Extremal Decomposition Problems in the Euclidean Space

K.A. Gulyaeva

Far Eastern Federal University, Vladivostok, Russia

S.I. Kalmykov

Far Eastern Federal University, Vladivostok, Russia

Institute of Applied Mathematics
Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, Russia

E.G. Prilepkina

Far Eastern Federal University, Vladivostok, Russia

Institute of Applied Mathematics
Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, Russia

Copyright © 2015 K.A. Gulyaeva, S.I. Kalmykov and E.G. Prilepkina. This article is distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Composition principles for reduced moduli are extended to the case of domains in the n-dimensional Euclidean space, n > 2. As a consequence analogues of extremal decomposition theorems of Kufarev, Dubinin and Kirillova in the planer case are obtained.

Mathematics Subject Classification: 31B99

Keywords: reduced modulus, Robin function, Neumann function, nonoverlapping domain, extremal decomposition problem.
1 Introduction and notations

Extremal decomposition problems have a rich history and go back to M.A. Lavrentiev’s inequality for the product of conformal radii of non-overlapping domains. There exist two methods of their study: the extremal-metric method and the capacitive method. The first one has been systematically developed in papers by G.V. Kuz’mina, E.G. Emel’yanov, A.Yu. Solynin, A. Vasil’ev, and Ch. Pommerenke [9, 14, 6, 11]. The second approach is developed mainly in works of V.N. Dubinin and his students [4, 5, 2, 3]. In particular, a series of well-known results about extremal decomposition follows one way from composition principles for generalized reduced moduli (see [1, p. 56] and [12]). In the present paper we extend the mentioned composition principles to the case of spatial domains. As a consequence we get theorem about extremal decomposition for the harmonic radius [7] obtained earlier in [5].

Throughout the paper, \mathbb{R}^n denotes the n-dimensional Euclidean space consisting of points $x = (x_1, \ldots, x_n)$, $n \geq 3$, and $|x| = \sqrt{x_1^2 + \cdots + x_n^2}$ is the length of a vector $x \in \mathbb{R}^n$. We introduce the following notations:

- $B(a, r) = \{x \in \mathbb{R}^n : |a - x| < r\}$,
- $S(a, r) = \{x \in \mathbb{R}^n : |a - x| = r\}$, $a \in \mathbb{R}^n$;
- $\omega_{n-1} = 2\pi^{n/2}/\Gamma(n/2)$ is the area of the unit sphere $S(0, 1)$;
- $\lambda_n = ((n - 2)\omega_{n-1})^{-1}$.

D is a bounded domain in \mathbb{R}^n, Γ is a closed subset of ∂D. The pair (D, Γ) is admissible if there exists the Robin function, $g_\Gamma(z, z_0, D)$ harmonic in $D \setminus \{z_0\}$, continuous in $\overline{D} \setminus \{z_0\}$ and

$$\frac{\partial g_\Gamma}{\partial n} = 0 \text{ on } (\partial D) \setminus \Gamma, \quad (1)$$

$$g_\Gamma = 0 \text{ on } \Gamma, \quad (2)$$

and in a neighborhood of z_0 there is an expansion

$$g_\Gamma(z, z_0, D) = \lambda_n \left(|z - z_0|^{2-n} - r(D, z_0, \Gamma)^{2-n} + o(1)\right), \ z \to z_0, \quad (3)$$

where $\partial/\partial n$ means the inward normal derivative on the boundary. In what follows all such pairs are assumed to be admissible.

In the case $\Gamma = \emptyset$ we change the condition (1) by the condition

$$\frac{\partial g_\Gamma}{\partial n} = \frac{1}{\mu_{n-1}(\partial D)} \text{ on } \partial D,$$

where $\mu_{n-1}(\partial D)$ is the area of boundary.

By analogy with the definition of the Robin radius for plain domains from the paper [3] we will call the constant $r(D, z_0, \Gamma)$ the Robin radius of the
domain \(D \) and the set \(\Gamma \). Note that in the case of \(\Gamma = \partial D \) we get the harmonic radius \([7, 10, 5]\).

