Non-screenable Half Lightlike Submanifolds
of an Indefinite Kaehler Manifold
of a Quasi-Constant Curvature

Dae Ho Jin

Department of Mathematics, Dongguk University
Gyeongju 780-714, Republic of Korea

Copyright © 2015 Dae Ho Jin. This article is distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

We study non-screenable half lightlike submanifolds of an indefinite Kaehler manifold \(\bar{M} \) of quasi-constant curvature. First, we provide a new result for such a non-screenable half lightlike submanifold \(M \). Next, we investigate a statical non-screenable half lightlike submanifold \(M \) of \(\bar{M} \) subject such that (1) the screen distribution \(S(TM) \) is totally umbilical in \(M \), or (2) \(M \) is screen homothetic.

Mathematics Subject Classification: 53C25, 53C40, 53C50

Keywords: non-screenable half lightlike submanifold, quasi-constant curvature, statical, totally umbilical screen, screen homothetic

1 Introduction

In the classical theory of Riemannian geometry, Chen-Yano [2] introduced the notion of a Riemannian manifold of a quasi-constant curvature as a Riemannian manifold \((\bar{M}, \bar{g})\) endowed with a curvature tensor \(\bar{R} \) of the form:

\[
\bar{R}(X,Y)Z = f_1 \{ \bar{g}(Y,Z)X - \bar{g}(X,Z)Y \} \\
+ f_2 \{ \theta(Y)\theta(Z)X - \theta(X)\theta(Z)Y \\
+ \bar{g}(Y,Z)\theta(X)\zeta - \bar{g}(X,Z)\theta(Y)\zeta \},
\]

(1.1)
for any vector fields X, Y and Z on \tilde{M}, where f_1 and f_2 are smooth functions, ζ is a unit vector field which is called the \textit{characteristic vector field} of \tilde{M}, and θ is a 1-form associated with ζ by $\theta(X) = \bar{g}(X, \zeta)$.

The theory of lightlike submanifolds is an important topic of research in differential geometry due to its application in mathematical physics. The study of such notion was initiated by Duggal-Bejancu [4] and later studied by many authors [6, 7]. Half lightlike submanifold M is a lightlike submanifold of codimension 2 such that $\text{rank}\{\text{Rad}(TM)\} = 1$, where $\text{Rad}(TM) = TM \cap TM^\perp$ is the radical distribution of M. It is a special case of general r-lightlike submanifolds [4] such that $r = 1$. Its geometry is more general than that of lightlike hypersurfaces or coisotropic submanifolds which are lightlike submanifolds M of codimension 2 such that $\text{rank}\{\text{Rad}(TM)\} = 2$. Much of its theory will be immediately generalized in a formal way to r-lightlike submanifolds.

In this paper, we study half lightlike submanifolds of an indefinite Kaehler manifold \tilde{M} of a quasi-constant curvature such that ζ is non-screenable to M, that is, ζ belongs to the orthogonal complement $S(TM)^\perp$ of the screen distribution $S(TM)$. A half lightlike submanifold M of \tilde{M} with the non-screenable characteristic vector field ζ is called \textit{non-screenable}. First, we provide a new result for such a half lightlike submanifold. Next, we investigate a statical half lightlike submanifold M of \tilde{M} subject such that (1) the screen distribution $S(TM)$ is totally umbilical, or (2) M is screen homothetic.

2 Preliminaries

Let (M, g) be a codimension 2 half lightlike submanifold of a semi-Riemannian manifold (\tilde{M}, \tilde{g}) equipped with the tangent bundle TM, the normal bundle TM^\perp, the radical distribution $\text{Rad}(TM) = TM \cap TM^\perp$, a screen distribution $S(TM)$, and a coscreen distribution $S(TM^\perp)$ such that

$$TM = \text{Rad}(TM) \oplus_{\text{orth}} S(TM), \quad TM^\perp = \text{Rad}(TM) \oplus_{\text{orth}} S(TM^\perp),$$

where \oplus_{orth} denotes the orthogonal direct sum. Denote by $F(M)$ the algebra of smooth functions on M and by $\Gamma(E)$ the $F(M)$ module of smooth sections of a vector bundle E. Also denote by (2.6)$_1$ the first equation of the two equations in (2.6). We use same notations for any others. Choose $L \in \Gamma(S(TM^\perp))$ as a unit spacelike vector field, i.e., $\tilde{g}(L, L) = 1$, without loss of generality.

