Movable Locating-Domination in Graphs

Stephanie A. Omega1 and Sergio R. Canoy, Jr.

Department of Mathematics and Statistics
Mindanao State University-Iligan Institute of Technology
Tibanga Highway, Iligan City, Philippines

Copyright © 2015 Stephanie A. Omega and Sergio R. Canoy, Jr. This article is distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In this paper, the 1-movable locating-dominating sets in the join, corona and composition of graphs are characterized. Also, the 1-movable \(L \)-domination numbers of these graphs are determined.

Mathematics Subject Classification: 05C69

Keywords: domination, locating-domination, 1-movable domination, 1-movable locating-domination, join, corona, composition

1 Introduction

Let \(G = (V(G), E(G)) \) be a simple connected graph and \(u \in V(G) \). The neighborhood of \(u \) is the set \(N_G(u) = N(u) = \{ v \in V(G) : uv \in E(G) \} \). The degree of a vertex \(u \in V(G) \) is equal to the cardinality of \(N_G(u) \) and the maximum degree of \(G \) is \(\Delta(G) = \max \{ \text{deg}_G(u) : u \in V(G) \} \). If \(X \subseteq V(G) \), then the open neighborhood of \(X \) is the set \(N_G(X) = N(X) = \bigcup_{v \in X} N_G(v) \). The closed neighborhood of \(X \) is \(N_G[X] = N[X] = X \cup N(X) \).

A connected graph \(G \) of order \(n \geq 3 \) is point distinguishing if for any two distinct vertices \(u \) and \(v \) of \(G \), \(N_G[u] \neq N_G[v] \). It is totally point determining if

1This research is funded by the Department of Science and Technology-Accelerated Science and Technology Human Resource Development Program (DOST-ASTHRDP), Philippines.
for any two distinct vertices \(u \) and \(v \) of \(G \), \(N_G(u) \neq N_G(v) \) and \(N_G[u] \neq N_G[v] \).

A subset \(S \) of \(V(G) \) is a dominating set of \(G \) if for every \(v \in (V(G) \setminus S) \), there exists \(w \in S \) such that \(vw \in E(G) \). The domination number \(\gamma(G) \) of \(G \) is the smallest cardinality of a dominating set of \(G \).

Let \(G \) be a connected graph. A set \(S \subseteq V(G) \) is a locating set of \(G \) if for every two vertices \(u \) and \(v \) of \(V(G) \setminus S \), \(N_G(u) \cap S \neq N_G(v) \cap S \). The locating number of \(G \) denoted by \(ln(G) \) is the smallest cardinality of locating set of \(G \). A set \(S \subseteq V(G) \) is a strictly locating set of \(G \) if it is a locating set and \(N_G(u) \cap S \neq S \) for all \(u \in V(G) \setminus S \). The strictly locating number of \(G \), denoted by \(sln(G) \), is the smallest cardinality of a strictly locating set of \(G \). A locating (resp. strictly locating) set \(S \subseteq V(G) \) which is dominating is called a locating-dominating (resp. strictly locating-dominating) set or simply \(LD \)-dominating (resp. \(SL \)-dominating) set in a graph \(G \). The minimum cardinality of a locating-dominating (resp. strictly locating-dominating) set of \(G \), denoted by \(\gamma_{LD}(G) \) (resp. \(\gamma_{SL}(G) \)), is called the \(LD \)-domination (resp. \(SL \)-domination) number of \(G \).

Let \(G \) be a connected graph. A non-empty \(S \subseteq V(G) \) is a 1-movable dominating set of \(G \) if \(S \) is a dominating set of \(G \) and for every \(v \in S \), either \(S \setminus \{v\} \) is a dominating set of \(G \) or there exists a vertex \(u \in (V(G) \setminus S) \cap N_G(v) \) such that \((S \setminus \{v\}) \cup \{u\} \) is a dominating set of \(G \). The 1-movable domination number of a graph \(G \), denoted by \(\gamma^1_m(G) \) is the smallest cardinality of a 1-movable dominating set of \(G \).

Let \(G \) be a connected graph. A locating (resp. strictly locating) subset \(S \) of \(V(G) \) is a 1-movable locating (resp. 1-movable strictly locating) set of \(G \) if for every \(u \in S \), either \(S \setminus \{u\} \) is a locating (resp. strictly locating) set of \(G \), or there exists a vertex \(v \in N_G(u) \setminus S \) such that \((S \setminus \{u\}) \cup \{v\} \) is a locating (resp. strictly locating) set of \(G \). The minimum cardinality of a 1-movable locating (resp. 1-movable strictly locating) set of \(G \), denoted by \(mln(G) \) (resp. \(msln(G) \)) is the 1-movable locating number (resp. 1-movable strictly locating number) of \(G \).

