and each fuzzy r-minimal open set V containing $f(x_\alpha)$, there exists a fuzzy r-minimal β-open set U containing x_α such that $f(U) \subseteq V$.
- (3) fuzzy weakly r-M β-continuous [2] if for each fuzzy point x_α and each fuzzy r-minimal open set V containing $f(x_\alpha)$, there exists a fuzzy r-minimal β-open set U containing x_α such that $f(U) \subseteq mC(V, r)$.

Obviously every fuzzy r-M β-continuous mapping is fuzzy weakly r-M β-continuous but the converse need not be true (See [2]).

3. Fuzzy Almost r-M β-Continuous Mappings

Definition 3.1. Let $f : X \rightarrow Y$ be a mapping between r-FMS’s (X, \mathcal{M}_X) and (Y, \mathcal{M}_Y). Then f is said to be fuzzy almost r-M β-continuous if for fuzzy point x_α in X and each fuzzy r-minimal open set V containing $f(x_\alpha)$, there is a fuzzy r-minimal β-open set U containing x_α such that $f(U) \subseteq mI(mC(V, r), r)$.

Obviously, we have the following relationships:

fuzzy r-M continuity \Rightarrow fuzzy r-M β-continuity \Rightarrow fuzzy almost r-M β-continuity \Rightarrow fuzzy weakly r-M β-continuity

The converses are not always true as shown in the example below:
Example 3.2. Let $X = I = [0, 1]$, and let A, B and C be fuzzy sets defined as follows

$A(x) = \begin{cases} \frac{1}{4}x + \frac{1}{2}, & \text{if } 0 \leq x \leq \frac{1}{2}; \\ \frac{1}{4}x + \frac{3}{4}, & \text{if } \frac{1}{2} \leq x \leq 1; \end{cases}$

$B(x) = -\frac{1}{2}(x - 1), \quad \text{if } x \in I;$

$C(x) = \frac{1}{2}x, \quad \text{if } x \in I.$

(1) Let us consider two fuzzy $\frac{2}{3}$-minimal structures

$\mathcal{M}(\mu) = \begin{cases} \frac{2}{3}, & \text{if } \mu = \bar{0}, \bar{1}, A, \\ 0, & \text{otherwise.} \end{cases}$

$\mathcal{N}(\mu) = \begin{cases} \frac{2}{3}, & \text{if } \mu = \bar{0}, B, C, B \cup C \\ 0, & \text{otherwise.} \end{cases}$

Note that $A \subseteq mC(B, \frac{2}{3}), mC(C, \frac{2}{3})$ and $mC(B \cup C, \frac{2}{3})$. The identity mapping $\bar{f} : (X, \mathcal{M}) \to (X, \mathcal{N})$ is fuzzy weakly $\frac{2}{3}$-M β-continuous. Note that $mImC(B, \frac{2}{3}) = mImC(C, \frac{2}{3}) = mImC(B \cup C, \frac{2}{3}) = B \cup C$ and $B \cup C \subseteq A$.

So the identity mapping \bar{f} is not fuzzy almost $\frac{2}{3}$-M β-continuous.

(2) Let us consider two fuzzy $\frac{2}{3}$-minimal structures

$\mathcal{M}(\mu) = \begin{cases} \frac{2}{3}, & \text{if } \mu = \bar{0}, \bar{1}, B, \\ 0, & \text{otherwise.} \end{cases}$

$\mathcal{N}(\mu) = \begin{cases} \frac{2}{3}, & \text{if } \mu = \bar{0}, B, C, B \cup C \\ 0, & \text{otherwise.} \end{cases}$

Note that $B \subseteq mImC(B, \frac{2}{3}) = mImC(C, \frac{2}{3}) = mImC(B \cup C, \frac{2}{3}) = B \cup C$.

Obviously the identity mapping $\bar{f} : (X, \mathcal{M}) \to (X, \mathcal{N})$ is fuzzy almost $\frac{2}{3}$-M β-continuous but not fuzzy $\frac{2}{3}$-M β-continuous.