Consider the orthogonal complementary distribution $S(TM)^\perp$ to $S(TM)$ in TM, of rank 3. Certainly the vector fields ξ and L belong to $\Gamma(S(TM^\perp))$. Hence we have the following orthogonal decomposition

$$S(TM)^\perp = S(TM^\perp) \oplus_{\text{orth}} S(TM^\perp)^\perp,$$

where $S(TM^\perp)^\perp$ is the orthogonal complementary to $S(TM^\perp)$ in $S(TM)^\perp$, of rank 2. It is known [5] that, for any null section ξ of $\text{Rad}(TM)$, there exists a
Denote by \mathcal{N} the uniquely defined null vector field N in $S(TM^{\perp})$ satisfying

$$\bar{g}(\xi, N) = 1, \quad \bar{g}(N, N) = \bar{g}(N, X) = \bar{g}(N, L) = 0, \quad \forall X \in \Gamma(S(TM)).$$

Denote by $ltr(TM)$ the subbundle of $S(TM^{\perp})$ locally spanned by N. Then we show that $S(TM^{\perp}) = \text{Rad}(TM) \oplus ltr(TM)$. Let $tr(TM) = S(TM^{\perp}) \oplus_{\text{orth}} ltr(TM)$. Then we call N, $ltr(TM)$ and $tr(TM)$ the lightlike transversal vector bundle, lightlike transversal vector bundle and transversal vector bundle of M with respect to the screen distribution $S(TM)$ respectively.

From now and in the sequel, let X, Y, Z and W be the vector fields on M, unless otherwise specified. Let $\bar{\nabla}$ be the Levi-Civita connection of \bar{M} and P the projection morphism of TM on $S(TM)$. Then the local Gauss and Weingarten formulas of M and $S(TM)$ are given by

\begin{align*}
\bar{\nabla}_XY &= \nabla_XY + B(X,Y)N + D(X,Y)L, \\
\bar{\nabla}_XN &= -A_NX + \tau(X)N + \rho(X)L, \\
\bar{\nabla}_XL &= -A_LX + \phi(X)N;
\end{align*}

\begin{align*}
\bar{\nabla}_XPY &= \nabla_XPY + C(X, PY)\xi, \\
\bar{\nabla}_X\xi &= -A_\xi X - \tau(X)\xi,
\end{align*}

respectively, where ∇ and ∇^* are the induced connections on TM and $S(TM)$ respectively, B and D are called the local second fundamental forms of M, C is called the local screen second fundamental form on $S(TM)$, A_N, A_ξ and A_L are called the shape operators, and τ, ρ and ϕ are 1-forms on TM.

Since the connection ∇ is torsion-free, its induced connection ∇^* is also torsion-free, and B and D are symmetric. The above local second fundamental forms of M and $S(TM)$ are related to their shape operators by

\begin{align*}
B(X,Y) &= g(A_\xi^*X, Y), \\
C(X, PY) &= g(A_NX, PY), \\
D(X, Y) &= g(A_LX, Y) - \phi(X)\eta(Y),
\end{align*}

\begin{align*}
\bar{g}(A_\xi^*X, N) &= 0, \\
\bar{g}(A_NX, N) &= 0, \\
\bar{g}(A_LX, N) &= \rho(X),
\end{align*}

here η is a 1-form such that $\eta(X) = \bar{g}(X, N)$. From (2.6)$_1$ and (2.8)$_1$, we get

$$B(X, \xi) = 0, \quad D(X, \xi) = -\phi(X).$$

(2.9)

Both A_ξ and A_N are $S(TM)$-valued, and A_ξ^* is self-adjoint such that

$$A_\xi^*\xi = 0.$$

(2.10)

The induced connection ∇ of M is not a metric connection and satisfies

$$(\nabla_X\bar{g})(Y, Z) = B(X, Y)\eta(Z) + B(X, Z)\eta(Y).$$

(2.11)
Denote by \bar{R}, R and R^* the curvature tensors of ∇, ∇ and ∇^* respectively. Using the Gauss-Weingarten formulas, we have Gauss-Codazzi equations:

$$\bar{R}(X, Y)Z = R(X, Y)Z + B(X, Z)A_N Y - B(Y, Z)A_N X$$
$$+ D(X, Z)A_L Y - D(Y, Z)A_L X$$ \hfill (2.12)
$$+ \{(\nabla_X B)(Y, Z) - (\nabla_Y B)(X, Z)$$
$$+ \tau(X)B(Y, Z) - \tau(Y)B(X, Z)$$
$$+ \phi(X)D(Y, Z) - \phi(Y)D(X, Z)\} N$$
$$+ \{(\nabla_X D)(Y, Z) - (\nabla_Y D)(X, Z) + \rho(X)B(Y, Z)$$
$$- \rho(Y)B(X, Z)\} L,$nabla_X(A_N Y) + \nabla_Y(A_N X) + A_N[X, Y]$$
$$+ \tau(X)A_N Y - \tau(Y)A_N X + \rho(X)A_L Y - \rho(Y)A_L X$$
$$+ \{B(Y, A_N X) - B(X, A_N Y) + 2d\tau(X, Y)$$
$$+ \phi(X)\rho(Y) - \phi(Y)\rho(X)\} N$$
$$+ \{D(Y, A_N X) - D(X, A_N Y) + 2d\rho(X, Y)$$
$$+ \rho(X)\tau(Y) - \rho(Y)\tau(X)\} L,$$ \hfill (2.13)
$$R(X, Y)PZ = R^*(X, Y)PZ + C(X, PZ)A^*_{\xi} Y - C(Y, PZ)A^*_{\xi} X$$
$$+ \{(\nabla_X C)(Y, PZ) - (\nabla_Y C)(X, PZ)$$
$$- \tau(X)C(Y, PZ) + \tau(Y)C(X, PZ)\} \xi,$nabla_X(A^*_{\xi} Y) + \nabla_Y(A^*_{\xi} X) + A^*_{\xi}[X, Y]$$
$$- \tau(X)A^*_{\xi} Y + \tau(Y)A^*_{\xi} X$$
$$+ \{C(Y, A^*_{\xi} X) - C(X, A^*_{\xi} Y) - 2d\tau(X, Y)\} \xi.$$ \hfill (2.14)
$$R(X, Y) = -\nabla_X(A^*_{\xi} Y) + \nabla_Y(A^*_{\xi} X) + A^*_{\xi}[X, Y]$$
$$- \tau(X)A^*_{\xi} Y + \tau(Y)A^*_{\xi} X$$
$$+ \{C(Y, A^*_{\xi} X) - C(X, A^*_{\xi} Y) - 2d\tau(X, Y)\} \xi.$$ \hfill (2.15)

In case $R = 0$, we say that M is flat.

The Ricci tensor of \bar{M}, denote it by \bar{Ric}, is defined by

$$\bar{Ric}(X, Y) = trace\{Z \rightarrow \bar{R}(X, Z)Y\}, \forall X, Y, Z \in \Gamma(TM).$$

Denote by $R^{(0, 2)}$ the induced tensor of type $(0, 2)$ on M such that

$$R^{(0, 2)}(X, Y) = trace\{Z \rightarrow R(X, Z)Y\}, \forall X, Y, Z \in \Gamma(TM).$$ \hfill (2.16)

Using (2.6)~(2.8) and the Gauss equation (2.12), we get

$$R^{(0, 2)}(X, Y) = \bar{Ric}(X, Y) + B(X, Y)tr A_N + D(X, Y)tr A_L$$
$$- g(A_N X, A^*_{\xi} Y) - g(A_L X, A^*_{\xi} Y) + \rho(X)\phi(Y)$$
$$- g(\bar{R}(\xi, Y)X, N) - g(\bar{R}(L, Y)X, L).$$ \hfill (2.17)

Using the lightlike transversal part of (2.13) and the Bianchi’s identity, we get

$$R^{(0, 2)}(X, Y) - R^{(0, 2)}(Y, X) = 2d\tau(X, Y).$$
This shows that, in general, \(R^{(0,2)} \) is not symmetric. A tensor field \(R^{(0,2)} \) of \(M \), given by (2.16), is called its \textit{induced Ricci tensor} and denote it by \(Ric \) if it is symmetric. In this case, \(M \) is called \textit{Ricci flat} if \(Ric = 0 \). \(M \) is called an \textit{Einstein manifold} if there exists a smooth function \(\kappa \) such that

\[
Ric = \kappa g.
\]

(2.18)

Let \(\nabla^\ell X_N = \pi(\nabla_X N) \), where \(\pi \) is the projection morphism of \(T\bar{M} \) on \(ltr(TM) \). Then \(\nabla^\ell \) is a linear connection on \(ltr(TM) \). We say that \(\nabla^\ell \) is the \textit{lightlike transversal connection} of \(M \). We define a curvature tensor \(\tensor{R}{^\ell} \) by

\[
\tensor{R}{^\ell}(X,Y)N = \nabla^\ell_X \nabla^\ell_Y N - \nabla^\ell_Y \nabla^\ell_X N - \nabla^\ell_{[X,Y]} N.
\]

If \(\tensor{R}{^\ell} \) vanishes identically, then the lightlike transversal connection \(\nabla^\ell \) is said to be \textit{flat}. We quote the following result (see [10, 11]).

Theorem 2.1. Let \(M \) be a half lightlike submanifold of a semi-Riemannian manifold \((\bar{M}, \bar{g}) \). The following statements are equivalent:

(i) The lightlike transversal connection of \(M \) is flat, i.e., \(\tensor{R}{^\ell} = 0 \).

(ii) The 1-form \(\tau \) is closed, i.e., \(d\tau = 0 \), on any \(U \subset M \).

(iii) The tensor field \(R^{(0,2)} \) of \(M \) is an induced Ricci tensor of \(M \).