Let \(G \) be a connected graph. A locating-dominating (resp. strictly locating-dominating) set \(S \) of \(G \) is a 1-movable locating-dominating (resp. 1-movable strictly locating-dominating) set of \(G \) if for every \(v \in S \), either \(S \setminus \{v\} \) is a locating-dominating (resp. strictly locating-dominating) set of \(G \) or there exists a vertex \(u \in (V(G) \setminus S) \cap N_G(v) \) such that \((S \setminus \{v\}) \cup \{u\} \) is a locating-dominating (resp. strictly locating-dominating) set of \(G \). The minimum cardinality of a 1-movable locating-dominating (resp. 1-movable strictly locating-dominating) set of \(G \), denoted by \(\gamma^1_{mLD}(G) \) (resp. \(\gamma^1_{mSL}(G) \)) is the 1-movable \(LD \)-domination (resp. 1-movable \(SL \)-domination number) of \(G \).
2 Results

Remark 2.1 Let G be a connected graph. Then $\gamma(G) \leq \gamma_{mL}^1(G)$ and $\gamma_L(G) \leq \gamma_{mL}^1(G)$.

Remark 2.2 Let G be a connected non-trivial graph. Then $1 \leq \gamma_{mL}^1(G) \leq n$.

Remark 2.3 For $n \geq 2$, $\gamma_{mL}^1(K_n) = n - 1$.

Lemma 2.4 Let G be a connected graph of order $n \geq 2$. Then $\gamma_{mL}^1(G) = 1$ if and only if $G \cong P_2$.

Proof: Suppose that $\gamma_{mL}^1(G) = 1$, say $S = \{v\}$ is a minimum 1-movable locating-dominating set of G. Clearly, $|V(G)| \geq 2$. Suppose that $|V(G)| > 2$. Since G is connected and S is a dominating set of G, it follows that $wv \in E(G)$ for all $w \in V(G) \setminus \{v\}$. Since $|V(G)| > 2$, there exist x and y with $x \neq y$ such that $N_G(x) \cap S = S = N_G(y) \cap S$. Hence, S is not a locating-dominating set of G, contrary to the assumption. Therefore, $|V(G)| = 2$. Since G is connected, $G \cong P_2$.

The converse is easy. □

Theorem 2.5 Let G be a connected graph. If $\gamma_{mL}^1(G) = 2$, then $3 \leq |V(G)| \leq 5$.

Proof: By Lemma 2.4, $|V(G)| \geq 3$. Suppose that $|V(G)| > 5$. Let $S = \{a, b\}$ be a minimum 1-movable locating-dominating set of G. Let $u_1, u_2, u_3, u_4 \in V(G) \setminus S$. Since S is a dominating set of G, $N_G(u_i) \cap S \neq \emptyset$ for all $i \in \{1, 2, 3, 4\}$. Thus, $N_G(u_i) \cap S$ is either $\{a\}$, $\{b\}$ or S. This implies that there exists distinct vertices u_i and u_j, where $i, j \in \{1, 2, 3, 4\}$ such that $N_G(u_i) \cap S = N_G(u_j) \cap S$. Hence, S is not a locating-dominating set of G, contrary to the assumption of S. Thus, $|V(G)| \leq 5$. □

Theorem 2.6 Let G be a connected graph of order $n = 4$. Then $\gamma_{mL}^1(G) = 2$ if and only if $G \cong P_4$ or G has a single end-vertex.

Proof: Suppose that $\gamma_{mL}^1(G) = 2$. Let $S = \{x, y\}$ be a minimum locating-dominating set of G. Since S is a locating-dominating set of G, $N_G(x) \cap (V(G) \setminus S) \neq \emptyset$ and $N_G(y) \cap (V(G) \setminus S) \neq \emptyset$. Assume that $ax, by \in E(G)$, where $V(G) = \{x, y, a, b\}$. Consider the following cases:

Case 1. Suppose that $ay \in E(G)$.

Since S is a locating set of G, $bx \notin E(G)$. Suppose that $xy \in E(G)$. Since S is a 1-movable locating set of G, it follows that $ab \notin E(G)$. Thus, b is an end-vertex of G. Suppose that $xy \notin E(G)$. If $ab \in E(G)$, then x is an end-vertex of G. If $ab \notin E(G)$, then $G \cong P_4$.

