Some New Applications of Modified q-Integral Operators

R. P. Pathak

Department of Mathematics
National Institute of Technology, G E Road, Raipur
Pin-492010 (C.G.), India

Shiv Kumar Sahoo

Department of Mathematics, National Institute of Technology
G E Road, Raipur, Pin-492010.(C.G.), India

Copyright © 2015 R. P. Pathak and Shiv Kumar Sahoo. This article is distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In this paper we introducing a new sequence of positive linear q-Baskakov Durrmeyer type operators. Korovkin-type theorems for fuzzy continuous functions, an estimate for the rate of convergence and some properties are also obtained for these operators.

Mathematics Subject Classification: 41A25, 41A35

Keywords: q-integers, q-Baskakov Durrmeyer type operators, Rate of Convergence, Weighted approximation

1 Introduction

In the approximation theory the Durrmeyer type integral modifications and q analogues of different Durrmeyer type integral operators are important research area in present time. After the development of quantum calculus A. Lupas gave a new generalized q-Bernstein polynomial. Quantum calculus is
also provides powerful tools to application areas such as computer-aided geometric design, numerical analysis, and solutions of differential equations. Positive linear operators based on q-numbers are quite effective and we could have some different results. In 1997, Phillips introduced another generalization of Bernstein operators based on the q-integers called q-Bernstein operators. In the last decade some new generalizations of well known positive linear operators, based on q-integers were introduced and studied by several authors. For instance q-Meyer-Konig and Zeller operators studied by Trif. [13] and Gupta [2] etc. In 2001, Aral and Gupta [1],[12] introduced a q-generalization of the classical Baskakov operators. In 2012, Honey Sharma [4],[5] introduced the q-Durrmeyer type operators.

Very recently we published a paper based on q-Baskakov-Durrmeyer type operators [11]. In the present paper motivated by H. Sharma we investigate some new applications of q-analogue of the Baskakov-Durrmeyer type and we study better rate of convergence.

First we mention some important definitions of q-Calculus.

Definition 1.1 For any fixed real number $q > 0$ and $k \in \mathbb{N}$, the q-integers is defined by

$$[k]_q = \begin{cases} k, & \text{if } q = 1, \\ 1 + q + q^2 + \ldots + q^{k-1}, & \text{if } q \neq 1. \end{cases}$$

In this way for a real number n we may write $[n]_q = \frac{1-q^n}{1-q}; q \neq 1$.

Definition 1.2 The q-factorial is defined by

$$[k]_q! = \begin{cases} 1, & \text{if } k = 0, \\ [1]_q \cdot [2]_q \cdot \ldots \cdot [k]_q, & \text{if } k = 1, 2, \ldots. \end{cases}$$

Definition 1.3 For any number $k \in (0, n)$, the q-binomial coefficient is defined by

$$\binom{n}{k}_q = \frac{[n]_q!}{[k]_q! [n-k]_q!}.$$

Definition 1.4 The q-derivative of a function $f : \mathbb{R} \rightarrow \mathbb{R}$ is defined by

$$D_q f(x) = \frac{f(x) - f(qx)}{(1-q)x}$$

$$D_q^0 f := f; D_q^n f := D_q(D_q^{n-1} f), n = 1, 2, 3, \ldots.$$
2 Construction of Operators

N. Deo et al. [8] introduced new version of Bernstein-Durrmeyer-type operators defined as: for \(f \in CI_n \) here \(I_n = [0, \frac{n}{n+1}] \)

\[
(M_nf)(x) = n \left(1 + \frac{1}{n}\right) \sum_{k=0}^{n} p_{n,k}(x) \int_{0}^{n}{p_{n,k}(t)f(t)dt} \tag{1}
\]

where,

\[p_{n,k}(x) = \left(1 + \frac{1}{n}\right)^{n} \binom{n}{k} x^k \left(\frac{n}{n+1} - x\right)^{n-k}, \]

and established some approximation results on it.