Note 1. \(d\tau \) is independent to the choice of the section \(\xi \in \Gamma(TM^\bot) \). Indeed, suppose \(\tau \) and \(\bar{\tau} \) are 1-forms with respect to the sections \(\xi \) and \(\bar{\xi} \), respectively, by directed calculation, we show that \(d\tau = d\bar{\tau} \) [5]. In case \(d\tau = 0 \), by the cohomology theory, there exists a smooth function \(f \) such that \(\tau = df \). Thus \(\tau(X) = X(f) \). If we take \(\bar{\xi} = \lambda \xi \), it follows that \(\tau(X) = \bar{\tau}(X) + X(\ln \lambda) \). Setting \(\lambda = \exp(f) \) in this equation, we get \(\bar{\tau}(X) = 0 \). Thus if \(d\tau = 0 \), then we can take a 1-form \(\tau \) such that \(\tau = 0 \). We call the pair \(\{\xi, N\} \) such that the corresponding 1-form \(\tau \) vanishes the \textit{canonical null pair} of \(M \).

3 Non-screenable half lightlike submanifolds

Let \(\bar{M} = (\bar{M}, \bar{g}, J) \) be an indefinite Kaehler manifold, where \(\bar{g} \) is a semi-Riemannian metric and \(J \) is an almost complex structure such that

\[
J^2 = -I, \quad \bar{g}(JX, JY) = \bar{g}(X, Y), \quad (\nabla_X J)Y = 0,
\]

(3.1)

for all \(X, Y \in \Gamma(T\bar{M}) \). Let \((M, g) \) be a half lightlike submanifold of \(\bar{M} \), where \(g \) is a degenerate metric on \(M \) induced by \(\bar{g} \). Due to [8, 9], we choose a screen distribution \(S(TM) \) such that \(J(Rad(TM)), J(ltr(TM)) \) and \(J(S(TM^\bot)) \) are vector subbundles of \(S(TM) \). In this case, \(S(TM) \) is expressed as follow:

\[
S(TM) = \{J(Rad(TM)) \oplus J(ltr(TM))\} \oplus_{\text{orth}} J(S(TM^\bot)) \oplus_{\text{orth}} H_o,
\]
where \(H_0 \) is a non-degenerate and almost complex distribution with respect to \(J \), i.e., \(J(H_0) = H_0 \). The tangent bundle \(TM \) is decomposed as follow:

\[
TM = H \oplus J(ltr(TM)) \oplus_{\text{orth}} J(S(TM^\perp)),
\]

(3.2)

where \(H \) is a 2-lightlike almost complex distribution on \(M \) such that

\[
H = \text{Rad}(TM) \oplus_{\text{orth}} J(\text{Rad}(TM)) \oplus_{\text{orth}} H_0.
\]

Consider two null and one spacelike vector fields \(\{U, V\} \) and \(W \) such that

\[
U = -JN, \quad V = -J\xi, \quad W = -JL,
\]

(3.3)

respectively. Denote by \(S \) the projection morphism of \(TM \) on \(H \). By (3.2), for any vector field \(X \) on \(M \), the vector field \(JX \) is decomposed as

\[
JX = FX + u(X)N + w(X)L,
\]

(3.4)

where \(u, v \) and \(w \) are 1-forms locally defined on \(M \) by

\[
u(X) = g(X, V), \quad v(X) = g(X, U), \quad w(X) = g(X, W),
\]

(3.5)

and \(F \) is a tensor field of type \((1, 1)\) globally defined on \(M \) by

\[
F = J \circ S.
\]

Applying \(\nabla_X \) to (3.3) and using the Gauss-Weingarten formulas, we have

\[
B(X, U) = C(X, V), \quad C(X, W) = D(X, U),
\]

(3.6)

\[
D(X, V) = B(X, W),
\]

\[
\nabla_X U = F(A_\xi X) + \tau(X)U + \rho(X)W, \quad \nabla_X V = F(A_\xi X) - \tau(X)V - \phi(X)W,
\]

(3.7)

\[
\nabla_X W = F(A_L X) + \phi(X)U.
\]

(3.8)

\[
\nabla_X W = F(A_L X) + \phi(X)U.
\]

(3.9)

Definition 1. We say that \(\zeta \) is *non-screenable* to \(M \) if it belongs to the orthogonal complement \(S(TM)^\perp \) of the screen distribution \(S(TM) \). In this case, \(M \) is called an non-screenable half lightlike submanifold.