Case 2. Suppose that $ay \notin E(G)$.
Since G is connected, then $xy \in E(G)$ or $bx \in E(G)$ or $ab \in E(G)$. Suppose that $xy \in E(G)$. Suppose further that $bx \in E(G)$. Then $(S \setminus \{y\}) \cup \{b\} = \{x, b\}$ cannot be a locating-dominating set of G if $ab \in E(G)$. Thus, since S is a 1-movable locating-dominating set of G, $ab \notin E(G)$. This implies that a is an end-vertex of G. Suppose that $bx \notin E(G)$. Again, since S is a 1-movable locating-dominating set of G, $ab \notin E(G)$. This implies that $G \cong P_4$. Next, suppose that $xy \notin E(G)$. Then $ab \in E(G)$ or $bx \in E(G)$. Thus, either y is an end-vertex of G or $G \cong P_4$.

Accordingly, $G \cong P_4$ or G has a single end-vertex.

The converse is straightforward. □

Lemma 2.7 Let G be a connected non-trivial graph. If S is a strictly locating set of G, then for any $z \in V(G) \setminus S$, $S \cup \{z\}$ is a strictly locating set of G.

Proof: Let $u, v \in V(G) \setminus (S \cup \{z\})$. Since $V(G) \setminus (S \cup \{z\}) \subseteq V(G) \setminus S$ and S is a locating set, it follows that $u, v \in V(G) \setminus S$ and $N_G(u) \cap S \neq N_G(v) \cap S$. Hence, $N_G(u) \cap (S \cup \{z\}) = (N_G(u) \cap S) \cup (N_G(u) \cap \{z\}) \neq (N_G(v) \cap S) \cup (N_G(v) \cap \{z\}) = N_G(v) \cap (S \cup \{z\})$, that is, $S \cup \{z\}$ is a locating set of G.

Finally, let $y \in V(G) \setminus (S \cup \{z\})$. Then $y \in V(G) \setminus S$. Since S is a strictly locating set, $N_G(y) \cap S \neq S$. Thus, $N_G(y) \cap (S \cup \{z\}) = (N_G(y) \cap S) \cup (N_G(y) \cap \{z\}) \neq S \cup \{z\}$. Therefore, $S \cup \{z\}$ is a strictly locating set of G. □

3 Movable Locating-Dominating Sets in the Join of Graphs

Let A and B be sets which are not necessarily disjoint. The disjoint union of A and B, denoted by $A \uplus B$, is the set obtained by taking the union of A and B treating each element in A as distinct from each element in B. The join $G + H$ of two graphs G and H is the graph with vertex-set $V(G + H) = V(G) \uplus V(H)$ and edge-set $E(G + H) = E(G) \uplus E(H) \cup \{uv : u \in V(G), v \in V(H)\}$.

Theorem 3.1 [2] Let G and H be connected non-trivial graphs. Then $S \subseteq V(G + H)$ is a locating dominating set of $G + H$ if and only if $S_1 = V(G) \cap S$ and $S_2 = V(H) \cap S$ are locating sets of G and H, respectively, where S_1 or S_2 is a strictly locating set.

Theorem 3.2 Let G and H be connected non-trivial graphs. Then $S \subseteq V(G + H)$ is a 1-movable locating-dominating set of $G + H$ if and only if $S_1 = V(G) \cap S$ and $S_2 = V(H) \cap S$ are 1-movable locating sets of G and H, respectively, and one of the following statements holds:
(i) S_1 and S_2 are strictly locating sets of G and H, respectively;

(ii) S_1 is a strictly locating set of G and for each $u \in S_1$, $S_1 \setminus \{u\}$ or $(S_1 \setminus \{u\}) \cup \{w\}$ is a strictly locating set of G for some $w \in N_G(u) \cap (V(G) \setminus S_1)$ or $S_1 \setminus \{u\}$ is a locating set of G and $S_2 \cup \{z\}$ is a strictly locating set of H for some $z \in V(H) \setminus S_2$;

(iii) S_2 is a strictly locating set of G and for each $v \in S_2$, $S_2 \setminus \{v\}$ or $(S_2 \setminus \{v\}) \cup \{y\}$ is a strictly locating set of H for some $y \in N_H(v) \cap (V(H) \setminus S_2)$ or $S_2 \setminus \{v\}$ is a locating set of H and $S_1 \cup \{x\}$ is a strictly locating set of G for some $x \in V(G) \setminus S_1$.

