An Extension of Hadamard Fractional Integral

G. Farid
Global Institute Lahore
New Garden Town, Lahore, Pakistan

G. M. Habibullah
Global Institute Lahore
New Garden Town, Lahore, Pakistan

Copyright © 2015 G. Farid and G. M. Habibullah. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In this paper, we present an extension of the classical Hadamard fractional integral. The extension is based on \(k \)-gamma function. We discuss the properties, involving the semigroup property, commutative law and boundedness of the extended operator.

Mathematics Subject Classification: 33B15, 33D05, 26A33

Keywords: Hadamard fractional integral, Hadamard \(k \)–fractional integral, \(k \)-Gamma function, \(k \)-Beta function, \(L' \)-norm

1 Introduction

We start with some basic definitions, symbols, notations and results that will be used throughout the discussion.

The set of real numbers is denoted by \(\mathbb{R} \). We write \(\log a \) for \(\log_e a \) or \(\ln a \). We simply write \(\alpha, \beta > a \) for \(\alpha > a, \beta > a \), etc. Likewise if \(x \in (a,b) \) and \(y \in (a,b) \), we write it simply by \(x, y \in (a,b) \), etc.

Large dedicated literature is available to study fractional integrals. We refer [5], [4] and [9]. We, also, refer [1], [11] and [2] to study special functions and [8] for mathematical analysis.
Hadamard [6] has defined fractional integral, so far called Hadamard fractional integral, of order \(\alpha > 0\), over the interval \([a, t]\), as

\[
I^\alpha (f(x)) = \frac{1}{\Gamma(\alpha)} \int_a^t \left(\log \frac{t}{\tau} \right)^{\alpha-1} f(\tau) d\tau,
\]

which differs from Riemann-Liouville and Caputo’s definition in the sense that the kernel of the integral (1.1) contains logarithmic function of arbitrary exponent. We can denote \(I^\alpha (f(x))\), defined in (1.1), by \(I^\alpha_a f(t), I^\alpha_{a,b} f\) or \(D^\alpha_{a,b}(f(x))\) too, instead of the formal notation \(D^\alpha_{a,b} f(t)\).

Diaz and Pariguan [7] have introduced \(k\) – gamma and \(k\) – beta functions as

\[
\Gamma_k(x) = \lim_{n \to \infty} \frac{n!k^n (nk)^{x-1}}{(k)_{n}}, \quad x \in C - kZ^-, \quad k > 0,
\]

where \((k)_{n}\) is the Pochhammer \(k\) – symbol for factorial function, which is defined as

\[
(k)_{n} = \prod_{j=0}^{n-1} (x + jk),
\]

\[
B_k(x, y) = \frac{1}{k} \int_0^1 t^{\frac{x}{k}-1} (1-t)^{\frac{y}{k}-1} dt.
\]

It is easy to see that

\[
\Gamma_k(x) = \int_0^\infty e^{-t} t^{x-1} dt = k^{\frac{x}{k}} \Gamma_k\left(\frac{x}{k}\right), \quad \text{Re}(x) > 0,
\]

\[
B_k(x, y) = \frac{\Gamma_k(x)\Gamma_k(y)}{\Gamma_k(x+y)} = \frac{1}{k} B\left(\frac{x}{k}, \frac{y}{k}\right), \quad \text{Re}(x) > 0, \text{Re}(y) > 0,
\]

\[
\Gamma_k(k) = 1,
\]

\[
\Gamma_k(x + k) = x\Gamma_k(x),
\]

\[
(k)_{n} = \frac{\Gamma_k(x + nk)}{\Gamma_k(x)}.
\]

Obviously, for \(k = 1\), we have the classical gamma and beta functions

\[
\Gamma_1(x) = \Gamma(x),
\]

\[
B_1(x, y) = B(x, y).
\]
Mubeen and Habibullah [10] have used k-gamma function to introduce an extension of fractional integral operator. While Farid, Habibullah and Shahzeen [3] have presented some inequalities, on the basis of which, fractional integral inequalities can be established.