As \(S(TM)^\perp = S(TM^\perp) \oplus_{\text{orth}} \text{Rad}(TM) \oplus ltr(TM) \), \(\zeta \) is decomposed as

\[
\zeta = eL + \alpha \xi + \beta N,
\]

(3.10)

where \(e, \alpha \) and \(\beta \) are smooth functions such that \(e = \theta(L) \), \(\alpha = \theta(N) \) and \(\beta = \theta(\xi) \). From (3.10) and the fact that \(\bar{g}(\zeta, \zeta) = 1 \), we see that

\[
e^2 + 2\alpha \beta = 1, \quad \theta(X) = \beta \eta(X), \quad \theta(PX) = 0
\]

and \((e, \alpha, \beta) \neq (0, 0, 0) \). In case \(e = 0 \), \(M \) is called an ascreenable half lightlike submanifold. In case \(\alpha = 0 \), \(M \) is called a transversal half lightlike submanifold.
Theorem 3.1. Let \(M \) be an non-screenable half lightlike submanifold of an indefinite Kaehler manifold \(\bar{M} \) of a quasi-constant curvature. Then \(f_1 = 0 \) and \(f_2\theta = 0 \). Therefore the curvature tensor \(\bar{R} \) of \(\bar{M} \) satisfies \(\bar{R} = 0 \) on \(\bar{M} \).

Proof. Comparing the tangential, lightlike transversal and co-screen components of the two equations (1.1) and (2.12), we obtain

\[
R(X, Y)Z = \frac{f_1}{f_2}\{\bar{g}(Y, Z)X - \bar{g}(X, Z)Y\} + f_2\{[\theta(Y)X - \theta(X)Y]\theta(Z) + \alpha[g(Y, Z)\theta(X) - g(X, Z)\theta(Y)]\xi\}
\]

\((\nabla_X B)(Y, Z) - (\nabla_Y B)(X, Z) + \tau(X)B(Y, Z) - \tau(Y)B(X, Z)\) (3.11)

\[
+ \phi(X)D(Y, Z) - \phi(Y)D(X, Z)
= \beta f_2\{g(Y, Z)\theta(X) - g(X, Z)\theta(Y)\}.
\]

\((\nabla_X D)(Y, Z) - (\nabla_Y D)(X, Z) + \rho(X)B(Y, Z) - \rho(Y)B(X, Z)\) (3.12)

\[
= \epsilon f_2\{g(Y, Z)\theta(X) - g(X, Z)\theta(Y)\}.
\]

Taking the scalar product with \(N \) to (2.14), we have

\[
g(R(X, Y)PZ, N) = (\nabla_X C)(Y, PZ) - (\nabla_Y C)(X, PZ) - \tau(X)C(Y, PZ) + \tau(Y)C(X, PZ).
\]

Substituting (3.11) into the last equation and using (2.7) and (2.8), we get

\[
(\nabla_X C)(Y, PZ) - (\nabla_Y C)(X, PZ) \quad (3.13)
- \tau(X)C(Y, PZ) + \tau(Y)C(X, PZ)
- \rho(X)D(Y, PZ) + \rho(Y)D(X, PZ)
= f_1\{g(Y, PZ)\eta(X) - g(X, PZ)\eta(Y)\}
+ \alpha f_2\{\theta(X)g(Y, PZ) - \theta(Y)g(X, PZ)\}.
\]

Applying \(\nabla_X \) to (3.6) \(_1 \): \(B(Y, U) = C(Y, V) \), we have

\[
(\nabla_X B)(Y, U) = (\nabla_X C)(Y, V) + g(A_N Y, \nabla_X V) - g(A_N Y, \nabla_X U).
\]

Using (3.1), (3.4) and (3.6)~(3.8), the last equation is reduced to

\[
(\nabla_X B)(Y, U) = (\nabla_X C)(Y, V) - 2\tau(X)C(Y, V) - \phi(X)D(Y, U) - \rho(X)D(Y, V)
- g(A_N^2 X, F(A_N Y)) - g(A_N^2 Y, F(A_N X)).
\]
Substituting this equation into (3.12) such that $Z = U$, we get
\[
(\nabla_X C)(Y, V) - (\nabla_Y C)(X, V) - \tau(X)C(Y, V) + \tau(Y)C(X, V) \\
- \rho(X)D(Y, V) + \rho(Y)D(X, V)
\]
\[= \beta f_2\{\theta(X)v(Y) - \theta(Y)v(X)\}.
\]
Comparing this equation with (3.14) such that $PZ = V$, we get
\[\beta f_2\{\theta(X)v(Y) - \theta(Y)v(X)\} = f_1\{\eta(X)u(Y) - \eta(Y)u(X)\} + \alpha f_2\{\theta(X)u(Y) - \theta(Y)u(X)\}.
\]
Taking $X = \xi$, $Y = V$ and $X = \xi$, $Y = U$ to (3.15) by turns, we get
\[\beta f_2 = 0, \quad f_1 + \alpha \beta f_2 = 0.
\]
From these two equations, we get $f_1 = 0$ and $\beta f_2 = 0$.