Proof: Suppose that S is a 1-movable locating-dominating set of $G + H$. Then by Theorem 3.1, S_1 and S_2 are locating sets of G and H, respectively, where S_1 or S_2 is a strictly locating set. Moreover, since G and H are non-trivial graphs, $S_1 \neq \emptyset$ and $S_2 \neq \emptyset$. Let $u \in S_1$. By assumption, $S \setminus \{u\} = (S_1 \setminus \{u\}) \cup S_2$ or $(S \setminus \{u\}) \cup \{w\} = [(S_1 \setminus \{u\}) \cup \{w\}] \cup S_2$ for some $w \in N_G(u) \cap (V(G) \setminus S_1)$ or $(S \setminus \{u\}) \cup \{z\} = (S_1 \setminus \{u\}) \cup (S_2 \cup \{z\})$ for some $z \in V(H) \setminus S_2$ is a locating-dominating set of $G + H$. Thus, by Theorem 3.1, $(S \setminus \{u\}) \cup \{w\}$ is a locating set of G. This implies that S_1 is a 1-movable locating set of G. Similarly, S_2 is a 1-movable locating set of H.

Now, if S_1 and S_2 are strictly locating sets, then (i) holds. Suppose S_2 is not a strictly locating set of G. Then S_1 is strictly locating set of G. Let $u \in S_1$. Since S is a 1-movable locating-dominating set, $S \setminus \{u\} = (S_1 \setminus \{u\}) \cup S_2$ or $(S \setminus \{u\}) \cup \{w\} = [(S_1 \setminus \{u\}) \cup \{w\}] \cup S_2$ for some $w \in N_G(u) \cap (V(G) \setminus S_1)$ or $(S \setminus \{u\}) \cup \{z\} = (S_1 \setminus \{u\}) \cup (S_2 \cup \{z\})$ for some $z \in V(H) \setminus S_2$ is a locating-dominating set of $G + H$. Since S_2 is not a strictly locating set, it follows from Theorem 3.1 that $S_1 \setminus \{u\}$ or $(S \setminus \{u\}) \cup \{w\}$ is a strictly locating set of G or $S_1 \setminus \{u\}$ is a locating set in G and $S_2 \cup \{z\}$ is a strictly locating of H. Thus, (ii) holds. Similarly, if S_1 is not a strictly locating set and S_2 is a strictly locating set, then (iii) holds.

For the converse, suppose that S_1 and S_2 are 1-movable locating sets of G and H, respectively. Suppose that (i) holds. Then $S = S_1 \cup S_2$ is a locating-dominating set of $G + H$ by Theorem 3.1. Let $u \in S$. If $u \in S_1$, then by assumption, Lemma 2.7 and Theorem 3.1, $S \setminus \{u\} = (S_1 \setminus \{u\}) \cup S_2$ or $(S \setminus \{u\}) \cup \{w\} = [(S_1 \setminus \{u\}) \cup \{w\}] \cup S_2$ for some $w \in N_G(u) \cap (V(G) \setminus S_1)$ or $(S \setminus \{u\}) \cup \{z\} = (S_1 \setminus \{u\}) \cup (S_2 \cup \{z\})$ for some $z \in V(H) \setminus S_2$ is a locating-dominating set of $G + H$. Similarly, if $u \in S_2$, then $S \setminus \{u\} = (S_2 \setminus \{u\}) \cup S_1$ or $(S \setminus \{u\}) \cup \{y\} = [(S_2 \setminus \{u\}) \cup \{y\}] \cup S_1$ for some $y \in N_H(u) \cap (V(H) \setminus S_2)$ or $(S \setminus \{u\}) \cup \{x\} = (S_2 \setminus \{u\}) \cup (S_1 \cup \{x\})$ for some $x \in V(G) \setminus S_1$ is a locating-dominating set of $G + H$. Hence, S is a 1-movable locating-dominating set of $G + H$.

