Subjective Probability Theory on Ordered Normed Linear Spaces

Christos E. Kountzakis

Department of Mathematics
University of the Aegean
Karlovassi, Samos 83200 Greece

Copyright © 2016 Christos E. Kountzakis. This article is distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In this paper we establish the first steps of a subjective distribution theory on ordered normed linear spaces, relying on the geometric elements of the partial ordering. The existence either of order-units (interior-points), or quasi-interior points, either of a bounded base, or the fact that the cone is well-based, implies the definition of the analog of all the well-known probability distributions in these spaces.

Mathematics Subject Classification: 60B05; 46B40; 91B08

Keywords: basis of a Banach space; base of a cone; order-unit; quasi-interior point

1 Introduction

In mathematical economics, the problem of defining a probability measure, which is compatible with a likelihood function \(v \) which is assigned on some family of sets \(\mathcal{E} \), being a sub-class of some \(\sigma \)-algebra \(\mathcal{A} \) is a typical problem in Decision Making, see for example the papers [2] and [10]. The Ellsberg paradox in Decision Making, is exactly related to this topic, [3]. The basic idea is that people always choose a known probability of winning over an unknown
probability of winning even if the known probability is low and the unknown probability could be a guarantee of winning. Due to this paradox, there is a need to define subjective probability measures on state -spaces, by using "known" likelihoods. The "known" probability may be one of the well-known cumulative probability distributions. \(\mathcal{E} \) contains both the set \(\Omega \) of the states of the world and the empty set \(\emptyset \). These appropriate likelihood functions are the capacities. A capacity is a map \(v : \mathcal{E} \rightarrow [0, 1] \), such that \(v(\emptyset) = 0, v(\Omega) = 1 \), while if \(A \subseteq B, A, B \in \mathcal{E}, v(A) \leq v(B) \). More specifically, elements of a partially ordered linear space \(E \) may be considered to be the set of states of the world \(\Omega \), if the function space \(E \subseteq E \) is a path space of some class of stochastic processes. Then, if there is a capacity \(v \) being defined on a class \(E \subseteq \mathcal{E} \subseteq E \) of paths, the question of the definition of a probability measure on the measurable space \((E, \sigma(\mathcal{E})) \) arises.

In the present paper we show that if the \(\sigma \)-algebra is the one of the Borel sets \(\mathcal{B}_E \) generated by the class of open sets with respect to the norm topology of some partially ordered normed linear space \(E \), there is a variety of capacities which may be ordered on appropriate classes \(E \subseteq \mathcal{B}_E \), according to the geometry of the partial ordering of the space \(E \). These capacities may be extended to a Borel probability measure, while the monotonicity properties of them are compatible to any of the usual, real-valued, cumulative distribution functions. We recall that by the notation \([h, g) \subseteq E \), we denote the set \(\{x \in E | g \geq x \geq h, g \neq x\} \), if \(E \) is an ordered linear space and its partial ordering \(\geq \) is defined by a cone \(E_+ \). We have the following relevant

Theorem 1. If \(E \) is a partially ordered normed space, and

(i) \(\mathcal{E} = \{k(B - B), k \in \mathbb{R}_+\} \), where \(B \) is a closed, bounded base of \(E_+ \)

(ii) \(\mathcal{E} = \{k[-e, e], k \in \mathbb{R}_+\} \), where \(e \in E_+ \) is an order-unit of \(E_+ \)

(iii) \(\mathcal{E} = \{[f(s)u, f(t)u] \}, \) where \(u \in E_+ \) is a quasi-interior point of \(E \) \(f(t) > f(s), t, s \in E \) and \(f \) is a strictly positive functional of \(E \),

then a capacity \(v_F \) may be defined on \(\mathcal{E} \), compatible with some cumulative distribution function \(F \).

Proof:

(i) If \(k_1 \leq k_2 \), then \(F(k_1) \leq F(k_2) \), which implies that \(k_1(B - B) \subseteq k_2(B - B) \) and the map \(v_F(k(B - B)) = F(k) \), is a capacity.