The classical gamma function is defined as

$$\Gamma(\alpha) = \int_0^\infty e^{-t} t^{\alpha-1} dt = \int_0^{\infty} e^{-t} t^{\alpha-1} dt + \int_{\infty}^{\infty} e^{-t} t^{\alpha-1} dt = \gamma(\alpha, x) + \Gamma(\alpha, x),$$

(1.10)

where

$$\Gamma(\alpha, x) = \int_x^\infty e^{-t} t^{\alpha-1} dt,$$

(1.11)

$$\gamma(\alpha, x) = \int_0^x e^{-t} t^{\alpha-1} dt$$

(1.12)

are called upper and lower incomplete gamma functions, respectively.

Substituting $y = \frac{t - x}{t - x}$, it is easy to see that

$$\int_x^t (t - \tau)^{\alpha-1} (\tau - x)^{\beta-1} d\tau = (t - x)^{\alpha+\beta-1} B(p, q).$$

(1.13)

Likewise, let

$$I_k = \int_0^1 \left(\log \frac{t}{\tau} \right)^{\alpha-1} \left(\log \frac{\tau}{u} \right)^{\beta-1} \frac{d\tau}{\tau},$$

(1.14)

then if we put $y = \frac{\log \tau}{\log u}$, $1 - y = \frac{\log t}{\log u}$, $d\tau = \log \frac{t}{u} dy$ and $y : 0 \to 1$. Thus,

(1.14) becomes

$$I_k = \left(\log \frac{t}{u} \right)^{\alpha+\beta-1} \int_0^1 (1 - y)^{\alpha-1} y^{\beta-1} dy = \left(\log \frac{t}{u} \right)^{\alpha+\beta-1} B(\alpha, \beta).$$

By use of (1.4), it becomes

$$\int_0^1 \left(\log \frac{t}{\tau} \right)^{\alpha-1} \left(\log \frac{\tau}{u} \right)^{\beta-1} d\tau = k \left(\log \frac{t}{u} \right)^{\alpha+\beta-1} B_k(\alpha, \beta).$$

(1.15)

Definition 1.1:

Definition 1.2: For any tuple (k, α, a) of positive real numbers, $t > a$, we define Hadamard k–fractional integral, of order α, of a function $f(x)$ as

$$\frac{1}{k} \Gamma_k(\alpha) \int_a^t \left(\log \frac{t}{\tau} \right)^{\alpha-1} f(\tau) d\tau.$$

(1.16)
We can denote \(k \frac{D}{H} \overline{I}_a(t, \alpha) \), which is \(k \frac{D}{H} \overline{I}_a(t, \alpha) (f(x)) \) in fact, by \(k \frac{D}{H} \overline{I}_a(t, \alpha) (f)(t) \), \(k \frac{D}{H} \overline{I}_a(t, \alpha) (f(x))(t) \) or \(k \frac{D}{H} \overline{D}_a(t, \alpha) f(t) \) too. It is easy to see that

\[
\frac{D}{H} \overline{I}_a(t, \alpha) (l) = \frac{1}{\alpha \Gamma_k(\alpha)} (\log \frac{t}{\alpha})^\alpha.
\] \hspace{1cm} (1.17)

Furthermore, we define \(k \frac{D}{H} \overline{I}_a(t, \alpha) \) as in (1.15) for the function \(f \) which is continuous on the open interval \((a, t)\) for some \(t \geq a \) subjecting to growth condition at \(a \), we prove the properties, involving commutative law and semigroup property, of the extended integral operator. Moreover, we define \(k \frac{D}{H} \overline{I}_a(t, \alpha) \), for \(\alpha < 0 \), as the inverse operation to \(k \frac{D}{H} \overline{I}_a(t, \alpha) \), that is, we define \(g(t) = k \frac{D}{H} \overline{I}_a(t, \alpha) f(t) \) to be the solution, if it exists, of the integral equation \(f(t) = k \frac{D}{H} \overline{I}_a(t, \alpha) g(t) \). For imaginary \(\alpha \), Kober [5] has investigated an extension of \(I^\alpha \).