Let (X, \mathcal{M}) be an r-FMS and $A \in I^X$. Then in [6], we showed that:

(1) $m\beta I(A, r) \subseteq mC(mI(mC(m\beta I(A, r), r), r))$ \subseteq $mC(mI(mC(A, r), r), r)$.

(2) $m\beta I(A, r) = A \cap mC(mI(mC(A, r), r), r)$.

Theorem 3.3. Let $f : (X, \mathcal{M}) \to (Y, \mathcal{N})$ be a mapping on r-FMS’s (X, \mathcal{M}) and (Y, \mathcal{N}). Then the following statements are equivalent:

(1) f is fuzzy almost r-M β-continuous.

(2) $f^{-1}(V) \subseteq mC(mI(mC(f^{-1}(mI(mC(V, r), r)), r), r), r)$ for each fuzzy r-minimal open V in Y.
Proof. (1) ⇒ (2) Let \(V \) be a fuzzy \(r \)-minimal open set and \(x_\alpha \in f^{-1}(V) \). Then \(f(x_\alpha) \in V \), and from fuzzy weakly \(r-M \) \(\beta \)-continuity, there exists a fuzzy \(r \)-minimal \(\beta \)-open set \(U_{x_\alpha} \) containing \(x_\alpha \) such that \(f(U_{x_\alpha}) \subseteq mI(mC(V, r), r) \).

Thus \(x_\alpha \in U_{x_\alpha} \subseteq f^{-1}(mI(mC(V, r), r)) \). Since \(U_{x_\alpha} \) is a fuzzy \(r \)-minimal \(\beta \)-open set, \(x_\alpha \in U_{x_\alpha} \subseteq mC(mI(mC(U_{x_\alpha}, r), r), r) \subseteq mC(mI(mC(f^{-1}(mI(mC(V, r), r)), r), r), r) \).

Hence we have the following: \(f^{-1}(V) \subseteq mC(mI(mC(f^{-1}(mI(mC(V, r)), r)), r), r) \).

(2) ⇒ (1) Let \(x_\alpha \) be a fuzzy point in \(X \) and \(V \) a fuzzy \(r \)-minimal open set containing \(f(x_\alpha) \). Then by hypothesis, \(f(x_\alpha) \in f^{-1}(V) \subseteq f^{-1}(mI(mC(V, r), r)) \cap mC(mI(mC(f^{-1}(mI(mC(V, r)), r), r), r), r) \). Put \(U = f^{-1}(mI(mC(V, r))) \cap mC(mI(mC(f^{-1}(mI(mC(V, r)), r), r), r), r) \). Then \(U \) is a fuzzy \(r \)-minimal \(\beta \)-open set containing \(x_\alpha \) such that \(U \subseteq f^{-1}(mI(mC(V, r))) \). Hence \(f \) is fuzzy weakly \(r-M \) \(\beta \)-continuous.

(2) ⇔ (3) Obvious.

\(\Box \)

Lemma 3.4. ([6]) Let \((X, M)\) be an \(r \)-FMS and \(A \in I^X \). Then

(1) \(x_\alpha \in m\beta C(A, r) \) if and only if \(A \cap V \neq \emptyset \) for every \(r \)-minimal \(\beta \)-open set \(V \) containing \(x_\alpha \).

(2) \(x_\alpha \in m\beta I(A, r) \) if and only if there exists a fuzzy \(r \)-minimal \(\beta \)-open set \(G \) such that \(G \subseteq A \).

Theorem 3.5. Let \(f : X \rightarrow Y \) be a mapping between \(r \)-FMS’s \((X, M_X)\) and \((Y, M_Y)\). Then the following statements are equivalent:

(1) \(f \) is fuzzy almost \(r-M \) \(\beta \)-continuous.

(2) \(f^{-1}(B) \subseteq m\beta I(f^{-1}(mI(mC(B, r), r)), r) \) for each fuzzy \(r \)-minimal open set \(B \) of \(Y \).