Let \(\Delta = \{ \delta_k \}_{k=1}^m \) be a collection of real numbers and \(Z = \{ z_k \}_{k=1}^m \) be points of the domain \(D \). For \(\Gamma = \emptyset \) we additionally require

\[
\sum_{k=1}^m \delta_k = 0.
\]

Define the potential function for the domain \(D \), the set \(\Gamma \), the collection of points \(Z \), and numbers \(\Delta \):

\[
u(z) = \nu(z; Z, D, \Gamma, \Delta) = \sum_{k=1}^m \delta_k g_\Gamma(z, z_k, D).
\]

Note that for \(\Gamma = \emptyset \) the function \(g_\Gamma(z, z_k, D) \) is defined up to an additive constant. Nevertheless, the function \(\nu(z) \) is defined uniquely and characterized by the condition

\[
\frac{\partial \nu}{\partial n} = 0 \quad \text{on} \quad \partial D.
\]

It is clear from the definition of the potential function that in a neighborhood of \(z_k \) we have

\[
u(z) = \delta_k \lambda_n |z - z_k|^{2-n} + a_k + o(1), \quad k = 1, \ldots, m,
\]

where

\[
a_k = -\delta_k \lambda_n r(D, z_k, \Gamma)^{2-n} + \sum_{l=1}^m \delta_l g_\Gamma(z_l, z_k, D).
\]

Now if we introduce the following notation

\[
g_\Gamma(z_k, z_k, D) = -\lambda_n r(D, z_k, \Gamma)^{2-n},
\]

then the constant in the expansion of the potential function in a neighbourhood of \(z_k \) is

\[
a_k = \sum_{l=1}^m \delta_l g_\Gamma(z_l, z_k, D). \quad (4)
\]

A function \(v(z) \) is admissible for \(D, Z, \Delta, \) and \(\Gamma \) if \(v(z) \in \text{Lip} \) in a neighborhood of each point of \(D \) except maybe finitely many such points, continuous in \(\overline{D} \setminus \bigcup_{k=1}^m \{ z_k \} \), \(v(z) = 0 \) on \(\Gamma \), and in neighborhood of \(z_k \) there is an expansion

\[
v(z) = \delta_k \lambda_n |z - z_k|^{2-n} + b_k + o(1), \quad z \rightarrow z_k.
\]

The Dirichlet integral is the following

\[
I(f, D) = \int_D |\nabla f|^2 \, d\mu,
\]

where \(d\mu = dx_1 \ldots dx_n \).
2 Main results

Lemma 2.1 The asymptotic formula

\[I(u, D_r) = \left(\sum_{k=1}^{m} \delta_k^2 \right) \lambda_n r^{2-n} + \sum_{k=1}^{m} \delta_k a_k + o(1), \quad r \to 0, \]

is true, where \(u \) is the potential function and \(a_k, k = 1, \ldots, m \) are defined in (4) and \(D_r = D \setminus \bigcup_{k=1}^{m} B(z_k, r) \).

Proof. The Green’s identity

\[\int_{V} |\nabla u|^2 d\mu = - \int_{\partial V} u \frac{\partial u}{\partial n} ds \]

gives

\[I(u, D_r) = - \int_{\partial D_r} u \frac{\partial u}{\partial n} ds = - \sum_{k=1}^{m} \int_{S(z_k, r)} u \frac{\partial u}{\partial n} ds. \tag{6} \]

The second equality in (6) holds because \(u \frac{\partial u}{\partial n} = 0 \) on \(\partial D \). Note that

\[u = \delta_k \lambda_n r^{2-n} + a_k + o(1), \quad z \to z_k \]

in a neighbourhood of \(z_k \).

We calculate the integral \(\int_{S(z_k, r)} u \frac{\partial u}{\partial n} ds \). Let \(u(z) = h(z) + g(z) \), where \(h(z) = \lambda_n \delta_k |z - z_k|^{2-n} \) and \(g(z) \) is a harmonic function. Note that \(g(z_k) = a_k \).