H. Sharma [4] introduced the following q-Durrmeyer type operators defined as: for \(f \in CI_{n,q} \) here \(I_{n,q} = [0, \frac{[n]_q}{[n+1]_q}] \)

\[
(M_n^*f)(x) = \frac{[n+1]_q^2}{[n]_q} \sum_{k=0}^{n} q^{-k} p_{n,k}^*(q;x) \int_{0}^{[n]_q}{p_{n,k}^*(q;qt)f(t)d_qt} \tag{2}
\]

where,

\[p_{n,k}^*(q;x) = \binom{n}{k}_q \left(\frac{[n+1]_q}{[n]_q} x\right)^k \left(1 - \frac{[n+1]_q}{[n]_q} x\right)^{n-k}_q, \]

and established some approximation results on it.

Very recently we motivated by H. Sharma [4], and N. Deo [7], [8], [9] and introduced a q-analogue of the Baskakov-Durrmeyer type operators [11] defined as: for \(f \in CI_{n,q} \)

\[
(M_{n,q}f)(x) = \frac{[n+1]_q^2}{[n]_q} \sum_{k=0}^{\infty} b_{n,k}(q;x) \int_{0}^{[n]_q}{p_{n,k}(q;qt)f(t)d_qt} \tag{3}
\]

where,

\[b_{n,k}(q;x) = q^{k^2-k-2} \binom{n+k-1}{k}_q x^k (1+x)^{-(n+k)}_q, x \in CI_{n,q}. \]

In this paper again we modified above equations for \(c > 0 \) so, we get

\[
(M_{n,q,c}f)(x) = \frac{[n+1]_q^2}{[n]_q} \sum_{k=0}^{\infty} b_{n,k,c}(q;x) \int_{0}^{[n]_q}{p_{n,k}(q;qt)f(t)d_qt} \tag{4}
\]

where,

\[b_{n,k,c}(q;x) = q^{k^2-k-2} \binom{k+n-c-1}{k}_q (cx)^k (1+cx)^{-(n+k)} \]
H. S. Kasana et. el. [3] obtained a sequence of modified Szász operators for integrable function on \([0, \infty)\) defined as:

\[
(M_{n,x}(f))(x) \equiv M_{n,x}(f(y); t) = n \sum_{k=0}^{\infty} b_{n,k}(t) \int_{0}^{\infty} b_{n,k}(y) f(x + y) dy
\]

(5)

where, \(x\) and \(t\) belong to \([0, \infty)\) and \(x\) is fixed.

In this paper motivated by H. S. Kasana and H. Sharma, we propose a q-Baskakov-Durrmeyer type operators defined as: for \(f \in CI_{n,q}\) and \(c > 0\):

\[
(M_{n,q,c}^*(f))(x) = \frac{[n + 1]_q}{[n]_q} \sum_{k=0}^{\infty} b_{n,k,c}(q; x) \int_{0}^{[n]_q} p_{n,k}(q; ty) f(x + ty) d_q y
\]

(6)

The aim of this paper we investigate some new applications of q-analogue of the Baskakov-Durrmeyer type operators. Finally, we give Korovkin-type theorems for fuzzy continuous functions and better error estimations for operators (4) and (6).

3 Calculation of moments

We use the lemma-1 [4] for \(s = 1, 2, \ldots\) and by the definition of q-Beta function, we get

\[
\int_{0}^{[n]_q} p_{n,k}^{*}(q; t) t^s d_q t = \frac{[n+1]_q}{[n+1]_q} q^k \frac{[n]_q!}{[k]_q! q^k \int_{0}^{[n]_q} t^{s+n+1} q^s d_q t}
\]

Theorem 3.1 Let the sequence of positive linear operators \((M_{n,q,c}(f))(x)\) defined by (4). For all \(n \in N; q \in (0, 1), c > 0; f \in CI_{n,q}; x \in I_{n,q}\), we get

\[
(M_{n,q,c}1)(x) = 1
\]

(7)

\[
(M_{n,q,c}t)(x) = \frac{[n]_q}{[n+2]_q[n+1]_q} ([n]_q x + 1)
\]