(3) \(m\beta C(f^{-1}(mI(F, r)), r) \subseteq f^{-1}(F) \) for each fuzzy \(r \)-minimal closed set \(F \) in \(Y \).

Proof. (1) ⇒ (2) Let \(B \) be a fuzzy \(r \)-minimal open set in \(Y \). Then for each \(x_\alpha \in f^{-1}(V) \), there exists a fuzzy \(r \)-minimal \(\beta \)-open set \(U \) of \(x_\alpha \) such that \(f(U) \subseteq mI(mC(B, r), r) \).

It implies that \(x_\alpha \in m\beta I(f^{-1}(mI(mC(B, r)), r)), r) \). Consequently, \(f^{-1}(B) \subseteq m\beta I(f^{-1}(mI(mC(B, r)), r), r) \).

(2) ⇒ (1) Let \(x_\alpha \) be a fuzzy point in \(X \) and \(V \) a fuzzy \(r \)-minimal open set containing \(f(x_\alpha) \). By hypothesis, \(x_\alpha \in m\beta I(f^{-1}(mI(mC(V, r), r)), r) \).

From definition of the operator \(m\beta I \), there exists a fuzzy \(r \)-minimal \(\beta \)-open set \(U \) containing \(x_\alpha \) such that \(U \subseteq f^{-1}(mI(mC(V, r))) \). So, we have \(f(U) \subseteq f(f^{-1}(mI(mC(V, r))) \subseteq mI(mC(V, r), r) \). Hence \(f \) is fuzzy almost \(r-M \) \(\beta \)-continuous.

(2) ⇔ (3) Obvious.

\(\Box \)
Let X be a nonempty set and $\mathcal{M} : I^X \rightarrow I$ a fuzzy family on X. The fuzzy family \mathcal{M} is said to have the property (\mathcal{U}) \cite{9} if for $A_i \in \mathcal{M}$ ($i \in J$),

$$\mathcal{M}(\cup A_i) \geq \wedge \mathcal{M}(A_i).$$

Theorem 3.6. \cite{9} Let (X, \mathcal{M}) be an r-FMS with the property (\mathcal{U}). Then

(1) For $A \in I^X$, $mI(A, r) = A$ if and only if A is fuzzy r-minimal open.

(2) For $F \in I^X$, $mC(F, r) = F$ if and only if F is fuzzy r-minimal closed.

Theorem 3.7. Let $f : X \rightarrow Y$ be a mapping between r-FMS’s (X, \mathcal{M}_X) and (Y, \mathcal{M}_Y). If \mathcal{M}_Y have property (\mathcal{U}), then the following statements are equivalent:

(1) f is fuzzy almost r-M β-continuous.

(2) $f^{-1}(B) \subseteq m\beta I(f^{-1}(mI(mC(B, r), r)), r)$ for each fuzzy r-minimal open set B of Y.

(3) $f^{-1}(mI(B, r)) \subseteq m\beta I(f^{-1}(mI(mC(mI(B, r), r), r)), r)$ for each $B \in I^Y$.

(4) $m\beta C(f^{-1}(mI(mC(B, r), r)), r)) \subseteq f^{-1}(mC(B, r))$ for each $B \in I^Y$.

Proof. It follows from Theorem 3.5 and Theorem 3.6. \hfill \Box

Let (X, \mathcal{M}) be an r-FMS and $A \in I^X$. Then a fuzzy set A is said to be fuzzy r-minimal regular open (resp., fuzzy r-minimal regular closed) \cite{4} if $A = mI(mC(A, r), r)$ (resp., $A = mC(mI(A, r), r)$).

Theorem 3.8. Let $f : X \rightarrow Y$ be a mapping between r-FMS’s (X, \mathcal{M}_X) and (Y, \mathcal{M}_Y). If \mathcal{M}_Y has property (\mathcal{U}), then the following statements are equivalent:

(1) f is fuzzy almost r-M β-continuous.

(2) $f^{-1}(F) = m\beta C(f^{-1}(F), r)$ for any fuzzy r-minimal regular closed set F in Y.