Theorem 2.1: For each fixed tuple \((k, \alpha, \beta, a)\) of positive real numbers, \(t \geq a \), we have

\[
k \frac{D}{H} \overline{I}_a(t, \alpha) k \frac{D}{H} \overline{I}_a(t, \alpha - \beta) f(t) = k \frac{D}{H} \overline{I}_a(t, \alpha) f(t).
\] \hspace{1cm} (2.1)

Proof: Using (1.16) and applying Fubini’s theorem, we find that

\[
k \frac{D}{H} \overline{I}_a(t, \alpha) k \frac{D}{H} \overline{I}_a(t, \alpha - \beta) f(t) = \frac{1}{k^2 \Gamma_k(\alpha) \Gamma_k(\beta)} \int_a^t \left(\int_a^u \frac{1}{\tau} \left(\log \frac{\tau}{\alpha} \right)^{\alpha - 1} \left(\log \frac{u}{\beta} \right)^{\beta - 1} d\tau \right) f(u) du.
\] \hspace{1cm} (2.2)

Using (1.15), it becomes
An extension of Hadamard fractional integral

$$\frac{k}{\beta} I_{(a,t)}^\alpha + \frac{k}{\alpha} I_{(a,t)}^\beta, f(t) = \frac{B_k(\alpha, \beta)}{k\Gamma_k(\alpha)\Gamma_k(\beta)} \int \frac{1}{u} (\log \frac{t}{u})^{\alpha+\beta-1} f(u) du.$$

Eventually, using (1.4), we obtain

$$\frac{k}{\beta} I_{(a,t)}^\alpha + \frac{k}{\alpha} I_{(a,t)}^\beta, f(t) = \frac{1}{k\Gamma_k(\alpha + \beta)} \int \frac{1}{u} (\log \frac{t}{u})^{\alpha+\beta-1} f(u) du = \frac{k}{\beta} I_{(a,t)}^{\alpha + \beta}, f(t).$$

Theorem 2.2: For each fixed pair \((k,a)\) of positive real numbers, \(t > a\), and fixed pair \((\alpha, \beta)\) of non-negative real numbers, we have

$$\frac{k}{\beta} I_{(a,t)}^\alpha + \frac{k}{\alpha} I_{(a,t)}^\beta, f(t) = \frac{k}{\beta} I_{(a,t)}^{\alpha + \beta}, f(t). \quad (2.3)$$

Proof: The result (2.3) follows immediately from (1.18) and (2.1).

Theorem 2.3: (Commutative Law)

For each fixed pair \((k,a)\) of positive real numbers, \(t > a\), and fixed pair \((\alpha, \beta)\) of real numbers, one has

$$\frac{k}{\beta} I_{(a,t)}^\alpha + \frac{k}{\alpha} I_{(a,t)}^\beta, f(t) = \frac{k}{\beta} I_{(a,t)}^{\alpha + \beta}, f(t). \quad (2.4)$$

Proof: Case-1: If \(\alpha, \beta \geq 0\), the relation (2.4) follows directly from (2.3) as \(+\) is commutative in \(R\).

Case-2: If \(\alpha, \beta < 0\), assuming that \(\frac{k}{\beta} I_{(a,t)}^\alpha + \frac{k}{\alpha} I_{(a,t)}^\beta, (f(x)) = g(x)\), using result of case-1, we obtain

$$f(x) = \frac{k}{\beta} I_{(a,t)}^\alpha + \frac{k}{\alpha} I_{(a,t)}^\beta, g(x) = \frac{k}{\beta} I_{(a,t)}^\alpha + \frac{k}{\alpha} I_{(a,t)}^\beta, g(x),$$

implying that \(\frac{k}{\beta} I_{(a,t)}^\alpha + \frac{k}{\alpha} I_{(a,t)}^\beta, f(x) = g(x)\) and consequently, (2.4) holds for \(\alpha, \beta < 0\) too.

Case-3: If one of \(\alpha, \beta\) is positive and the other is negative, without loss of generality we assume that \(\alpha < 0\), \(\beta > 0\). Now if we let \(\frac{k}{\beta} I_{(a,t)}^\alpha, f(x) = g(x)\),

$$f(x) = \frac{k}{\beta} I_{(a,t)}^\alpha, g(x),$$

implying, by use of result of case-1, that

$$\frac{k}{\beta} I_{(a,t)}^\alpha, f(x) = \frac{k}{\beta} I_{(a,t)}^\alpha, \frac{k}{\alpha} I_{(a,t)}^\beta, g(x) = \frac{k}{\beta} I_{(a,t)}^\alpha, \frac{k}{\alpha} I_{(a,t)}^\beta, g(x),$$

and eventually, we obtain

$$\frac{k}{\beta} I_{(a,t)}^\alpha, \frac{k}{\alpha} I_{(a,t)}^\beta, f(x) = \frac{k}{\beta} I_{(a,t)}^\alpha, \frac{k}{\alpha} I_{(a,t)}^\beta, g(x) = \frac{k}{\beta} I_{(a,t)}^\alpha, \frac{k}{\alpha} I_{(a,t)}^\beta, f(x).$$

Hence, (2.4) holds for all \(\alpha, \beta \in R\).