Applying ∇_X to (3.6)$_2$: $D(Y, U) = C(Y, W)$, we have
\[
(\nabla_X D)(Y, U) = (\nabla_X C)(Y, W) + \phi(Y)C(X, U) \\
+ g(A_\gamma Y, \nabla_X W) - g(A_\gamma Y, \nabla_X U).
\]
Using (3.1), (3.4) and (3.6)~(3.8), the last equation is reduced to
\[
(\nabla_X D)(Y, U) = (\nabla_X C)(Y, W) - \tau(X)C(Y, W) - \rho(X)D(Y, W) \\
- \rho(X)B(Y, U) + \phi(X)C(Y, U) - \phi(Y)C(X, U) \\
- g(A_\gamma X, F(A_\gamma Y)) - g(A_\gamma Y, F(A_\gamma X)).
\]
Substituting this equation into (3.13) such that $Z = U$, we get
\[
(\nabla_X C)(Y, W) - (\nabla_Y C)(X, W) - \tau(X)C(Y, W) + \tau(Y)C(X, W) \\
- \rho(X)D(Y, W) + \rho(Y)D(X, W)
\]
\[= ef_2\{v(Y)\theta(X) - v(X)\theta(Y)\}.
\]
Comparing this equation with (3.14) such that $f_1 = 0$ and $PZ = V$, we get
\[ef_2\{\theta(X)v(Y) - \theta(Y)v(X)\} = \alpha f_2\{\theta(X)w(Y) - \theta(Y)w(X)\}.
\]
Taking $Y = V$ and $Y = W$ to (3.16) by turns, we have
\[ef_2\theta(X) = 0, \quad \alpha f_2\theta(X) = 0, \quad \forall X \in \Gamma(TM).
\]
In case $\alpha = 0$: As $\bar{g}(\zeta, \zeta) = 1$, we have $e^2 = 1$. We may assume that $e = 1$, without loss of generality. In this case, we have $f_2\theta(X) = 0$.

In case $e = 0$: As $\bar{g}(\zeta, \zeta) = 1$, we have $2\alpha \beta = 1$. Thus we show that $\alpha \neq 0$ and $\beta \neq 0$. Taking the product with 2β to $\alpha f_2\theta(X) = 0$, we have $f_2\theta(X) = 0$.

In case $e \neq 0$ and $\alpha \neq 0$: Taking the product with e to $ef_2\theta(X) = 0$, we have $e^2 f_2\theta(X) = 0$. Also taking the product with 2β to $\alpha f_2\theta(X) = 0$, we get $2\alpha \beta f_2\theta(X) = 0$. Adding the resulting two equations and using the fact that $e^2 + 2\alpha \beta = 1$, we obtain $f_2\theta(X) = 0$. Therefore, by (1.1), the curvature tensor \bar{R} of M satisfies $\bar{R} = 0$ on M.

Dae Ho Jin
4 Totally umbilical screen distribution

As \(\bar{R} = 0 \) on \(M \) by Theorem 3.1, (2.17) is reduced to

\[
R^{(0,2)}(X,Y) = B(X,Y)\text{tr} A_N + D(X,Y)\text{tr} A_L + \rho(X)\phi(Y) \tag{4.1}
\]

\[
- g(A_N X, A^*_N Y) - g(A_L X, A^*_L Y).
\]

Definition 2. A half lightlike submanifold \(M \) of a semi-Riemannian manifold \((\bar{M}, \bar{g}) \) is called *statical* \([12, 13]\) if \(\bar{\nabla}_X \xi \in \Gamma(S(TM)) \) for any \(X \in \Gamma(TM) \).

From (2.3) and (2.8), we show that the above definition is equivalent to the following two conditions: \(\phi = 0 \) and \(\rho = 0 \). Note that the first condition \(\phi = 0 \) is equivalent to the conception that \(M \) is *irrotational*, i.e., \(\bar{\nabla}_X \xi \in \Gamma(TM) \) \([15]\). The second condition \(\rho = 0 \) is equivalent to the conception that \(M \) is *solenoidal*, i.e., \(A_L X \in \Gamma(S(TM)) \) \([14]\).

Definition 3. A screen distribution \(S(TM) \) is called *totally umbilical* \([4, 9]\) in \(M \) if there exists a smooth function \(\gamma \) such that \(A_N X = \gamma P X \), or equivalently,

\[
C(X, PY) = \gamma g(X, Y). \tag{4.2}
\]

In case \(\gamma = 0 \), we say that \(S(TM) \) is *totally geodesic* in \(M \).