(ii) If \(k_1 \leq k_2 \), then \(F(k_1) \leq F(k_2) \), which implies that \(k_1[-e, e] \subseteq k_2[-e, e] \) and the map \(v_F(k[-e, e]) = F(k) \), is a capacity.
(iii) If \(f(t_2) \geq f(t_1), f(s_1) < f(s_2) \), then \([f(t_1)u, f(s_1)u] \subseteq [f(t_2)u, f(s_2)u]\) and the map \(\nu_F([f(s)u, f(t)u]) = F(f(t)) - F(f(s)) \) is a capacity, because \(F(f(s_1)) - F(f(t_1)) \leq F(f(s_2)) - F(f(t_2)) \), under the above inclusion.

The above Theorem and the rest of the paper is an extension of the partial probabilistic information model by Lehrer [7], mentioned in [10]. The assumption that \(\Omega \) is a finite set is removed in the present paper, an assumption which is present in [7] and [2]. If for example \(\Omega = E \) is a path space of some stochastic process, then \(\Omega \) is an infinite-dimensional space, as we mentioned above.

2 Partially ordered linear spaces and probability distributions

Consider some partially ordered linear space \(E \), whose positive cone \(E_+ \) has a bounded base \(B \), such that \(0 \notin \overline{B} \) and \(E_+ \) gives an open decomposition, according to [6, Th.3.8.11]. For the notion of open decomposition, see [6, Ch.3.3]-for each neighborhood \(U \) of zero, the set \(K \cap U - K \cap U \), where \(K \) is the ordering cone of the space, is a neighborhood of zero. A relative Proposition is [6, Pr.3.3.1], which denotes that a cone with non-empty interior gives an open decomposition. As it is well-known by [5, Th.4], the property of well-based cone is equivalent to the fact that 0 is a point of continuity of \(C \), both with the existence of quasi-interior points in \(E^\ast \). Let us denote by \(C \) the set \(\cup_{t \in [0,1]} t \cdot B \). Then, \(V = C - C \) is a bounded, convex neighborhood of 0. We may also consider a cumulative distribution function \(F : \mathbb{R}_+ \rightarrow [0,1] \).

Theorem 2. The map \(\mu_F(k(B - B)) = F(k), k \in \mathbb{R}_+ \), induces a Borel probability measure on \(E \).

Proof: In this case, \(B - B \) is a closed, convex neighborhood of zero, where \(B \) is the bounded base for which \(0 \notin \overline{B} \). We may denote again by \(B \) the bounded base defined by a functional \(f \in E^\ast \) in this case. Hence, since the Borel \(\sigma \)-algebra \(\mathcal{B}_E \) for the norm topology contains the class of the sets \(K = \{k(B - B), k \in \mathbb{R}_+\}, \sigma(K) = \mathcal{B}_E \).

Example 3. A Bishop-Phelps cone is a cone in some normed linear space \(E \), such that \(K(f, a) = \{ x \in E | f(x) \geq a \|x\| \} \), where \(f \in E^\ast \) with \(\|f\| = 1 \) and \(a \in (0,1) \). According to what is mentioned in [6, p.127] has interior points, hence \(E_+ \) gives an open decomposition.

We recall some definitions regarding Schauder bases of Banach spaces - see in [9].

Definition 4. If a Banach space has a basis \(x_n, n = 1, 2, ... \), this basis is:
(i) of type P^*, if the coefficient functionals $f_n, n = 1, 2, \ldots$ of $x_n, n = 1, 2, \ldots$ are a basis of type P in E^*.

(ii) of type ℓ_+, if there is some $d > 0$, such that $\| \sum_{i=1}^{n} a_i x_i \| \geq d \cdot \text{sum}_{i=1}^{n} a_i$.

(iii) of type P, if $x_n, n = 1, 2, \ldots$ is bounded and $\sup_{n \geq 1} \| \sum_{i=1}^{n} x_i \| < \infty$.

(iv) of type $(\ell_+)^*$, if the coefficient functionals $f_n, n = 1, 2, \ldots$ of $x_n, n = 1, 2, \ldots$ are a basis of type ℓ_+^* in E^*.