Theorem 2.4: (Semi group Property)

For each fixed pair \((k,a)\) of positive real numbers, \(t > a\), and fixed pair \((\alpha, \beta)\) of real numbers, we have

$$\frac{k}{\beta} I_{(a,t)}^\alpha + \frac{k}{\alpha} I_{(a,t)}^\beta, (f(x)) = \frac{k}{\beta} I_{(a,t)}^{\alpha + \beta}, (f(x)). \quad (2.5)$$
Proof: Case-1: If $\alpha, \beta \geq 0$, the relation (2.5) holds as we have already shown (see (2.3)).

Case-2: If $\alpha, \beta < 0$, assuming that $\int_0^\infty I_{\alpha}^\frac{\alpha + \beta}{\alpha} (f(x)) = g(x)$, using (2.1) and (2.4), we obtain

$$f(x) = \int_0^\infty I_{\alpha}^\frac{\alpha}{\alpha} I_{\alpha}^\frac{-\beta}{\alpha} (g(x)) = \int_0^\infty I_{\alpha} I_{\alpha}^\frac{-\beta}{\alpha} (g(x)) = \int_0^\infty I_{\alpha} I_{\alpha} I_{\alpha}^\frac{-\beta}{\alpha} (g(x)),$$

implying that $\int_0^\infty I_{\alpha}^\frac{\alpha + \beta}{\alpha} f(x) = g(x)$, and thus (2.5) holds for $\alpha, \beta < 0$ too.

Case-3: If one of α, β is positive and the other is negative, without loss of generality we assume that $\alpha < 0, \beta > 0$. Then

(i) if $\alpha + \beta > 0$, assuming that $\int_0^\infty I_{\alpha}^\frac{\alpha + \beta}{\alpha} (f(x)) = g(x)$,

using (2.1), we have $\int_0^\infty I_{\alpha} I_{\alpha}^\frac{-\beta}{\alpha} (f(x)) = \int_0^\infty I_{\alpha} I_{\alpha}^\frac{-\beta}{\alpha} (g(x))$, implying that $g(x) = \int_0^\infty I_{\alpha} I_{\alpha}^\frac{-\beta}{\alpha} (f(x))$, and consequently, (2.5) remain valid for this case,

(ii) and if $\alpha + \beta < 0$, assuming that $\int_0^\infty I_{\alpha}^\frac{\alpha + \beta}{\alpha} (f(x)) = g(x)$, we have

$$f(x) = \int_0^\infty I_{\alpha} I_{\alpha} I_{\alpha} I_{\alpha}^\frac{-\beta}{\alpha} (g(x))$$

and eventually, (2.5) remain valid for this case too.

Hence, (2.5) holds for all $\alpha, \beta \in \mathbb{R}$.

Definition 2.1:

Definition 2.2: We define the class C_α as

$$C_\alpha = \{ f : f \text{ is continuous on } (0,t) \text{ and } f \text{ is integrable at } 0 \}$$

and the class C_α as

$$C_\alpha = \{ f \in C_\alpha : \exists g \text{ in } C_\alpha \text{ such that } \int_0^\infty I_{\alpha} I_{\alpha}^\frac{\alpha}{\alpha} f = g \}.$$

Theorem 2.5: If $f \in C_\alpha$, $\int_0^\infty I_{\alpha} I_{\alpha}^\frac{\alpha}{\alpha} f$ exists and belongs to C_α for each fixed pair (k,a) of positive real numbers, $t > a$ and fixed non-negative real number α.

Proof: The result follows due to continuity of the function f (see Theorem-6.2.7 of [8]).