(8)

\[
(M_{n,q,c}t^2)(x) = \frac{(1 + q)[n]_q^2 + q(1 + q)^2 x [n]_q^3 + q^2 c x^2 [n]_q^4 + q^3 c x^2 [n]_q^4}{[n+3]_q [n+2]_q [n+1]_q^2}
\]

(9)

Proof: For the proof of theorem we set \(f(t) = 1\) in the operators \(M_{n,q,c}\), we get

\[
(M_{n,q,c}1)(x) = \frac{[n+1]_q}{[n]_q} \sum_{k=0}^{\infty} b_{n,k,c}^{*}(q; x) \int_{0}^{[n]_q} p_{n,k}(q; ty) d_q t
\]

\[
= \frac{[n+1]_q}{[n]_q} \sum_{k=0}^{\infty} b_{n,k,c}^{*}(q; x) \frac{[n]_q}{[n+1]_q} q^k \frac{[n]_q!}{[n+1]_q} q^{&+1} d_q t
\]

\[
= \sum_{k=0}^{\infty} \frac{[n]_q}{[n+1]_q} q^{&+1} \frac{[n]_q!}{[n+1]_q} \left(cx \right)^k (1 + cx)^{&+1} = 1.
\]
Again we set \(f(t) = t \) in the operators \(M_{n,q,c} \), we get

\[
(M_{n,q,c}t)(x) = \frac{[n+1]^2_q}{[n]_q} \sum_{k=0}^{\infty} b_{n,k,c}(q;x) \frac{[n]_q^2}{[n+1]^2_q} [k]_q! [k+1]_q! [n+2]_q! \\
= \frac{[n]_q}{[n+2]_q [n+1]_q} \sum_{k=0}^{\infty} b_{n,k,c}(q;x) [k+1]_q \\
= \frac{[n]_q}{[n+2]_q [n+1]_q} ([n]_q x + 1).
\]

Similarly, we set \(f(t) = t^2 \) in the operators \(M_{n,q,c} \), we get

\[
(M_{n,q,c}t^2)(x) = \frac{[n+1]^2_q}{[n]_q} \sum_{k=0}^{\infty} b_{n,k,c}(q;x) \frac{[n]_q^3}{[n+1]^3_q} q^k [k]_q! [k+2]_q! [n+3]_q! \\
= \frac{[n]_q^2}{[n+3]_q [n+2]_q [n+1]_q^2} \sum_{k=0}^{\infty} b_{n,k,c}(q;x) [k+1]_q [k+2]_q \\
= \frac{[n]_q^2}{[n+3]_q [n+2]_q [n+1]_q^2} 1 + q + q(1+q)^2 [n]_q x + q^4 \left(\frac{[n+1]_q x^2}{q} + [n]_q x \right) - [n]_q x \\
= \frac{(1+q)[n]_q^2 + q(1+q)^2 x [n]_q^3 + q^3 c x^2 [n]_q^3 + q^3 x^2 [n]_q^4}{[n+3]_q [n+2]_q [n+1]_q^2}.
\]

This completes the proof of the theorem.

Lemma 3.2 For the special case \(q = 1 \) we have

\[
(M_{n,1,c}1)(x) = 1; \\
(M_{n,1,c}t)(x) = \frac{n^2 x + n}{(n+2)(n+1)}; \\
(M_{n,1,c}t^2)(x) = \frac{n^2 [n^2 x^2 + nx(1+cx) + 3nx + 2]}{(n+3)(n+2)(n+1)^2}.
\]

Lemma 3.3 The sequence of positive linear operators \(M_{n,q,c} \), we get following central moments: let \(\phi^i = (t-x)^i, i = 1, 2, \ldots \)