(v) of type $a\ell_+$, if there exists a sequence of scalars $\varepsilon_n, n = 1, 2, \ldots$ with $|\varepsilon_n| = 1$, such that the basis $\varepsilon_n x_n, n = 1, 2, \ldots$ of E is of type ℓ_+.

As a consequence of the last Theorem, we take the following Corollaries, related to the above Definition.

Corollary 5. The map $\mu_F(k(B - B)) = F(k), k \in \mathbb{R}_+$, induces a Borel probability measure on any Banach space having a basis of type P^*.

Proof: According to [9, Th.10.1], the existence of a basis of type P^* in E, is equivalent to the existence of a basis of type ℓ_+. If a basis is of type ℓ_+, then according to [9, Th.10.2] the cone $K = \{ \sum_{i=1}^{\infty} a_i x_i | a_i \geq 0, i = 1, 2, \ldots, \sum_{i=1}^{\infty} a_i < \infty \}$ has a bounded base $B = B_f$, defined by a functional $f \in E^*$.

Corollary 6. The map $\mu_F(k(B - B)) = F(k), k \in \mathbb{R}_+$, induces a Borel probability measure on any Banach space having a basis of type $a\ell_+$.

Proof: According to [9, Th.10.3], the existence of a basis of type $a\ell_+$ in E, is equivalent to the existence of a basis of type ℓ_+. If a basis is of type ℓ_+, then according to [9, Th.10.2] the cone $K = \{ \sum_{i=1}^{\infty} a_i x_i | a_i \geq 0, i = 1, 2, \ldots, \sum_{i=1}^{\infty} a_i < \infty \}$ has a bounded base $B = B_f$, defined by a functional $f \in E^*$.

Corollary 7. The map $\mu_F(k(B - B)) = F(k), k \in \mathbb{R}_+$, induces a Borel probability measure on any Banach space having a basis of type ℓ_+.

Proof: The same proof with the one above.

Example 8. The usual basis $e_n, n = 1, 2, \ldots$ of the Banach space ℓ^1 is a basis of type ℓ_+. A bounded base is defined by $1 = (1, 1, \ldots)$.

Corollary 9. The map $\mu_F(k(B - B)) = F(k), k \in \mathbb{R}_+$, induces a Borel probability measure on the Banach space E^* if the coefficient functionals of this basis in E^* are a basic sequence of type P.

Proof: If this is the case, E^* has a basic sequence which is equivalent to a basic sequence of type ℓ_+ and there is a bounded base B in E^*, defined by a functional in E^{**}, such that the map $\mu_F(k(B - B)) = F(k), k \in \mathbb{R}_+$ induces a Borel probability measure on the Banach space E^*.

Example 10. A basis of type P in $L^1[0,1]$ exists, see [4, p.522-23].

Corollary 11. The map $\mu_F(k(B-B)) = F(k), k \in \mathbb{R}_+$, induces a Borel probability measure on the Banach space E if the coefficient functionals of this basis in E^* are a basis of type $(\ell_+)^*$.

Proof: According to [9, Def.10.1], any basis of type $(\ell_+)^*$ is a basic sequence of type ℓ_+ in E^*, hence the previous proof may be repeated.

Corollary 12. The map $\mu_F(k(B-B)) = F(k), k \in \mathbb{R}_+$, where B is a bounded base of E_+, induces a Borel probability measure on any AL-space E.

Proof: Every AL-space is lattice -isomorphic to some L^1 space, according to the Theorem of Kakutani. Hence, we may identify E with some L^1 space. Any functional $f \in \text{int}(L_1^\infty)$ defines a bounded base on $L_1^\infty = E_+$. The map $\mu_F(k(B-B)) = F(k), k \in \mathbb{R}_+$, induces a Borel probability measure on the Banach space E.

Corollary 13. The map $\mu_F(k(B-B)) = F(k), k \in \mathbb{R}_+$, induces a Borel probability measure on any normed space E, ordered by a Bishop-Phelps cone.

Proof: In this case, $B - B$ is a closed, convex neighborhood of zero, where $B = B_f = \{x \in K(f,a) | f(x) = 1\}$. Hence, since the Borel σ-algebra B_E for the norm topology contains the class of the sets $K = \{k[-e,e], k \in \mathbb{R}_+\}$, $\sigma(K) = B_E$.