For \(|z - z_k| = r \) we have the following correlations

\[r^{n-1} u \frac{\partial u}{\partial n} = r^{n-1} \left(h \frac{\partial h}{\partial n} + h \frac{\partial g}{\partial n} + g \frac{\partial h}{\partial n} + g \frac{\partial g}{\partial n} \right) \]

\[= (2-n) \lambda_n r^{2-n} \delta_k + \lambda_n \delta_k \frac{\partial g}{\partial n} + (2-n) g \lambda_n \delta_k + g \frac{\partial g}{\partial n} r^{n-1} \]

\[= - \frac{\lambda_n \delta_k^2}{\omega_{n-1}} (2-n) + g(z_k) \delta_k + o(1), \quad r \to 0. \]

Therefore

\[\int_{S(z_k, r)} u \frac{\partial u}{\partial n} ds = \int_{S(0,1)} u \frac{\partial u}{\partial n} r^{n-1} ds \]

\[= - \lambda_n \delta_k^2 r^{2-n} - \delta_k a_k + o(1), \quad r \to 0. \]

Substituting it in (6) we get the lemma. \(\square \)
Lemma 2.2 For an admissible function \(v \) and the potential function \(u \) we have

\[
I(v - u, D_r) = I(v, D_r) - I(u, D_r) - 2 \sum_{k=1}^{m} \delta_k(b_k - a_k) + o(1), \ r \to 0.
\]

Proof. One may observe that

\[
\begin{align*}
I(v - u, D_r) &= \int_{D_r} (|\nabla v|^2 + |\nabla u|^2 - 2 \nabla u \cdot \nabla v) \, d\mu \\
&= \int_{D_r} (|\nabla v|^2 - |\nabla u|^2) \, d\mu + 2 \int_{\partial D_r} (v - u) \frac{\partial u}{\partial n} \, ds \\
&= I(v, D_r) - I(u, D_r) + 2 \sum_{k=1}^{m} \int_{S(z_k, r)} (v - u) \frac{\partial u}{\partial n} \, ds \\
&= I(v, D_r) - I(u, D_r) - 2 \sum_{k=1}^{m} \delta_k(b_k - a_k) + o(1), \ r \to 0.
\end{align*}
\]

Here we calculated the integral \(\int_{S(z_k, r)} (v - u) \frac{\partial u}{\partial n} \) a similar way as in the proof of lemma 2.1 and used the Green’s identity

\[
\int_{D_r} (\nabla u \cdot \nabla v) \, d\mu = - \int_{\partial D_r} v \frac{\partial u}{\partial n} \, ds,
\]

where \(n \) is the inner normal vector. □

The quantity

\[
\sum_{k=1}^{m} \delta_k a_k = \sum_{k=1}^{m} \sum_{l=1}^{m} \delta_k \delta_{l} g_{r}(z_l, z_k, D)
\]

we call the reduced modulus and denote it by \(M(D, \Gamma, Z, \Delta) \). According to lemma 2.1

\[
M(D, \Gamma, Z, \Delta) = \lim_{r \to 0} \left(I(u, D_r) - \left(\sum_{k=1}^{n} \delta_k^2 \right) \lambda_k r^{2-n} \right).
\]

Theorem 2.3 Let sets \(D, \Gamma, \), collections \(Z = \{ z_k \}_{k=1}^{m}, \Delta = \{ \delta_k \}_{k=1}^{m} \), be as in the definition of the reduced modulus \(M = M(D, \Gamma, Z, \Delta) \), \(u(z) \) be the potential function for \(D, \Gamma, Z, \Delta, \) and let \(D_i \subset D \) be pairwise non-overlapping subdomains of \(D, \Gamma_i, Z_i, \Delta_i, \) \(i = 1, \ldots, p \). Assume that the following conditions are fulfilled:

1) \((D \cap \partial D_i) \subset \Gamma_i, \ i = 1, \ldots, p; \)
2) \(\Gamma \subset \bigcup_{i=1}^{p} \Gamma_i \cup [\mathbb{R}^n \setminus (\bigcup_{i=1}^{p} D_i)]; \)
3) \(Z = \bigcup_{i=1}^{p} Z_i \), that is each point \(z_k \in Z \) coincides with some point \(z_{ij} \in Z_i \) for \(k = k(i, j) \) and vice versa;
4) \(\delta_k = \delta_{ij} \) for \(k = k(i, j) \).
Then the inequality
\[M \geq \sum_{i=1}^{p} M_i + \sum_{i=1}^{p} I(u - u_i, D_i) \geq \sum_{i=1}^{p} M_i \]
holds.