Theorem 4.1. Let \(M \) be an irrotational non-screenable half lightlike submanifold of an indefinite Kähler manifold \(\bar{M} \) of a quasi-constant curvature. If \(S(TM) \) is totally umbilical, then the following properties are satisfied

1. \(S(TM) \) is totally geodesic and parallel distribution,
2. \(M \) is locally a product manifold \(C_\xi \times M^* \), where \(C_\xi \) is a null geodesic tangent to \(\text{Rad}(TM) \) and \(M^* \) is a leaf of \(S(TM) \),
3. the curvature tensor \(R \) of \(M \) is of the form
 \[
 R(X,Y)Z = D(Y,Z)A_L X - D(X,Z)A_L Y,
 \]
4. \(d\tau = 0 \), \(R^{(0,2)} \) is symmetric and the transversal connection is flat.
5. Moreover, if \(M \) is an Einstein manifold, then \(M \) is Ricci flat.

Proof. Applying \(\nabla_X \) to \(C(Y, PZ) = \gamma g(Y, PZ) \) and using (2.11), we have

\[
(\nabla_X C)(Y, PZ) = (X\gamma)g(Y, PZ) + \gamma B(X, PZ)\eta(Y).
\]

Substituting this and (4.2) into (3.14) such that \(f_1 = 0 \), we obtain

\[
\{X\gamma - \gamma\tau(X)\}g(Y, PZ) - \{Y\gamma - \gamma\tau(Y)\}g(X, PZ)
+ \gamma\{B(X, PZ)\eta(Y) - B(Y, PZ)\eta(X)\}
- \rho(X)D(Y, PZ) + \rho(Y)D(X, PZ) = 0.
\]
Replacing Y by ξ to this and using (2.9) and the fact that $\phi = 0$, we see that
\[
\gamma B(X, Y) + \rho(\xi) D(X, Y) = \{\xi \gamma - \gamma \tau(\xi)\} g(X, Y).
\]
Taking $Y = U$ to this equation and using (3.5), (3.6)$_1$, and (4.2), we have
\[
\gamma^2 u(X) + \gamma \rho(\xi) w(X) = \{\xi \gamma - \gamma \tau(\xi)\} v(X). \tag{4.3}
\]
(1) Replacing X by U to (4.3), we get $\gamma = 0$. Thus $S(TM)$ is totally geodesic. As $C = 0$, from (2.3) we see that $S(TM)$ is a parallel distribution.

(2) As $S(TM)$ is a parallel distribution, $\text{Rad}(TM)$ is also an auto-parallel distribution by (2.5) and (2.10), and $TM = \text{Rad}(TM) \oplus S(TM)$, by the decomposition theorem [3], M is locally a product manifold $C_{\xi} \times M^*$, where C_{ξ} is a null geodesic tangent to $\text{Rad}(TM)$ and M^* is a leaf of $S(TM)$.

(3) As $f_1 = f_2 \theta = A_N = 0$, from (3.11), the curvature tensor R is given by
\[
R(X, Y)Z = D(Y, Z)A_LX - D(X, Z)A_LY.
\]

(4) As $A_N = \phi = 0$, (4.1) is reduced to
\[
R^{(0, 2)}(X, Y) = D(X, Y)tr A_L - g(A_L X, A_L Y). \tag{4.4}
\]
Thus $R^{(0, 2)}$ is symmetric induced Ricci tensor of M. By Theorem 2.1, $d\tau = 0$ and the transversal connection is flat.

(5) As $C = 0$, using (2.8) and (3.6)$_2$, we have
\[
D(X, U) = 0, \quad A_L X = \rho(X) \xi. \tag{4.5}
\]
Substituting (2.18) into (4.4) such that $X = V$ and $Y = U$ and using (4.5), we obtain $\kappa = 0$. Therefore, M is Ricci flat.

Denote by $G = J(\text{Rad}(TM)) \oplus_{\text{orth}} J(S(TM^\perp)) \oplus_{\text{orth}} H_0$. Then G is a complementary vector subbundle to $J(ltr(TM))$ in $S(TM)$ and we have
\[
S(TM) = J(ltr(TM)) \oplus G.
\]

Theorem 4.2. Let M be a statical non-screenable half lightlike submanifold of an indefinite Kaehler manifold \bar{M} of quasi-constant curvature. If $S(TM)$ is totally umbilical, then M is locally a product manifold $C_{\xi} \times C_{\nu} \times M^2$, where C_{ξ} and C_{ν} are null geodesics tangent to $\text{Rad}(TM)$ and $J(ltr(TM))$ respectively and M^2 is a leaf of the distribution G of M.