An analogous definition of probability measures is taken, in case where E_+ has an order -unit e. In this case, $[-e,e]$ is a bounded, convex neighborhood of 0.

Theorem 14. The map $\mu_F(k[-e,e]) = F(k), k \in \mathbb{R}_+$, induces a Borel probability measure on E.

Proof: In this case, $[-e,e]$ is a closed, convex neighborhood of zero. Hence, since the Borel σ-algebra B_E for the norm topology contains the class of the sets $K = \{k[-e,e], k \in \mathbb{R}_+\}$, $\sigma(K) = B_E$.

Example 15. Pick $e \in \ell_\infty$, where ℓ_∞ is endowed with the $\|\cdot\|_\infty$- topology, and $e_n \geq r \geq 0$. Then, e is an order-unit of ℓ_∞.

Corollary 16. The map $\mu_F(k[-e,e]) = F(k), k \in \mathbb{R}_+$, induces a Borel probability measure on any AM-space.

Example 17. Pick $e = 1 \in L^\infty_+(\Omega, \mathcal{F}, \mu)$, where $L^\infty(\Omega, \mathcal{F}, \mu)$ over a probability space $(\Omega, \mathcal{F}, \mu)$ is an AM-space, endowed with the $\|\cdot\|_\infty$-norm, while $e = 1$ is an order-unit.
Corollary 18. The map $\mu_F(k[-e,e]) = F(k), k \in \mathbb{R}_+$, induces a Borel probability measure on any Banach space E ordered by a Bishop-Phelps cone defined as above, if e is an interior point of it.

Proof: If we consider some $\epsilon > 0$, such that $a(1 + 2\epsilon) < 1$, where a is the one which appears in the definition of the Bishop-Phelps cone $K(f,a)$, there exists some $x_0 \in E$ with $\|x_0\| = 1$ and $f(x) > a(1 + 2\epsilon)$. For all the elements of the closed ball $\|y\| \leq a\epsilon$, we have $\|x_0 + y\| \leq 1 + \epsilon$, and $f(x + y) \geq a(1 + \epsilon)$, hence $x_0 + y \in K(f,a)$, and we put $x_0 = e$.

Another definition of probability measures is possible, if F is defined all over the set of real numbers and E_+ is a closed cone, which has an order -unit u. Notice that by (su,tu), we denote the set $\{x \in E|su \leq x \leq tu, x \neq su\}$.

Theorem 19. The map $\mu_F((se,te)) = F(t) - F(s), t, s \in \mathbb{R}$, induces a Borel probability measure on E.

Proof: Since the Borel σ-algebra \mathcal{B}_E for the norm topology contains the class of the sets $K = \{(-su,tu), s, t \in \mathbb{R}\}$, $\sigma(K) = \mathcal{B}_E$.

Corollary 20. The map $\mu_F((se,te)) = F(t) - F(s), t, s \in \mathbb{R}$, induces a Borel probability measure on any AM-space.

Corollary 21. The map $\mu_F((se,te)) = F(t) - F(s), t, s \in \mathbb{R}$, induces a Borel probability measure on any Banach space ordered by a Bishop-Phelps cone defined as above, if e is an interior point of it.

Definition 22. A basis $x_n, n = 1, 2, \ldots$ in a Banach space is a Hilbertian basis if $\|\sum_{i=1}^{n}a_ix_i\| \leq c\sqrt{\sum_{i=1}^{n}|a_i|^2}$, where $c > 0$.

Lemma 23. If a Banach space E has a Hilbertian basis, then a Bishop-Phelps cone may be defined on E.

Proof: If $c > 1$ and f is the functional such that $f_n = f(x_n) = a_n$, while it is well known that in this case $\sum_{i=1}^{\infty}|a_i|^2 = |f(x)|^2$, if also $\|f\| = 1$, then $K(f,\frac{1}{c})$ is a Bishop-Phelps cone.