\[
(M_{n,q,c}\phi^1)(x) = (M_{n,q,c}t)(x) - x(M_{n,q,c}1)(x) \\
= \frac{[n]_q}{[n+2]_q [n+1]_q} ([n]_q x + 1) - x \cdot 1 = \frac{(1-3x)[n]_q - 2x}{[n+2]_q [n+1]_q}; \\
(M_{n,q,c}\phi^2)(x) = (M_{n,q,c}t^2)(x) - 2x(M_{n,q,c}t)(x) + x^2(M_{n,q,c}1)(x)
\]
\[\begin{align*}
&= \frac{(1 + q)[n]^2 + q(1 + q)^2x[n]_q^3 + q^3cx^2[n]_q^3 + q^3x^2[n]_q^4}{[n + 3]_q[n + 2]_q[n + 1]_q^2} \\
&\quad - 2x\frac{[n]_q([n]_qx + 1)}{[n + 2]_q[n + 1]_q} + x^2 \cdot 1 \\
&= x^2 \left(1 - \frac{2[n]_q^2}{[n + 2]_q[n + 1]_q} + \frac{q^3(c - 1)[n]_q^3}{[n + 3]_q[n + 2]_q[n + 1]_q} \right) \\
&\quad + x \left(\frac{q(1 + q)^2[n]_q^3}{[n + 3]_q[n + 2]_q[n + 1]_q^2} - \frac{2[n]_q}{[n + 2]_q[n + 1]_q} \right) \\
&\quad + \frac{(1 + q)[n]_q^2}{[n + 3]_q[n + 2]_q[n + 1]_q^2}.
\end{align*} \]

Lemma 3.4 For the special case \(q = 1 \) we have the following central moment

\[
(M_{n,q,c}\phi^1)(x) = \frac{n(1 - 3x) - 2x}{(n + 2)(n + 1)}
\]

\[
(M_{n,q,c}\phi^2)(x) = \frac{n^3[(c - 1)x + 2x] + n^2[11x^2 - 8x + 2] + n[17x^2 - 8x + 2] + 6x^2}{(n + 3)(n + 2)(n + 1)^2}.
\]

4 Korovkin-type theorems for fuzzy continuous functions

In this section we mention some important definitions given by M. Burgin [6].

Definition 4.1 A number \(a \) is called an \(r \)-limit of a sequence \(S \) (it is denoted by \(a = r - \lim S \)) if for any \(\epsilon \in \mathbb{R} \), the inequality \(|a - a_i| < r + \epsilon \) is valid for almost all \(a_i \), i.e. there is such \(n \) that for any \(i > n \), we have \(|a - a_i| < r + \epsilon \).

Definition 4.2 A sequence \(S \) that has an \(r \)-limit is called \(r \)-convergent and it is said that \(S \), \(r \)-converges to its \(r \)-limit \(a \). It is denoted by \(S \to ra \).

Definition 4.3 A function \(f : \mathbb{R} \to \mathbb{R} \) is called \(r \)-continuous in \(X \subset \mathbb{R} \) if \(\gamma(f,X) \leq r \) and is called fuzzy continuous in \(X \) if \(\gamma(f,X) \leq \infty \) where \(\gamma(f,X) \) defined as,

\[
\gamma(f,X) \geq \inf\{\sup\{|f(x) - g(x)| : x \in X\} : g(x) \in C(X)\}.
\]
For example the functions \(f(x) = x^n \) when \(x \in [n, n+1), n \in \mathbb{Z} \) and \(g(x) = [x]^n \) are fuzzy continuous in each finite interval of the real line \(\mathbb{R} \), but they are not continuous in any interval with the length larger than 1. To define the Riemann integral for a continuous function \(f(x) \), step functions are utilized. If the integral of \(f(x) \) exists, then any such step function is fuzzy continuous.

Theorem 4.4 Let a sequence \((q_n)_n; q_n \in (0, 1)\) such that \(r - \lim_{n \to \infty} q_n = 1 \) and let the sequence of positive linear operators \(M_{n, q_n, c}; n \in N \) be defined by (4). If \(r_i - \lim_{n \to \infty} \left| (M_{n, q_n, c} e_i)(x) - e_i \right| = 0 \) for \(i = 0, 1, 2 \). Then for all functions \(f \in C(I_n) \), we get
\[
 r - \lim_{n \to \infty} \left| (M_{n, q_n, c} f)(x) - f \right| = 0
\]
where, \(r \) is any real number such that \(r \geq K_3(r_0 + r_1 + r_2) \) for some \(K_3 > 0 \).