Now, suppose that (ii) holds. Then $S = S_1 \cup S_2$ is a locating-dominating set of $G + H$. If $u \in S_1$, then by assumption, Lemma 2.7 and Theorem 3.1, $S \setminus \{u\} = (S_1 \setminus \{u\}) \cup S_2$ or $(S \setminus \{u\}) \cup \{w\} = [(S_1 \setminus \{u\}) \cup \{w\}] \cup S_2$ for some $w \in N_G(u) \cap (V(G) \setminus S_1)$ or $(S \setminus \{u\}) \cup \{z\} = (S_1 \setminus \{u\}) \cup (S_2 \cup \{z\})$ for some $z \in V(H) \setminus S_2$ is a locating-dominating set of $G + H$. Similarly, if $u \in S_2$, then $S \setminus \{u\} = (S_2 \setminus \{u\}) \cup S_1$ or $(S \setminus \{u\}) \cup \{y\} = [(S_2 \setminus \{u\}) \cup \{y\}] \cup S_1$ for some $y \in N_H(u) \cap (V(H) \setminus S_2)$ or $(S \setminus \{u\}) \cup \{x\} = (S_2 \setminus \{u\}) \cup (S_1 \cup \{x\})$ for some $x \in V(G) \setminus S_1$ is a locating-dominating set of $G + H$. Hence, S is a 1-movable locating-dominating set of $G + H$.
set of $G + H$ by Theorem 3.1. Let $u \in S$. If $u \in S_1$, then by assumption and Theorem 3.1, $S \setminus \{u\} = (S_1 \setminus \{u\}) \cup S_2$ or $(S_1 \setminus \{u\}) \cup \{w\} = [(S_1 \setminus \{u\}) \cup \{w\}] \cup S_2$ for some $w \in N_G(u) \cap (V(G) \setminus S_1)$ or $(S_1 \setminus \{u\}) \cup \{y\} = [(S_1 \setminus \{y\}) \cup \{y\}] \cup S_1$ for some $y \in N_H(u) \cap (V(H) \setminus S_2)$ is a locating-dominating set of $G + H$. Now, suppose that $u \in S_2$. Since S_2 is a 1-movable locating set and S_1 is a strictly locating set of G, it follows from Theorem 3.1 that $S \setminus \{u\} = (S_2 \setminus \{u\}) \cup S_1$ or $(S_2 \setminus \{u\}) \cup \{y\} = [(S_2 \setminus \{y\}) \cup \{y\}] \cup S_1$ for some $y \in N_H(u) \cap (V(H) \setminus S_2)$ is a locating-dominating set of $G + H$. Therefore, S is a 1-movable locating-dominating set of $G + H$. Similarly, S is a 1-movable locating-dominating set of $G + H$ if (iii) holds. □

Corollary 3.3 Let G and H be connected non-trivial graphs.

(i) If G has a 1-movable strictly locating set, then $\gamma^1_{mL}(G + H) \leq \text{msln}(G) + \text{mln}(H)$.

(ii) If H has a 1-movable strictly locating set, then $\gamma^1_{mL}(G + H) \leq \text{msln}(H) + \text{mln}(G)$.

(iii) If G and H have 1-movable strictly locating set, then $\gamma^1_{mL}(G + H) \leq \min \{\text{msln}(G) + \text{mln}(H), \text{msln}(H) + \text{mln}(G)\}$.

Proof: (i) : Suppose G has a 1-movable strictly locating set. Let S_1 be a minimum 1-movable strictly locating set of G and S_2 be a minimum 1-movable locating set of H. Then $S = S_1 \cup S_2$ is a 1-movable locating-dominating set of $G + H$ by Theorem 3.2. Thus, $\gamma^1_{mL}(G + H) \leq |S| = |S_1| + |S_2| = \text{msln}(G) + \text{mln}(H)$.

Statement (ii) is proved similarly and (iii) follows from (i) and (ii). □

Remark 3.4 The bounds given in Corollary 3.3 are tight.

To see this, consider the graphs in Figure 1 and Figure 2. Note that $\text{msln}(C_4) = 4$, $\text{mln}(C_4) = 4$, $\text{mln}(P_2) = 1$, $\text{msln}(G) = 4$ and $\text{mln}(G) = 2$.

Also, $\gamma^1_{mL}(C_4 + P_2) = 5 = \text{msln}(C_4) + \text{mln}(P_2)$ and $\gamma^1_{mL}(G + C_4) = 6 = \min \{\text{msln}(G) + \text{mln}(C_4), \text{msln}(C_4) + \text{mln}(G)\} = \min \{8, 6\}$.

\[
C_4 + P_2:
\]

Figure 1: The graph $C_4 + P_2$ with $\gamma^1_{mL}(C_4 + P_2) = 5$
Theorem 3.5 [2] Let G be a connected non-trivial graph $K_1 = \langle v \rangle$. Then $S \subseteq V(G + K_1)$ is a locating-dominating set of $G + K_1$ if and only if either $S = S_1 \cup \{v\}$ where S_1 is a locating set of G, or $v \notin S$ and S a strictly locating-dominating set of G.