Theorem 2.6: If $f \in C_\alpha$, $\int_0^\infty I_{\alpha} I_{\alpha}^\frac{\alpha}{\alpha} f \in \beta_f$ for each fixed pair (k,a) of positive real numbers, $t > a$ and fixed pair (α, β) of non-negative real numbers, $\beta \leq \alpha$.

Proof: Since $\alpha, \alpha - \beta \geq 0$ and $f \in C_\alpha$, it follows from Theorem 2.5 that $\int_0^\infty I_{\alpha} I_{\alpha}^\frac{\alpha}{\alpha} f$ and $\int_0^\infty I_{\alpha} I_{\alpha}^\frac{-\alpha}{\alpha} f$ exist and belong to C_α. Then letting $\int_0^\infty I_{\alpha} I_{\alpha}^\frac{\alpha}{\alpha} f = g$, it follows, by use of semigroup property, that $\int_0^\infty I_{\alpha} I_{\alpha}^\frac{\alpha}{\alpha} f = \int_0^\infty I_{\alpha} I_{\alpha} I_{\alpha}^\frac{-\alpha}{\alpha} g$ implying that $\int_0^\infty I_{\alpha} I_{\alpha}^\frac{\alpha}{\alpha} f \in \beta_f$.

G. Farid and G. M. Habibullah
Theorem 2.7: If \(n \) is a positive integer and \(\alpha = -n \), for each fixed tuple \((k, \alpha, a)\) of positive real numbers, \(t > a \), \(\frac{k}{\alpha} I^{n}_{(a,t)} f \) exists and belongs to \(C_0 \) if and only if \(f \in C_n \).

Proof: If we assume that \(\frac{k}{\alpha} I^{n}_{(a,t)} f \) exists and belongs to \(C_0 \), letting \(\frac{k}{\alpha} I^{n}_{(a,t)} f = g \), we have \(f = \frac{k}{\alpha} I^{n}_{(a,t)} g \), which implies that \(f \in C_n \).

Conversely, if \(f \in C_n \), by definition there exists a function \(g \in C_0 \) such that \(\frac{k}{\alpha} I^{n}_{(a,t)} g = f \), which implies that \(g = \frac{k}{\alpha} I^{n}_{(a,t)} f \) and so \(\frac{k}{\alpha} I^{n}_{(a,t)} f \) exists and belongs to \(C_0 \).

Theorem 2.8: Let \(n \) be a positive integer, \(0 < p < 1 \) and \(\alpha = -n + p \). Then for each fixed pair \((k, \alpha)\) of positive real numbers, \(t > a \),

(i) if \(\frac{k}{\alpha} I^{n}_{(a,t)} f \) exists and belongs to \(C_0 \), \(f \in C_{n-1} \),

(ii) if \(f \in C_n \), \(\frac{k}{\alpha} I^{n}_{(a,t)} f \) exists and belongs to \(C_0 \),

(iii) the necessary and sufficient condition for existence of \(\frac{k}{\alpha} I^{n}_{(a,t)} f \) in \(C_0 \) is that \(\frac{k}{\alpha} I^{p}_{(a,t)} f \in C_n \).

Proof:

(i) If we assume that \(\frac{k}{\alpha} I^{n}_{(a,t)} f \) exists and belongs to \(C_0 \), letting \(\frac{k}{\alpha} I^{n}_{(a,t)} f = g \), we find, by semigroup property, that \(f = \frac{k}{\alpha} I^{n-1}_{(a,t)} h \), where \(h = \frac{k}{\alpha} I^{p}_{(a,t)} g \). But it follows by Theorem 2.5 that \(h \in C_0 \) as \(1 - p > 0 \). Thus, we conclude that \(f \in C_{n-1} \).

(ii) Now if \(f \in C_n \), by definition there exists a function \(g \in C_0 \) such that \(\frac{k}{\alpha} I^{n}_{(a,t)} g = f \), which, by semigroup property, leads to \(h = \frac{k}{\alpha} I^{p}_{(a,t)} f \), where \(h = \frac{k}{\alpha} I^{p}_{(a,t)} g \). But it follows by Theorem 2.5 that \(h \in C_0 \) as \(p > 0 \). Hence, we accomplish that \(\frac{k}{\alpha} I^{p}_{(a,t)} f \) exists and belongs to \(C_0 \).