(3) $f^{-1}(V) = m\beta I(f^{-1}(V), r)$ for any fuzzy r-minimal regular open set V in Y.

Proof. (1) \Rightarrow (2) Let F be any fuzzy r-minimal regular closed set of Y. Then from the property (\mathcal{U}), F is $F = mC(mI(F, r), r)$. So by Theorem 3.5, $m\beta C(f^{-1}(F), r) = m\beta C(f^{-1}(mC(mI(F, r), r)), r) \subseteq f^{-1}(F)$. This implies that $f^{-1}(F) = m\beta C(f^{-1}(F), r)$.

(2) \Rightarrow (3) Obvious.

(3) \Rightarrow (1) Let V be a fuzzy r-minimal open set containing $f(x_\alpha)$. Since $mI(mC(V, r), r)$ is fuzzy r-minimal regular open, by hypothesis, $f^{-1}(mI(mC(V, r), r)) = m\beta I(f^{-1}(mI(mC(V, r), r)), r)$.

So $f^{-1}(mI(mC(V, r), r))$ is a fuzzy r-minimal β-open set. Put $U = f^{-1}(mI(mC(V, r), r))$. Then U is a fuzzy r-minimal β-open set containing x_α satisfying $U \subseteq f^{-1}(mI(mC(V, r), r))$. Then this implies $f(U) \subseteq mI(mC(V, r), r)$. Hence f is fuzzy almost r-M β-continuous. \hfill \Box
Let \((X, \mathcal{M})\) be an \(r\)-FMS and \(A \in I^X\). Then a fuzzy set \(A\) is said to be
(1) fuzzy \(r\)-minimal semiopen [5] if \(A \subseteq mC(mI(A, r), r)\);
(2) fuzzy \(r\)-minimal preopen [3] if \(A \subseteq mI(mC(A, r), r)\);
(3) fuzzy \(r\)-minimal \(\beta\)-open [6] if \(A \subseteq mC(mI(mC(A, r), r), r)\).

A fuzzy set \(A\) is called a fuzzy \(r\)-minimal semiclosed (resp., fuzzy \(r\)-minimal preclosed, fuzzy \(r\)-minimal \(\beta\)-closed) set if the complement of \(A\) is a fuzzy \(r\)-minimal semiopen (resp., fuzzy \(r\)-minimal preopen, fuzzy \(r\)-minimal \(\beta\)-open) set.

Theorem 3.9. Let \(f : X \to Y\) be a mapping on \(r\)-FMS’s \((X, \mathcal{M}_X)\) and \((Y, \mathcal{M}_Y)\). If \(\mathcal{M}_Y\) has the property \((\mathcal{U})\), then the following statements are equivalent:

1. \(f\) is fuzzy almost \(r\)-\(M\) \(\beta\)-continuous.
2. \(m\beta C(f^{-1}(G), r) \subseteq f^{-1}(mC(G, r))\) for each fuzzy \(r\)-minimal \(\beta\)-open set \(G\) in \(Y\).
3. \(m\beta C(f^{-1}(G), r) \subseteq f^{-1}(mC(G, r))\) for each fuzzy \(r\)-minimal semi-open set \(G\) in \(Y\).

Proof. (1) \(\Rightarrow\) (2) Let \(G\) be a fuzzy \(r\)-minimal \(\beta\)-open set. Then
\(G \subseteq mC(mI(mC(G, r), r), r)\) and \(mC(G, r)\) is fuzzy \(r\)-minimal regular closed.
From Theorem 3.8, it follows:

\[m\beta C(f^{-1}(G), r) \subseteq m\beta C(f^{-1}(mC(G, r)), r) = f^{-1}(mC(G, r)). \]

(2) \(\Rightarrow\) (3) Since every fuzzy \(r\)-minimal semiopen set is fuzzy \(r\)-minimal \(\beta\)-open, it is obvious.