Example 24. According to the [9, Rem.11.1], every Banach space with a basis, has a Hilbertian basis. Indeed, if $x_n, n = 1, 2, \ldots$ is a normalized basis of E, then $\{\frac{1}{n}x_n\}$ is a Hilbertian basis of E.

Theorem 25. If a Hilbertian base $x_n, n = 1, 2, \ldots$ defines a Bishop-Phelps cone K on a Banach space E, a Borel probability measure may be defined by a continuous linear functional $f \in E^*$ such that $f_n = a_n = f(x_n)$ and a cumulative distribution function $F : \mathbb{R}_+ \to [0,1]$, as follows: If B is the base that the functional f defines on the cone K, then $\mu_F(k(B - B)) = F(k), k \in \mathbb{R}_+$, induces a Borel probability measure on E.
Proof: The base is \(B = B_f = \{ x \in K(f, \frac{1}{c}) | f(x) = 1 \} \) and the map
\(\mu_F(k(B-B)) = F(k), k \in \mathbb{R}_+ \), induces a Borel probability measure on \(E \).

Theorem 26. If a Hilbertian base \(x_n, n = 1, 2, \ldots \) defines a Bishop-Phelps cone \(K(f, \frac{1}{c}) \) on a Banach space \(E \), a Borel probability measure may be defined by a continuous linear functional \(f \in E^* \) such that \(f_n = a_n = f(x_n) \) and a cumulative distribution function \(F : \mathbb{R}_+ \to [0,1] \), as follows: If \(e \) is an interior point of the cone \(K \), then \(\mu_F(k[-e,e]) = F(k), k \in \mathbb{R}_+ \) induces a Borel probability measure on \(E \).

Proof: If we consider some \(\epsilon > 0 \), such that \(a(1 + 2\epsilon) < 1 \), where \(a \) is the one which appears in the definition of the Bishop-Phelps cone \(K(f,a) \), where \(a = \frac{1}{c} \). there exists some \(x_0 \in E \) with \(\|x_0\| = 1 \) and \(f(x) > a(1 + 2\epsilon) \). For all the elements of the closed ball \(\|y\| \leq \epsilon \), we have \(\|x_0 + y\| \leq 1 + \epsilon \), and \(f(x + y) \geq a(1 + \epsilon) \), hence \(x_0 + y \in K(f,a) \), and we put \(x_0 = e \).

Theorem 27. If a Hilbertian base \(x_n, n = 1, 2, \ldots \) defines a Bishop-Phelps cone \(K(f, \frac{1}{c}) \) on a Banach space \(E \), a Borel probability measure may be defined by a continuous linear functional \(f \in E^* \) such that \(f_n = a_n = f(x_n) \) and a cumulative distribution function \(F : \mathbb{R}_+ \to [0,1] \), as follows: If \(e \) is an interior point of the cone \(K(f, \frac{1}{c}) \), then \(\mu_F((se,te]) = F(t) - F(s) \) induces a Borel probability measure on \(E \).

Proof: Since the Borel \(\sigma \)-algebra \(B_E \) for the norm topology contains the class of the sets \(K = \{ (-se, te], s, t \in \mathbb{R} \} \), \(\sigma(K) = B_E \). By using the previous Example we deduce the following

Theorem 28. If a basis \(x_n, n = 1, 2, \ldots \) exists in a Banach space \(E \), a Borel probability measure may be defined by a continuous linear functional \(f \in E^* \) such that \(f_n = a_n = f(x_n) \) and a cumulative distribution function \(F : \mathbb{R}_+ \to [0,1] \), as follows: If \(B \) is the base that the functional \(f \) defines on the corresponding Hilbertian basis Bishop-Phelps cone \(K \), then \(\mu_F(k(B-B)) = F(k), k \in \mathbb{R}_+, \) induces a Borel probability measure on \(E \).

Proof: As we mentioned above, the corresponding base is \(B = B_f = \{ x \in K(f, \frac{1}{c}) | f(x) = 1 \} \) and the map \(\mu_F(k(B-B)) = F(k), k \in \mathbb{R}_+, \) induces a Borel probability measure on \(E \).