Proof. Consider the function
\[v(z) = \begin{cases} u_i(z), & z \in D_i, \\ 0, & z \in D \setminus \bigcup_{i=1}^{p} D_i. \end{cases} \]
The condition 1) guarantees that the function \(v(z) \) is continuous in \(D \setminus \bigcup_{k=1}^{m} \{z_k\} \). From the conditions 2) and 3) it follows that \(v(z) = 0 \) for \(z \in \Gamma \) and in a neighbourhood of \(z_k, k = 1, \ldots, m \), there is the expansion (5). Applying lemma 2.2, we get
\[I(v - u, D) = I(v, D_r) - I(u, D_r) - 2 \sum_{k=1}^{p} \delta_k (b_k - a_k) + o(1), \quad r \to 0, \quad (7) \]
here \(a_k \) and \(b_k \) from (4) and (5) respectively. By lemma 2.1
\[I(v, D_r) = \lambda_n r^{2-n} \sum_{i=1}^{p} \sum_{j=1}^{n_i} \delta_{ij}^2 + \sum_{i=1}^{p} M_i + o(1) = \lambda_n r^{2-n} \sum_{k=1}^{m} \delta_k^2 + \sum_{i=1}^{p} M_i + o(1), \]
\[I(u, D_r) = \lambda_n r^{2-n} \sum_{k=1}^{m} \delta_k^2 + M + o(1), \quad r \to 0, \]
taking into account 3), we have
\[\sum_{k=1}^{m} \delta_k (b_k - a_k) = \sum_{i=1}^{p} M_i - M. \]
Substituting the obtained correlations in (7), we see that the inequality
\[\sum_{i=1}^{p} I(u - u_i, D_i) \leq I(v - u, D) = M - \sum_{i=1}^{p} M_i + o(1), \quad r \to 0, \]
is true. Theorem is proved. \(\square \)

Theorem 2.4 Let sets \(D, \Gamma, \) collections \(Z = \{z_k\}_{k=1}^{m}, \Delta = \{\delta_k\}_{k=1}^{m}, \) be as in the definition of the reduced modulus \(M := M(D, \Gamma, Z, \Delta), u(z) \) be the potential function for \(D, \Gamma, Z, \Delta, \) and let \(D_i \subset D, i = 1, \ldots, p, \) be pairwise non-overlapping domains, \(\Gamma_i, Z_i = \{z_{ij}\}_{j=1}^{n_i}, \Delta_i = \{\delta_{ij}\}_{j=1}^{n_i}, \) be from the definition
of the reduced moduli \(M_i = M(D_i, \Gamma_i, Z_i, \Delta_i), u_i(z) \) be the potential function for \(D_i, \Gamma_i, Z_i, \Delta_i, i = 1, \ldots, p \). Assume that \(\Gamma_i \subset \Gamma, i = 1, \ldots, p, Z = \bigcup_{i=1}^{n} Z_i \), (that is each point \(z_k \in Z \) coincides with some point \(z_{ij} \in Z_i \) for \(k = k(i, j) \) and vice versa), \(\delta_k = \delta_{ij} \). Then the inequality

\[
\sum_{i=1}^{p} M_i \geq M + \sum_{i=1}^{p} I(u - u_i, D_i) \geq M
\]

holds.

Proof. The function \(u \) is admissible for \(D_i, i = 1, \ldots, p \). Let \(b_k \) be constants from the expansion of the function \(u \) in a neighbourhood of \(z_k, b_{ij} = b_k \) if \(k = k(i, j) \). Applying lemmata 2.1 and 2.2 with the potential functions \(u_k \) for \(D_k \) we get

\[
\sum_{i=1}^{p} \sum_{j=1}^{n_i} (\delta_{ij})^2 r^{2-n} \lambda_n + \sum_{i=1}^{p} \sum_{j=1}^{n_i} \delta_{ij} a_{ij} + o(1) = \sum_{i=1}^{p} I(u_i, (D_i)_r) =
\]

\[
= \sum_{i=1}^{p} \left(I(u, (D_i)_r) - 2 \sum_{j=1}^{n_i} \delta_{ij} (b_{ij} - a_{ij}) - I(u - u_i, (D_i)_r) \right) + o(1)
\]