(iii) If we assume that \(\frac{k}{\alpha} I^{p}_{(a,t)} f \) exists and belongs to \(C_0 \), taking \(\frac{k}{\alpha} I^{n}_{(a,t)} f = g \), we obtain, by semigroup property, that \(\frac{k}{\alpha} I^{p}_{(a,t)} f = \frac{k}{\alpha} I^{n}_{(a,t)} g \), implying that \(\frac{k}{\alpha} I^{p}_{(a,t)} f \in C_n \).

And if \(\frac{k}{\alpha} I^{p}_{(a,t)} f \in C_n \), by definition, there exists a function \(g \in C_0 \) such that \(\frac{k}{\alpha} I^{p}_{(a,t)} g = \frac{k}{\alpha} I^{n}_{(a,t)} f \), which, by semigroup property, leads to \(g = \frac{k}{\alpha} I^{n}_{(a,t)} f \). Thus, we find that \(\frac{k}{\alpha} I^{n}_{(a,t)} f \) exists and belongs to \(C_0 \).

Theorem 2.9: If \(f \in C_n \), for each fixed pair \((k, \alpha)\) of positive real numbers, \(t > a \), we have

(i) \(\frac{k}{\alpha} I^{p}_{(a,t)} f \in C_{n+p} \) for each \(\beta \in R \),

(ii) \(\frac{k}{\alpha} I^{p}_{(a,t)} f \in C_{n+p-\gamma} \) for each \(\beta, \gamma \in R \).
Proof: Since \(f \in C_{\alpha} \), by definition, there exists a function \(g \in C_{0} \) such that
\[
f = \frac{1}{k} I_{(a,d)}^{\alpha} g,
\]
which, by semigroup property, gives
(i) \(\frac{1}{k} I_{(a,d)}^{\alpha+\beta} g = \frac{1}{k} I_{(a,d)}^{\beta} f \), implying that \(\frac{1}{k} I_{(a,d)}^{\beta} f \in C_{\alpha+\beta} \),
(ii) \(\frac{1}{k} I_{(a,d)}^{\alpha+\beta-\gamma} g = \frac{1}{k} I_{(a,d)}^{\beta-\gamma} f \), implying that \(\frac{1}{k} I_{(a,d)}^{\beta-\gamma} f \in C_{\alpha+\beta-\gamma} \).

Theorem 2.10: For any \(f, g \in C_{0} \), if we define \(\frac{1}{k} I_{(a,d)}^{\alpha,(g,\beta)} \) as
\[
\frac{1}{k} I_{(a,d)}^{\alpha,(g,\beta)} f(t) = \left(\frac{g(t)}{k} \right) \frac{1}{k^{\alpha+\beta}} \int_{a}^{t} \frac{1}{\tau} \left(\log \frac{t}{\tau} \right)^{\alpha-1} \left(\frac{g(\tau)}{\tau} \right)^{\beta} f(\tau) d\tau
\]
(2.6)
then
\[
\frac{1}{k} I_{(a,d)}^{\gamma,(g,\alpha+\beta)} \frac{1}{k} I_{(a,d)}^{\alpha,(g,\beta)} f(t) = \frac{1}{k} I_{(a,d)}^{\gamma+(\alpha,\beta)} f(t).
\]
(2.7)

Proof: Using (2.6) and applying Fubini’s theorem, we find that
\[
\frac{1}{k} I_{(a,d)}^{\gamma,(g,\alpha+\beta)} \frac{1}{k} I_{(a,d)}^{\alpha,(g,\beta)} f(t) = \left(\frac{g(t)}{k} \right) \frac{1}{k^{\alpha+\beta}} \int_{a}^{t} \frac{1}{u} \left(\frac{g(u)}{u} \right)^{\beta} f(u) \left(\frac{1}{u} \right) \left(\frac{1}{\tau} \right)^{\alpha-1} \left(\log \frac{t}{\tau} \right)^{\beta} d\tau du
\]
Substitution \(y = \frac{\log \tau}{u} \), and using (1.4) and (1.5), it becomes
\[
\frac{1}{k} I_{(a,d)}^{\gamma,(g,\alpha+\beta)} \frac{1}{k} I_{(a,d)}^{\alpha,(g,\beta)} f(t) = \left(\frac{g(t)}{k} \right) \frac{1}{k^{\alpha+\beta}} \int_{a}^{t} \frac{1}{u} \left(\frac{g(u)}{u} \right)^{\beta} f(u) \left(\frac{1}{u} \right) \left(\frac{1}{\tau} \right)^{\alpha-1} \left(\log \frac{t}{\tau} \right)^{\beta} d\tau du
\]
\[
= \frac{1}{k} I_{(a,d)}^{\gamma+(\alpha,\beta)} f(t).
\]