Theorem 29. If a basis \(x_n, n = 1, 2, \ldots \) exists in a Banach space \(E \), a Borel probability measure may be defined by a continuous linear functional \(f \in E^* \) such that \(f_n = a_n = f(x_n) \) and a cumulative distribution function \(F : \mathbb{R}_+ \to [0,1] \), as follows: If \(e \) is an interior point of the corresponding Hilbertian basis Bishop-Phelps cone \(K \), then \(\mu_F(k[-e,e]) = F(k), k \in \mathbb{R}_+ \) induces a Borel probability measure on \(E \).
Proof: Since the Borel σ-algebra B_E for the norm topology contains the class of the sets $K = \{k[-e,e], k \in \mathbb{R}_+\}$, $\sigma(K) = B_E$.

Theorem 30. If a basis $x_n, n = 1, 2, \ldots$ exists in a Banach space E, a Borel probability measure may be defined by a continuous linear functional $f \in E^*$ such that $f_n = a_n = f(x_n)$ and a cumulative distribution function $F : \mathbb{R}_+ \to [0,1]$, as follows: If e is an interior point of the corresponding Hilbertian basis Bishop-Phelps cone K, then $\mu_F((se,te]) = F(t) - F(s)$ induces a Borel probability measure on E.

Proof: Since the Borel σ-algebra B_E for the norm topology contains the class of the sets $K = \{(-su, tu], s, t \in \mathbb{R}\}$, $\sigma(K) = B_E$.

Definition 31. An element $u \in E_+$ is called quasi-interior point, if the solid subspace $\cup_{n=1}^{\infty}[-nu, nu]$ is norm-dense in E.

The following result extends the previous ones for cones with quasi-interior points.

Theorem 32. Let E be an ordered normed linear space, whose positive cone E_+ has quasi-interior points, while u is such a point. Then a probability measure may be defined on E, with respect to a quasi-interior point $u \in E_+$ and a cumulative distribution function $F : \mathbb{R} \to [0,1]$, by using the following equality:

$$\mu_F((su, tu]) = F(t) - F(s).$$

Proof: Since the Borel σ-algebra B_E for the norm topology contains the class of the sets $K = \{(-su, tu], s, t \in \mathbb{R}\}$, $\sigma(K) = B_E$.

The following Proposition is well-known, as a consequence of the Kantorovich Theorem:

Let E be a Banach lattice, while u is a quasi-interior point of E_+. Then $f : E_+ \to \mathbb{R}_+$ such that

$$f(x) = \inf\{y \in \mathbb{R} | x \leq y \cdot u\}$$

is additive, hence it is extended to a functional $f \in E^*$.

As a consequence of the above, we take the following:

Theorem 33. Let E be a Banach lattice, being a subspace of $L^0(\Omega, \mathcal{F}, \mu)$, where $(\Omega, \mathcal{F}, \mu)$ is a probability space. Then, a probability measure on E, may be defined as follows, if E_+ has quasi-interior points:

$$\mu_F((su, tu]) = F(f(t)) - F(f(s)).$$
Proof: Since the Borel σ-algebra \mathcal{B}_E for the norm topology contains the class of the sets $K = \{(-su,tu), s, t \in \mathbb{R}\}$, $\sigma(K) = \mathcal{B}_E$.

Below, we mention some examples of quasi-interior points of the corresponding cones.

Example 34. (i) Any $r \in L^1_+[0,1]$, such that $r(t) > 0$, λ-a.e. is a norm quasi-interior point, but not an interior point of $L^1_+[0,1]$.

(ii) Any $r \in \ell^p, p \geq 1$, such that $r_n > 0, n \in \mathbb{N}$ is a norm quasi-interior point, but not an interior point of ℓ^p.

Acknowledgements. Special thanks to Professor I.A. Polyrakis for some useful suggestions.

References

http://dx.doi.org/10.1016/j.jmateco.2010.09.007

http://dx.doi.org/10.2307/1884324

http://dx.doi.org/10.1090/s0002-9939-1969-0250029-4

http://dx.doi.org/10.1016/j.jmaa.2005.06.093

http://dx.doi.org/10.1287/moor.1090.0402

Received: February 27, 2016; Published: May 31, 2016