Proof. By (4) of Theorem 4.1, we get $d\tau = 0$. Thus we can take $\tau = 0$ by Note 1, without loss generality. Also as $A_N = \rho = 0$, from (3.7), we have
\[
\nabla_X U = 0. \tag{4.6}
\]
Thus $J(ltr(TM))$ is parallel. From (2.5) and (2.10), $Rad(TM)$ is also parallel. For any $X \in \Gamma(G)$ and $Y \in \Gamma(H_o)$, using (4.6), we derive
\[g(\nabla_X Y, U) = 0, \quad g(\nabla_X V, U) = 0, \quad g(\nabla_X W, U) = 0. \]
Thus G is also parallel. By the decomposition theorem of de Rham [3], M is locally a product manifold $C_\xi \times C_\mu \times M^2$, where C_ξ and C_μ are null geodesics tangent to $Rad(TM)$ and $J(ltr(TM))$ respectively and M^2 is a leaf of G.

5 Screen homothetic submanifolds

Definition 4. A half lightlike submanifold M is called *screen homothetic* [1, 6] if there exists a non-zero constant φ such that $A_N = \varphi A^*_\xi$, or equivalently,
\[C(X, PY) = \varphi B(X, Y). \tag{5.1} \]

Note 2. As $A_N = \varphi A^*_\xi$, the form (4.1) of the tensor field $R^{0,2}$ is reduced to
\[R^{0,2}(X, Y) = B(X, Y) tr A_N + D(X, Y) tr A_L + \rho(X) \phi(Y) \tag{5.2} \]
\[- \varphi(g(A^*_\xi X, A^*_\xi Y)) - g(A_L X, A_L Y). \]

It follows that if M is statical, then $R^{0,2}$ is symmetric. Thus $d\tau = 0$ and the transversal connection is flat. As $d\tau = 0$, we can take $\tau = 0$ by Note 1.

As $\{U, V\}$ is a null basis of $J(Rad(TM)) \oplus J(ltr(TM))$, let
\[\mu = U - \varphi V, \quad \nu = U + \varphi V, \]
$\{\mu, \nu\}$ form an orthogonal basis of $J(Rad(TM)) \oplus J(ltr(TM))$. From (2.6), (2.8), (3.6), (5.1) and the fact that $\rho = 0$, we see that
\[B(X, \mu) = 0, \quad D(X, \mu) = 0, \quad A^*_\xi \mu = 0, \quad A_L \mu = 0. \tag{5.3} \]

Let $\mathcal{H}' = Span\{\mu\}$. Then $\mathcal{H} = H_o \oplus_{\text{orth}} J(S(TM^\perp)) \oplus_{\text{orth}} Span\{\nu\}$ is a complementary vector subbundle to \mathcal{H}' in $S(TM)$ and we have
\[S(TM) = \mathcal{H}' \oplus_{\text{orth}} \mathcal{H}. \tag{5.4} \]

Theorem 5.1. Let M be a statical non-screenable screen homothetic half lightlike submanifold of an indefinite Kaehler manifold \bar{M} of quasi-constant curvature. Then M is locally a product manifold $C_\xi \times C_\mu \times M^2$, where C_ξ and C_μ are null and non-null geodesics tangent to $Rad(TM)$ and \mathcal{H}', respectively and M^2 is a leaf of the distribution \mathcal{H} of M.
Proof. Using (3.7), (3.8) and the fact that F is linear operator, we have

$$\nabla_{X} \mu = 0.$$ \hfill (5.5)

This implies that \mathcal{H}' is parallel. From (2.5) and (2.10), $\text{Rad}(TM)$ is also parallel. For any $X \in \Gamma(\mathcal{H})$ and $Y \in \Gamma(D_{0})$, using (5.5), we derive

$$g(\nabla_{X} Y, \mu) = 0, \quad g(\nabla_{X} V, \mu) = 0, \quad g(\nabla_{X} W, \mu) = 0.$$

Thus \mathcal{H} is also a parallel distribution. By the decomposition theorem [3], M is locally a product manifold $C_{\xi} \times C_{\mu} \times M^{3}$, where C_{ξ} and C_{μ} are null and non-null geodesics tangent to $\text{Rad}(TM)$ and \mathcal{H}' respectively and M^{3} is a leaf of \mathcal{H}.

Theorem 5.2. Let M be a statical non-screenable screen homothetic Einstein half lightlike submanifold of an indefinite Kaehler manifold \bar{M} of a quasi-constant curvature. Then M is Ricci flat, i.e., $\kappa = 0$.

Proof. Since M is Einstein manifold, (5.2) is reduced to

$$g(A_{L} X, A_{L} Y) + \varphi g(A_{\xi}^{*} X, A_{\xi}^{*} Y) - g(A_{\xi}^{*} X, Y) tr A_{N} - g(A_{L} X, Y) tr A_{L} + \kappa g(X, Y) = 0.$$

Put $X = Y = \mu$ and using (5.3)$_{3,4}$, we have $\kappa = 0$. Thus M is Ricci flat.

References

Received: October 5, 2015; Published: December 2, 2015