Theorem 2.11: If \(\frac{1}{k} I_{(a,d)}^{\alpha} f = \frac{1}{k} I_{(a,d)}^{\alpha} g \), \(f = g \).

Proof: Since \(\frac{1}{k} I_{(a,d)}^{\alpha} f = \frac{1}{k} I_{(a,d)}^{\alpha} g \), it follows by (1.6), due to linearity of integral, that
\[
\int_{a}^{t} \frac{1}{u} \left(\frac{1}{\tau} \right)^{\alpha-1} \left(f(\tau) - g(\tau) \right) d\tau = 0
\]
implying that \(f = g \) (see p. 105 of [4]).
Example 2.1: For each fixed tuple \((k, \alpha, \beta)\) of positive real numbers, \(t > 1\), we have

\[
\hat{I}_{H}^{\alpha}(\log x)^{\beta-1}(t) = \frac{\Gamma_k(\beta)}{\Gamma_k(\alpha + \beta)} (\log t)^{\alpha-1}. \tag{2.8}
\]

Solution: The result follows, by use of (1.16) and (1.15) for \(u = 1\), as

\[
\hat{I}_{H}^{\alpha}(\log x)^{\beta-1}(t) = \frac{1}{\Gamma_k(\alpha)} (\log t)^{\alpha-1} B_k(\alpha, \beta) = \frac{\Gamma_k(\beta)}{\Gamma_k(\alpha + \beta)} (\log t)^{\alpha-1}. \tag{2.9}
\]

and generally, for each \(\gamma > -1\), we have

\[
\hat{I}_{H}^{\alpha}(\log x)^{\gamma}(t) = \frac{\Gamma_k((\gamma+1)k)}{\Gamma_k(\alpha + (\gamma+1)k)} (\log t)^{\frac{\alpha}{k}}. \tag{2.10}
\]

Solution: The results (2.9) and (2.10) follow directly from (2.8) by using \(\beta = 2k\) and \(\beta = (\gamma+1)k\), respectively.

Remark 2.1: One may verify (1.17) from (2.10), for \(\gamma = 0\), with collaboration of (1.5) and (1.6).

Example 2.2: For each fixed pair \((k, \alpha)\) of positive real numbers, \(t > 1\), one has

\[
\hat{I}_{H}^{\alpha}(\log x)^{\gamma}(t) = \frac{\Gamma_k((\gamma+1)k)}{\Gamma_k(\alpha + (\gamma+1)k)} (\log t)^{\frac{\alpha}{k}}. \tag{2.11}
\]

Solution: Using \(f(x) = x\) in (1.16), we find that

\[
\hat{I}_{H}^{\alpha}(\log x)^{\gamma}(t) = \frac{1}{k\Gamma_k(\alpha)} \int_{a}^{t} (\log \frac{t}{\tau})^{\frac{a-1}{k}} \frac{d\tau}{\tau} = \frac{1}{k\Gamma_k(\alpha)} \int_{a}^{t} (\log \frac{t}{\tau})^{\frac{a-1}{k}} d\tau. \tag{2.12}
\]
If we put \(y = \log\left(\frac{t}{\tau}\right) \), \(y : \log(\frac{t}{a}) \to 0 \) as \(\tau : a \to t \) and \(e^y = e^{\log\left(\frac{t}{\tau}\right)} = \frac{t}{\tau} \), implying that \(\tau = te^{-y} \) and thus \(d\tau = -te^{-y} dy \). Thus, (2.12) gives

\[
_{\alpha}I^a_k(x) = \frac{t}{k\Gamma_k(\alpha)} \int_0^y e^{-\gamma} y^{k-1} dy,
\]

which implies (2.11) by use of (1.12).