Theorem 3.6 Let G be a connected non-trivial graph and $K_1 = \langle v \rangle$. Then $S \subseteq V(G + K_1)$ is a 1-movable locating-dominating set of $G + K_1$ if and only if either

(i) $S = S_1 \cup \{v\}$, where S_1 is a 1-movable locating set of G and either S_1 is a strictly locating-dominating set of G for some $z \in V(G) \setminus S_1$; or

(ii) $S = S_1$, where S_1 is a strictly locating-dominating set of G such that for each $u \in S_1$, $S_1 \setminus \{u\}$ or $(S \setminus \{u\}) \cup \{z\}$ is a strictly locating-dominating set of G for some $z \in N_G(u) \cap (V(G) \setminus S_1)$ or $S_1 \setminus \{u\}$ is a locating set of G.

Proof: Let $S \subseteq V(G + K_1)$ be a 1-movable locating-dominating set of $G + K_1$. Let $S_1 = V(G) \cap S$. Suppose first that $S = S_1 \cup \{v\}$. Then by Theorem 3.5, S_1 is a locating set of G. Moreover, since G is non-trivial, $S_1 \neq \emptyset$. Let $u \in S_1$. Since S is a 1-movable locating-dominating set of $G + K_1$, $S \setminus \{u\} = (S_1 \setminus \{u\}) \cup \{v\}$ or $(S \setminus \{u\}) \cup \{z\} = [(S_1 \setminus \{u\}) \cup \{z\}] \cup \{v\}$ is a locating-dominating set of $G + K_1$ for some $z \in N_G(u) \cap (V(G) \setminus S_1)$. Thus, by Theorem 3.5, $S_1 \setminus \{u\}$ or $(S_1 \setminus \{u\}) \cup \{z\}$ is a locating set of G. Hence, S_1 is a 1-movable locating set of G. Now, since $v \in S$, either $S_1 \setminus \{v\} = S_1$ is a strictly locating-dominating set of G or there exists $z \in V(G) \setminus S_1$ such that $(S \setminus \{v\}) \cup \{z\} = S_1 \cup \{z\}$ is a strictly locating-dominating set of G by Theorem 3.5. Therefore, (i) holds.

Next, suppose that $v \notin S$. Then by Theorem 3.5, S_1 is a strictly locating-dominating set of G. Let $u \in S_1$. Since S is a 1-movable locating-dominating set of $G + K_1$, $S \setminus \{u\} = S_1 \setminus \{u\}$ or $(S \setminus \{u\}) \cup \{z\} = (S_1 \setminus \{u\}) \cup \{z\}$ for some $z \in N_G(u) \cap (V(G) \setminus S_1)$ or $(S \setminus \{u\}) \cup \{v\} = (S_1 \setminus \{u\}) \cup \{v\}$ is a locating-dominating set of $G + K_1$. Thus, by Theorem 3.5, $S_1 \setminus \{u\}$ or $(S_1 \setminus \{u\}) \cup \{z\}$ is a strictly locating-dominating set of G or $S_1 \setminus \{u\}$ is a locating set of G. Hence,
(ii) holds.

For the converse, suppose first that (i) holds. Then by Theorem 3.5, $S = S_1 \cup \{v\}$ is a locating-dominating set of $G + K_1$. Let $u \in S$. Suppose that $u \in S_1$. By Theorem 3.5 and since S_1 is a 1-movable locating set, it follows that $S \setminus \{u\} = (S_1 \setminus \{u\}) \cup \{v\}$ or $(S \setminus \{u\}) \cup \{z\} = ([S_1 \setminus \{u\}] \cup \{z\}) \cup \{v\}$ is a locating-dominating set of $G + K_1$ for some $z \in N_G(u) \cap (V(G) \setminus S_1)$. Suppose that $u = v$. If S_1 is a strictly locating-dominating set, then $S \setminus \{v\} = S_1$ is a locating-dominating set of $G + K_1$. If S_1 is not a strictly locating-dominating set, then by assumption, there exists $z \in V(G) \setminus S_1$ such that $S_1 \cup \{z\}$ is a strictly locating-dominating set of $G + K_1$. Hence, by Theorem 3.5, $(S \setminus \{v\}) \cup \{z\}$ is a locating-dominating set of $G + K_1$. Therefore, S is a 1-movable locating-dominating set of $G + K_1$.