\[
\leq I(u, D_r) - \sum_{i=1}^{p} I(u - u_i, (D_i)_r) - 2 \sum_{i=1}^{p} \sum_{j=1}^{n_i} \delta_{ij} (b_{ij} - a_{ij}) + o(1)
\]

\[
= \sum_{i=1}^{p} \sum_{j=1}^{n_i} (\delta_{ij})^2 r^{2-n} \lambda_n + \sum_{i=1}^{p} \sum_{j=1}^{n_i} \delta_{ij} b_{ij} - 2 \sum_{i=1}^{p} \sum_{j=1}^{n_i} \delta_{ij} (b_{ij} - a_{ij})
\]

\[
- \sum_{i=1}^{p} I(u - u_i, (D_i)_r) + o(1), \; r \to 0.
\]

It implies that

\[
\sum_{i=1}^{p} \sum_{j=1}^{n_i} \delta_{ij} b_{ij} \leq \sum_{i=1}^{p} \sum_{j=1}^{n_i} \delta_{ij} a_{ij} - \sum_{i=1}^{p} I(u - u_i, D_i)
\]

or equivalently

\[
\sum_{i=1}^{p} I(u - u_i, D_i) + M(D, \Gamma, Z, \Delta) \leq \sum_{i=1}^{p} M(D_i, \Gamma_i, Z_i, \Delta_i).
\]

Here we used the fact that the function \(u - u_i \) has no singularity in \(D_i \). □

Denote by \(r(D_i, x_l) = r(D_i, x_l, \partial D) \) the harmonic radius. Directly from theorem 2.3 we get theorem 2 of the paper [5]
Corollary 2.5 For any non-overlapping domains \(D_l \subset \mathbb{R}^n \), \(n \geq 3 \), points \(x_l \in D_l \) and real numbers \(\delta_l, l = 1, \ldots, m \) the inequality

\[
- \sum_{l=1}^{m} \delta_l^2 r(D_l, x_l)^{2-n} \leq \sum_{l=1}^{m} \sum_{p=1}^{m} \delta_l \delta_p |x_l - x_p|^{2-n}
\]

holds true.

Proof. The Green’s function of the ball \(B(0, \rho) \) is

\[
\lambda_n \left(|x - x_0|^{2-n} - \frac{|x_0| x}{\rho} - \frac{\rho x_0}{|x_0|} \right)^{2-n}.
\]

Denote by \(D_l(\rho) \) the intersection \(D_l \cap B(0, \rho) \). By theorem 2.3

\[
M(\rho) \geq \sum_{l=1}^{m} M_l(\rho),
\]

where \(M(\rho) \) is the modulus of the ball \(B(0, \rho) \), the collections \(\{x_l\}_{l=1}^{m}, \Delta = \{\delta_l\}_{l=1}^{m}, \) and \(\Gamma = \partial B \);

\[
M_l(\rho) = -\delta_l^2 r(D_l(\rho), x_l)^{2-n} \lambda_n.
\]

It is sufficient to take a limit as \(\rho \to \infty \). □

Theorems 2.3 and 2.4 imply for \(p = 1 \) monotonicity of the quadratic form

\[
\sum_{l=1}^{m} \sum_{p=1}^{m} \delta_l \delta_p g_{\Gamma}(z_l, z_p, D)
\]

under extension of a domain. Following [2] we will say that a domain \(\tilde{D} \) is obtained by extending a domain \(D \) across a part of its boundary \(\gamma \subset \partial D \) if \(D \subset \tilde{D} \) and \((\partial D) \cap \tilde{D} \) lies in \(\gamma \).

Corollary 2.6 If \(\tilde{D} \) is obtained by extending \(D \) across \(\Gamma, \tilde{\Gamma} \subset (\Gamma \cup (\mathbb{R}^n \setminus D)) \), then for any real numbers \(\delta_l \) and points \(z_l \in D \)

\[
\sum_{l=1}^{m} \sum_{p=1}^{m} \delta_l \delta_p g_{\Gamma}(z_l, z_p, \tilde{D}) \geq \sum_{l=1}^{m} \sum_{p=1}^{m} \delta_l \delta_p g_{\Gamma}(z_l, z_p, D) + I(u - \tilde{u}, D)
\]