Proof: Let the functions \(e_i \) defined as; \(e_i(x) = t^i \) for all \(x \in I_n \). Now, for each \(\epsilon > 0 \), there corresponds \(\delta > 0 \) such that \(\|\lambda(t - x)\| \leq \epsilon \) whenever \(|t - x| \leq \delta \). Again for \(|t - x| > \delta \), there exist a positive number \(M \) such that \(\|\lambda(t - x)\| \leq M \leq M \frac{(t-x)^2}{\delta^2} \). Thus for all \(t \) and \(x \in I_n \), we get
\[
 |\lambda(t - x)| \leq \epsilon + M \frac{(t-x)^2}{\delta^2}.
\]
Applying \(M_{n, q_n, c} \) on (10), we get
\[
 |(M_{n, q_n, c} f)(x) - f(x)| \leq \epsilon(M_{n, q_n, c} e_0)(x) + M \frac{M}{\delta^2} (M_{n, q_n, c} (t-x)^2)(x)
\]
\[
 |(M_{n, q_n, c} f)(x) - f(x)| \leq \epsilon e + \epsilon |(M_{n, q_n, c} e_0)(x) - e_0(x)| + K_3 \sum_{i=0}^{2} |(M_{n, q_n, c} e_i)(x) - e_i(x)|
\]
where, \(K_3 = \max\{\frac{M}{\delta^2}, \frac{2Mx}{\delta^2}, \frac{Mx^2}{\delta^2}\} \). Then for every \(\epsilon > 0 \) there exist \(N = N(\epsilon) > 0 \) such that for all \(n \in N \), we get
\[
 |(M_{n, q_n, c} f)(x) - f(x)| \leq \epsilon + \epsilon (r_0 + \epsilon) + K_3 (3\epsilon + r_0 + r_1 + r_2) \leq r + \epsilon _1
\]
here, \(\epsilon_1 = \epsilon(1 + r_0 + \epsilon + 3K_3) \). Since \(\epsilon \) is arbitrary and small, \(r - \lim_{n \to \infty} q_n = 1 \), we get
\[
 r - \lim_{n \to \infty} |(M_{n, q_n, c} f)(x) - f| = 0.
\]
This completes the proof.

Theorem 4.5 Let a sequence \((q_n)_n; q_n \in (0, 1)\) such that \(r - \lim_{n \to \infty} q_n = 1 \) and let the sequence of positive linear operators \(M_{n, q_n, c}^*; n \in N \) be defined by (6). If \(r_i - \lim_{n \to \infty} \left| (M_{n, q_n, c}^* e_i)(x) - e_i \right| = 0 \) for \(i = 0, 1, 2 \). Then for all functions \(f \in C(I_n) \), we get
\[
 r - \lim_{n \to \infty} |(M_{n, q_n, c}^* f)(x) - f| = 0
\]
where, \(r \) is any real number such that \(r \geq K_4(r_0 + r_1 + r_2) \) for some \(K_4 > 0 \).
The proof of the theorem is analogous as theorem 4.4.

Theorem 4.6 Let f be the integrable and bounded in the interval I_n and let if f'' exists at a point $x \in I_n$. Let a sequence $(q_n)n; q_n \in (0,1)$ such that \lim_{n \to \infty} q_n = 1$ and let the sequence of positive linear operators $M_{n,q_n,c}; n \in N$ be defined by (4). Then, one gets that

$$\lim_{n \to \infty} [n]_{q_n} |(M_{n,q_n,c}f)(x) - f(x)| = (1 - 3x)f'(x) + \frac{(c - 1)x^2 + 2x}{2} f''(x)$$

Proof: Let if f'' exists at a point $x \in I_n$, then by using Taylors expansion, we write

$$f(t) = f(x) + (t-x)f'(x) + \frac{(t-x)^2}{2} f''(x) + (t-x)^2 \lambda(t-x) \quad (11)$$

where, $\lambda(t-x) \to 0$ as $t \to x$. Applying $M_{n,q_n,c}$, we get

$$(M_{n,q_n,c}f)(x) = f(x)(M_{n,q_n,c}1)(x) + f'(x)(M_{n,q_n,c}(t-x))(x) + \frac{f''(x)}{2} (M_{n,q_n,c}(t-x)^2)(x) + (M_{n,q_n,c}(t-x)^2 \lambda(t-x))(x).$$