Suppose that (ii) holds. Then by Theorem 3.5, $S = S_1$ is a locating-dominating set of $G + K_1$. Let $u \in S$. Then by assumption and Theorem 3.5, $S \setminus \{u\} = S_1 \setminus \{u\}$ or $(S \setminus \{u\}) \cup \{z\} = (S_1 \setminus \{u\}) \cup \{z\}$ for some $z \in N_G(u) \cap (V(G) \setminus S_1)$ or $(S \setminus \{u\}) \cup \{v\} = (S_1 \setminus \{u\}) \cup \{v\}$ is a locating-dominating set of $G + K_1$. Therefore, S is a 1-movable locating-dominating set of $G + K_1$. □

Corollary 3.7 Let G be a connected non-trivial graph having a 1-movable strictly locating-dominating set. Then $\gamma_{mL}(G + K_1) \leq \gamma_{mSL}(G)$.

Proof: Let S_1 be a minimum 1-movable strictly locating-dominating set of G. Then by Theorem 3.6, $S = S_1$ is a 1-movable locating-dominating set of $G + K_1$. Thus, $\gamma_{mL}^1(G + K_1) \leq |S| = \gamma_{mSL}^1(G)$. □

Remark 3.8 The bound given in Corollary 3.7 is tight and the strict inequality can be attained.

To see this, consider the graphs in Figure 3 and Figure 4. Note that $\gamma_{mSL}^1(C_5) = 3$ and $\gamma_{mSL}^1(P_4) = 4$ with $\gamma_{mL}^1(C_5 + K_1) = 3 = \gamma_{mSL}^1(C_5)$ and $\gamma_{mL}^1(P_4 + K_1) = 3 < \gamma_{mSL}^1(P_4)$.

![Figure 3](image-url)
4 Movable Locating-Dominating Sets in the Corona of Graphs

Let G and H be graphs of order m and n, respectively. The corona of two graphs G and H is the graph $G \circ H$ obtained by taking one copy of G and m copies of H, then joining the ith vertex of G to every vertex of the ith copy of H. For every $v \in V(G)$, denote by H^v the copy of H whose vertices are attached one by one to the vertex v. Denote by $v + H^v$ the subgraph of the corona $G \circ H$ corresponding the join $(\{v\}) + H^v$, where $v \in V(G)$.

Theorem 4.1 [3] Let G and H be non-trivial connected graphs. Then $S \subseteq V(G \circ H)$ is a locating-dominating set of $G \circ H$ if and only if $S = A \cup B \cup C \cup D$, where $A \subseteq V(G)$, $B = \bigcup \{B_v : v \in A \text{ and } B_v \text{ is a locating set of } H^v\}$, $C = \bigcup \{E_v : v \notin A, N_G(v) \cap A \neq \emptyset \text{ and } E_v \text{ is a locating-dominating set of } H^v\}$ and $D = \bigcup \{D_v : v \notin A, N_G(v) \cap A = \emptyset \text{ and } D_v \text{ is strictly locating-dominating set of } H^v\}$.

Theorem 4.2 Let G and H be non-trivial connected graphs such that H has a 1-movable strictly locating-dominating set. Then $\gamma_{mL}^1(G \circ H) \leq |V(G)| \gamma_{mSL}^1(H)$.

Proof: Let S be a minimum 1-movable strictly locating-dominating set of H. For each $v \in V(G)$, let $S_v \subseteq V(H^v)$ such that $\langle S_v \rangle \cong \langle S \rangle$. Let $C = \bigcup_{v \in V(G)} S_v$. Then by Theorem 4.1, C is a locating-dominating set of $G \circ H$. Let $u \in C$ and let $w \in V(G)$ such that $u \in V(H^w)$. Then $u \in S_w$. Since S_w is a 1-movable strictly locating-dominating set of H^w, $S_w \setminus \{u\}$ or $(S_w \setminus \{u\}) \cup \{z\}$ is a strictly locating-dominating set of H^w for some $z \in N_{H^w}(u) \cap (V(H^w) \setminus S_w)$. Thus, by Theorem 4.1, $C \setminus \{u\} = (\bigcup_{v \in V(G) \setminus \{w\}} S_v) \cup (S_w \setminus \{u\})$ or $(C \setminus \{u\}) \cup \{z\} = (\bigcup_{v \in V(G) \setminus \{w\}} S_v) \cup ((S_w \setminus \{u\}) \cup \{z\})$ is a locating-dominating set of $G \circ H$ for some $z \in N_{G \circ H}(u) \cap (V(G \circ H) \setminus C)$. Hence C is a 1-movable locating-dominating set of $G \circ H$. Therefore,

$$\gamma_{mL}^1(G \circ H) \leq |C| = \sum_{v \in V(G)} |S_v| = |V(G)| \gamma_{mSL}^1(H). \quad \Box$$
5 Movable Locating-Dominating Sets in the Composition of Graphs

The composition (lexicographic product) $G[H]$ of two graphs G and H is the graph with $V(G[H]) = V(G) \times V(H)$ and $(u, u')(v, v') \in E(G[H])$ if and only if either $uv \in E(G)$ or $u = v$ and $u'v' \in E(H)$.