\[
\geq \sum_{l=1}^{m} \sum_{p=1}^{m} \delta_l \delta_p g_{\Gamma}(z_l, z_p, D).
\]
If \(\tilde{D} \) is obtained by extending \(D \) across the part of \((\partial D) \setminus \Gamma, \tilde{\Gamma} = \Gamma\), then
\[
\sum_{l=1}^{m} \sum_{p=1}^{m} \delta_l \delta_p g_F \left(z_l, z_p, \tilde{D} \right) \leq \sum_{l=1}^{m} \sum_{p=1}^{m} \delta_l \delta_p g_F \left(z_l, z_p, D \right) - I(u - \bar{u}, D)
\]
\[
\leq \sum_{l=1}^{m} \sum_{p=1}^{m} \delta_l \delta_p g_F \left(z_l, z_p, D \right),
\]
here \(u \) and \(\bar{u} \) are the potential functions for \(D, \Gamma \), \(Z = \{z_i\}_{i=1}^{m}, \Delta = \{\delta_l\}_{l=1}^{m} \) and \(\tilde{D}, \tilde{\Gamma}, Z = \{z_i\}_{i=1}^{m}, \Delta = \{\delta_l\}_{l=1}^{m} \), respectively.

In [3] the notion of the Robin radius
\[
r(D, z_0, \Gamma) = \exp \lim_{z \to z_0} (g_D(z, z_0, \Gamma) + \log |z - z_0|)
\]
was introduced. This quantity generalized the notion of the conformal radius. An analogue of Kufarev’s theorem (see [8]) for non-overlapping domains \(D_1, D_2 \) lying in the unit disk \(U \) under the condition \(((\partial D_k) \cap U) \subset \Gamma_k \subset \partial D_k, a_k \in D_k, k = 1, 2 \) is the inequality
\[
r(D_1, a_1, \Gamma_1) r(D_2, a_2, \Gamma_2) \leq |a_2 - a_1|^2 \left[1 - \frac{a_2 - a_1}{1 - \overline{a_1}a_2} \right]^{-1}.
\]
By setting in theorem 2.3 \(p = 2, \Gamma = \emptyset \), we obtain in \(\mathbb{R}^n \) the following inequality.

Corollary 2.7 Let \(D_1 \) and \(D_2 \) be non-overlapping and lie in the ball \(U = B(0, 1) \), \(a_k \in D_k, (\partial D_k) \cap U \subset \Gamma_k \subset \partial D_k, k = 1, 2 \). Then
\[
-\lambda_n r(D_1, a_1, \Gamma_1)^{2-n} - \lambda_n r(D_2, a_2, \Gamma_2)^{2-n} \leq M(U, \emptyset, \{a_1, a_2\}, \{1, -1\}). \quad (8)
\]

To calculate \(M(U, \emptyset, \{a_1, a_2\}, \{1, -1\}) \) we need to know the Neumann function of the unit ball. Note that it is a quite complicated problem in \(\mathbb{R}^n \). In particular, for \(n = 3 \) (see [13])
\[
g_\emptyset(x, y, U) = \frac{1}{4\pi} \left(\frac{1}{|x - y|} + \frac{|y|}{|x|^2 - y} - \log \left| 1 - (x, y) + \frac{|x|^2 - |y|^2}{|y|} \right| \right).
\]
In [13] there is an analytic view of \(g_\emptyset(D, x, y) \) for \(n = 4, 5 \). So, for \(n = 3 \) the inequality (8) has the following form
\[
- r(D_1, a_1, \Gamma_1)^{-1} - r(D_2, a_2, \Gamma_2)^{-1} \leq \frac{2}{|a_1 - a_2|} - \frac{2|a_2|}{|a_1||a_2|^2 - a_2|}
\]
\[
+ 2 \log \left| 1 - (a_1, a_2) + \frac{|a_1|a_2^2 - a_2}{|a_2|} \right| + \frac{1}{1 - |a_1|^2} + \frac{1}{1 - |a_2|^2} - \log(4(1 - |a_1|^2)(1 - |a_2|^2)).
\]

Acknowledgements. This work was supported by the Russian Science Foundation under grant 14-11-00022.
References

Received: November 2, 2015; Published: December 12, 2015