Example 2.4: For each fixed tuple \((k, \alpha, a)\) of positive real numbers, \(t > a \), and fixed \(\lambda \in R - \{0\} \), we have

\[
_{\alpha}I^a_k(x^\lambda) = \frac{t^\lambda}{k\Gamma_k(\alpha)} y^{\left(\frac{\alpha}{k}\right)} \log\left(\frac{t}{a}\right). \tag{2.13}
\]

Solution: Using \(f(x) = x^\lambda \) in (1.16), we find that

\[
_{\alpha}I^a_k(x^\lambda) = \frac{1}{k\Gamma_k(\alpha)} \int_a^y (\log\left(\frac{t}{\tau}\right))^{\frac{\alpha}{k}} \tau^{k-1} d\tau. \tag{2.14}
\]

If we put \(y = \log\left(\frac{t}{\tau}\right) \), \(y : \log(\frac{t}{a}) \to 0 \) as \(\tau : a \to t \) and \(e^y = e^{\log\left(\frac{t}{\tau}\right)} = \frac{t}{\tau} \), implying that \(\tau = te^{-y} \) and thus \(d\tau = -te^{-y} dy \). Thus, (2.14) gives

\[
_{\alpha}I^a_k(x^\lambda) = \frac{t^\lambda}{k\Gamma_k(\alpha)} \int_0^y e^{-\lambda y} y^{k-1} dy. \tag{2.15}
\]

If we substitute \(u = \lambda y, dy = \frac{1}{\lambda} du \) and \(u : 0 \to \lambda \log\left(\frac{t}{a}\right) \) as \(y : 0 \to \log\left(\frac{t}{a}\right) \).

Thus, (2.15) becomes

\[
_{\alpha}I^a_k(x^\lambda) = \frac{t^\lambda}{k\Gamma_k(\alpha)} \int_0^{\lambda \log\left(\frac{t}{a}\right)} e^{-u} u^{\frac{\alpha}{k}-1} du,
\]

which implies (2.13), by use of (1.12).

Remark 2.2: One may notice that for \(\lambda = 1 \), we find (2.11) from (2.13).
Theorem 2.12: (Boundedness of $\frac{k}{H}^\alpha I^\alpha_{(a,t)}$)

Let $p \geq 1$. Then, for each fixed tuple (k, α, a) of positive real numbers, $t > a$, the operator $\frac{k}{H}^\alpha I^\alpha_{(a,t)}$, defined in (1.16), is bounded in the sense $\frac{k}{H}^\alpha I^\alpha_{(a,t)}: L^p \longrightarrow L^p$ such that

$$\|\frac{k}{H}^\alpha I^\alpha_{(a,t)}f\|_p \leq K \|f\|_p, \quad K = \frac{1}{k \Gamma_k(\alpha)} \int \frac{\log \frac{\theta}{t}}{\log_a} \left(-\theta\right)^{\alpha-1} d\theta.$$

Proof: In (1.16), for any fixed $t > a$ if

$$\psi(t, \tau) = \begin{cases} \frac{1}{k \Gamma_k(\alpha)} \left(\log \frac{\tau}{t}\right)^{\alpha-1}, & \tau \in (a, t), \\ 0, & \tau \notin (a, t) \end{cases}$$

then $|\psi(ct, ct)| = |c|^{-1} |\psi(t, \tau)|$, $c \neq 0$. Therefore, $\mu = 0$ and by Theorem 4.2.6 of [4], we conclude that $\frac{k}{H}^\alpha I^\alpha_{(a,t)}: L^p \longrightarrow L^p$ such that

$$\|\frac{k}{H}^\alpha I^\alpha_{(a,t)}f\|_p \leq K \|f\|_p, \quad K = K(p, \alpha, k, a, t),$$

$$K = \int_a^t \left|\frac{\tau^{\mu-1}}{\tau^{\mu'}} \frac{1}{\psi(1, \tau)} \right|^{\frac{1}{\mu'}} d\tau = \frac{1}{k \Gamma_k(\alpha)} \int_a^t \left|\frac{1}{\psi(1, \tau)} \right| d\tau = \frac{1}{k \Gamma_k(\alpha)} \int_a^t e^{-\frac{\theta}{t}} \left(-\theta\right)^{\alpha-1} d\theta.$$

References

Received: January 29, 2015; Published: February 19, 2015