Theorem 5.1 [3] Let G and H be non-trivial connected graphs with $\Delta(H) \leq |V(H)| - 2$. Then $C = \bigcup_{x \in S} \{ x \} \times T_x$, where $S \subseteq V(G)$ and $T_x \subseteq V(H)$ for each $x \in S$, is a locating-dominating set of $G[H]$ if and only if

(i) $S = V(G)$;

(ii) T_x is a locating set in H for every $x \in V(G)$;

(iii) T_x or T_y is strictly locating in H whenever x and y are adjacent vertices of G with $N_G(x) = N_G(y)$; and

(iv) T_x or T_y is (locating) dominating in H whenever x and y are distinct non-adjacent vertices of G with $N_G(x) = N_G(y)$.

Observe that the condition $\Delta(H) \leq |V(H)| - 2$ in Theorem 5.1 can be dropped.

Theorem 5.2 Let G be a connected totally point determining graph and let H be a connected non-trivial graph. Then $C = \bigcup_{x \in S} \{ x \} \times T_x$ is a 1-movable locating-dominating set of $G[H]$ if and only if

(i) $S = V(G)$; and

(ii) T_x is a 1-movable locating set of H for every $x \in V(G)$.

Proof: Suppose that C is a 1-movable locating-dominating set of $G[H]$. By Theorem 5.1, $S = V(G)$ and T_x is a locating set for each $x \in S$. Let $a \in T_x$. Since C is a 1-movable locating-dominating set of $G[H]$, $C \setminus \{(x, a)\} = \bigcup_{v \in S \setminus \{x\}} \{v\} \times T_v \cup \{x\} \times (T_x \setminus \{a\})$ or $C \setminus \{(x, a)\} = \bigcup_{z \in S \setminus \{x\}} \{z\} \times T_z \cup \{x\} \times ((T_x \setminus \{a\}) \cup \{b\})$ for some $b \in N_H(a) \cap (V(H) \setminus T_x)$ or $C \setminus \{(x, a)\} \cup \{(y, b)\} = \bigcup_{z \in S \setminus \{x\}} \{z\} \times T_z \cup \{x\} \times (T_x \setminus \{a\}) \cup \{(y) \times (T_y \cup \{b\})\}$ for some $y \in N_G(x)$ with $b \notin T_y$ is a locating-dominating set of $G[H]$. Thus, by Theorem 15, $T_x \setminus \{a\}$ or $(T_x \setminus \{a\}) \cup \{b\}$ is a locating set of H. Hence, T_x is a 1-movable locating set of H.

For the converse, suppose that (i) and (ii) hold. Then by Theorem 5.1,
Let \(S \subseteq V(G) \) denote the set of vertices in \(G \). Then, for any vertex \(v \in V(G) \), the set \(T_v \) contains all vertices adjacent to \(v \) in \(G \), and \(T_v \setminus \{a\} \cup \{b\} \) is a locating set of \(H \) for some \(b \in (V(H) \setminus T_x) \cap N_H(a) \). Thus, \(\gamma_{1mL}(G[H]) = \sum_{x \in V(G)} |T_x| = |V(G)| \text{mln}(H) \). □

Corollary 5.3 Let \(G \) be a connected totally point determining graph and let \(H \) be a connected non-trivial graph. Then \(\gamma_{1mL}(G[H]) = |V(G)| \text{mln}(H) \).

Proof: Let \(C = \bigcup_{x \in S} \{x\} \times T_x \) be a minimum 1-movable locating-dominating set of \(G[H] \). Then by Theorem 5.2, \(S = V(G) \) and \(T_x \) is a minimum 1-movable locating set of \(H \). Therefore, \(\gamma_{1mL}(G[H]) = |C| = \sum_{x \in V(G)} |T_x| = |V(G)| \text{mln}(H) \). □

References

Received: November 27, 2015; Published: February 4, 2016