(3) \(\Rightarrow\) (1) Let \(F\) be a fuzzy \(r\)-minimal regular closed set. Then \(F\) is also fuzzy \(r\)-minimal semiopen, and from hypothesis, \(m\beta C(f^{-1}(F), r) \subseteq f^{-1}(mC(F, r)) = f^{-1}(F)\). From Theorem 3.8, \(f\) is fuzzy almost \(r\)-\(M\) \(\beta\)-continuous. \(\square\)

Theorem 3.10. Let \(f : X \to Y\) be a mapping on \(r\)-FMS’s \((X, \mathcal{M}_X)\) and \((Y, \mathcal{M}_Y)\). If \(\mathcal{M}_Y\) has the property \((\mathcal{U})\) then \(f\) is fuzzy almost \(r\)-\(M\) \(\beta\)-continuous if and only if \(m\beta C(f^{-1}(mC(mI(mC(G, r), r), r)), r) \subseteq f^{-1}(mC(G, r))\) for each fuzzy \(r\)-minimal preopen set \(G\) in \(Y\).

Proof. Let \(f\) be fuzzy almost \(r\)-\(M\) \(\beta\)-continuous and \(G\) a fuzzy \(r\)-minimal pre-open set in \(Y\). Then obviously, we have \(mC(G, r) = mC(mI(mC(G, r), r), r)\) and so \(mC(G, r)\) is fuzzy \(r\)-minimal regular open. From Theorem 3.8, it follows

\[f^{-1}(mC(G, r)) = m\beta C(f^{-1}(mC(G, r)), r) = mC\beta(f^{-1}(mC(mI(mC(G, r), r), r)), r). \]

So we have:
\[m\beta C(f^{-1}(mC(mI(mC(G, r), r), r)), r) \subseteq f^{-1}(mC(G, r)). \]

For the converse, let \(A\) be a fuzzy \(r\)-minimal regular closed set in \(Y\). Then clearly, \(mI(A, r)\) is also fuzzy \(r\)-minimal preopen. From hypothesis and \(A = \)
$mC(mI(A, r), r)$, it follows

$$f^{-1}(A) = f^{-1}(mC(mI(A, r), r))$$

$$\geq m\beta C(f^{-1}(mC(mI(mC(mI(A, r), r)), r)), r)$$

$$= m\beta C(f^{-1}(mC(mI(A, r)), r), r)$$

$$= m\beta C(f^{-1}(A), r).$$

Hence, by Theorem 3.8, it implies that f is fuzzy almost r-M β-continuous. \hfill \Box

Theorem 3.11. Let $f : X \to Y$ be a mapping on r-FMS’s (X, \mathcal{M}_X) and (Y, \mathcal{M}_Y). If \mathcal{M}_Y has the property (U), then f is fuzzy almost r-M β-continuous if and only if $f^{-1}(G) \subseteq m\beta I(f^{-1}(mI(mI(G, r)), r), r)$ for each fuzzy r-M preopen set G in Y.

Proof. Let f be fuzzy almost r-M continuous and G a fuzzy r-minimal preopen set in Y. Then obviously, $mI(mI(G, r), r)$ is also fuzzy r-minimal regular open. From Theorem 3.8, $f^{-1}(G) \subseteq f^{-1}(mI(mI(G, r), r)) = m\beta I(f^{-1}(mI(mI(G, r), r)), r)$. So $f^{-1}(G) \subseteq m\beta I(f^{-1}(mI(mI(G, r), r)), r)$.

For the converse, let U be fuzzy r-minimal regular open. Then U is fuzzy r-minimal preopen. From hypothesis and $A = mI(mC(A, r), r)$, $f^{-1}(U) \subseteq m\beta I(f^{-1}(mI(mI(U, r), r)), r) = m\beta I(f^{-1}(U), r)$. This implies $f^{-1}(U) = m\beta I(f^{-1}(U), r)$. So by Theorem 3.8, f is fuzzy almost r-M β-continuous. \hfill \Box

4. Acknowledgements

This study was supported by 2014 Research Grant from Kangwon National University.

References

Received: March 11, 2016; Published: April 27, 2016