By using theorem 1 and Multiplying $[n]_{q_n}$ both sides, we get

$$[n]_{q_n}[(M_{n,q_n,c}f) - f] = f'(x)[n]_{q_n} \left(\frac{(1-3x)[n]_{q_n} - 2x}{[n+2]_{q_n}[n+1]_{q_n}} \right) \ldots$$

$$\ldots + \frac{f''(x)[n]_{q_n}}{2} M_{n,q_n,c} \phi^2(x) + [n]_{q_n} R_{[n]_{q_n}}(t,x). \quad (12)$$

Here we write, $[n]_{q_n} R_{[n]_{q_n}}(t,x) = \left[n+1 \right]_{q_n}^2 \sum_{k=0}^{\infty} b_{n,k,c}(q;x) \int_0^{[n]_{q_n}} p_{n,k}(q;\delta) \phi^2 \delta d\delta dq t$

$$\left| [n]_{q_n} R_{[n]_{q_n}}(t,x) \right| \leq \left[n+1 \right]_{q_n}^2 \sum_{k=0}^{\infty} b_{n,k,c}(q;x) \int_0^{[n]_{q_n}} p_{n,k}(q;\delta) \phi^2 \delta d\delta dq t$$

$$\leq [n]_{q_n} \epsilon (M_{n,q_n,c}(t-x)^2)(x) + \frac{[n]_{q_n} M \delta^2}{\delta^2} (M_{n,q_n,c}(t-x)^4)(x)$$

$$\leq [n]_{q_n} \epsilon o \left(\frac{1}{[n]_{q_n}} \right) + \frac{[n]_{q_n} M \delta^2}{\delta^2} o \left(\frac{1}{[n]_{q_n}^2} \right)$$

$$\leq \epsilon + \frac{M}{\left([n]_{q_n} \right)^{\frac{1}{4}}} o \left(\frac{1}{[n]_{q_n}} \right) \leq \epsilon + Mo \left(\frac{1}{\sqrt{[n]_{q_n}}} \right); \text{ for } \delta = ([n]_{q_n})^{\frac{1}{4}}.$$

Since ϵ is arbitrary and small, \lim_{n \to \infty} q_n = 1$ and whenever $n \to \infty$, we get

$$\left| [n]_{q_n} R_{[n]_{q_n}}(t,x) \right| \to 0. \quad (13)$$
By using (12) in equation (13), we get
\[
\lim_{n \to \infty} [n]_{q_n} |(M_{n,q_n,c}f)(x) - f(x)| = (1 - 3x)f'(x) + \frac{(c-1)x^2 + 2x}{2} f''(x)
\]
This completes the proof.

Theorem 4.7 Let \(f \) be the integrable and bounded in the interval \(I_n \) and let if \(f'' \) exists at a point \(x; t \in I_n \). Let a sequence \((q_n)_n; q_n \in (0,1)\) such that \(\lim_{n \to \infty} q_n = 1 \) and let the sequence of positive linear operators \(M_{n,q_n,c}; n \in N \) be defined by (6). Then, one gets that
\[
\lim_{n \to \infty} [n]_{q_n} |(M_{n,q_n,c}^*f)(t) - f(t)| = (1 - 3t)f'(x + t) + \frac{(c-1)t^2 + 2t}{2} f''(x + t)
\]
The proof of the theorem is analogous as theorem 4.6.

5 Conclusion

We conclude that modified operators (4) and (6) improve the approximation process when the value of \(n \) is very large i.e. when \(n \) tends to infinity.

Acknowledgements. The authors are thankful to Director of National Institute of Technology, Raipur (C.G.) for encouragement. This work is supported by the Chhattisgarh Council of Science Technology, Raipur. Pin-492001, India. We are also thankful to Director of CCOST Chhattisgarh, India, for time to time eminent support and encouragement.

References

Received: September 23, 2015; Published: December 12, 2015