On a Generalization of Rubel’s Equation

Yuriy Linchuk

Department of Mathematical Analysis
Chernivtsi National University
Kotsjubyns’koho 2, Chernivtsi 58012, Ukraine

Copyright © 2015 Yuriy Linchuk. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

All pairs linear functionals on the space $\mathcal{H}(G)$ which satisfy generalized Rubel’s equation are described.

Mathematics Subject Classification: 47B38, 47A62, 30D05

Keywords: space of analytic functions, Rubel’s equation, functional equation

1 Introduction

Let G be an arbitrary domain of the complex plane. Let $\mathcal{H}(G)$ denote the space of all analytic functions in G equipped with the topology of compact convergence. In [1], L.A. Rubel posed and solved the problem of finding all pairs of linear continuous functionals L and M on the space $\mathcal{H}(G)$ that satisfy the relation

$$L(fg) = L(f)M(g) + L(g)M(f)$$ (1)

for arbitrary functions f and g of $\mathcal{H}(G)$. Nandakumar [2] solved the Rubel problem in the class of linear functionals on the space $\mathcal{H}(G)$. Further investigations related to the description of pairs of linear functionals on the space $\mathcal{H}(G)$ that satisfy similar relations were carried out by Nandakumar and Kannappan in [3]-[4]. These results were systematized in [5].
In the light of the above-mentioned results there naturally arises the problem of finding of all linear functionals L, M, N on $\mathcal{H}(G)$ that satisfy

$$L(fg) = L(f)M(g) + L(g)N(f)$$ \hspace{1cm} (2)

for arbitrary f and g of $\mathcal{H}(G)$.

The purpose of this paper is to solve this problem. Note that in the case when $M = N$ the equation (2) coincides with Rubel’s equation (1).

2 Main Results

Assume that linear functionals L, M, N on $\mathcal{H}(G)$ satisfy (2) for any $f, g \in \mathcal{H}(G)$. Setting $f = g = 1$ in (2) we get

$$L(1)(1 - M(1) - N(1)) = 0.$$ \hspace{1cm} (3)

Let us consider the following two possible cases:

Assume $L(1) \neq 0$. Then (3) implies that $M(1) + N(1) = 1$. Setting $g = 1$ in (2) we get

$$L(f)N(1) = L(1)N(f),$$ \hspace{1cm} (4)

for any $f \in \mathcal{H}(G)$.

We first consider the case $N(1) = 0$. Then $N(f) = 0$ for any $f \in \mathcal{H}(G)$. Then (2) takes the form $L(fg) = L(f)M(g)$, where $f, g \in \mathcal{H}(G)$. Setting $f = g = 1$ in the previous relation we get $L(g) = CM(g)$, where $C = L(1) \neq 0$, $g \in \mathcal{H}(G)$. Then the relation $L(fg) = L(f)M(g)$ implies $M(fg) = M(f)M(g)$ for $f, g \in \mathcal{H}(G)$. Hence, M is a multiplicative functional on $\mathcal{H}(G)$. Using the description of all multiplicative functionals on $\mathcal{H}(G)$ \[6\] we get either $M = 0$, or $M(f) = f(z_0)$, $z_0 \in G$. The first of these cases is not possible because $L \neq 0$. In the second case the relation $L(g) = CM(g)$ implies that $L(f) = Cf(z_0)$, where $C \in \mathbb{C}$, $C \neq 0$. Then (2) implies that $N = 0$. Thus, we obtain $L(f) = Cf(z_0)$, $M(f) = f(z_0)$, $N = 0$, where $z_0 \in G$, $C \in \mathbb{C}$, $C \neq 0$.

Now consider the case $N(1) \neq 0$. Then (4) implies that $L(f) = CN(f)$, where $C = \frac{L(1)}{N(1)}$, $C \neq 0$. Then (2) takes the form:

$$N(fg) = N(f)M(g) + N(g)N(f),$$ \hspace{1cm} (5)

$f, g \in \mathcal{H}(G)$. Setting $f = 1$ in (5) we get

$$N(g)(1 - N(1)) = N(1)M(g),$$ \hspace{1cm} (6)

where $g \in \mathcal{H}(G)$. Since $N(1) \neq 0$, (6) implies that $M(g) = \frac{1 - N(1)}{N(1)}N(g)$, $g \in \mathcal{H}(G)$. Then (5) implies that $N_1 = \frac{1}{N(1)}N$ is the multiplicative functional on $\mathcal{H}(G)$. Hence, either $N = 0$, or $N(f) = N(1)f(z_0)$, where $z_0 \in G$. The
first of these cases is not possible because \(N(1) \neq 0 \). In the second case we get \(L(f) = Af(z_0), \ M(f) = (1 - B)f(z_0), \ N(f) = Bf(z_0) \), where \(z_0 \in G, \ A, B \in \mathbb{C} \).

Let us consider the case \(L(1) = 0 \). Setting \(f = 1 \) in (2) we get \(L(g)(1 - N(1)) = 0 \) for any \(g \in \mathcal{H}(G) \). If \(N(1) \neq 1 \), then \(L = 0 \). Therefore, in this case we obtain \(L = 0, \ M, N \), where \(M, N \) are arbitrary linear functionals on the space \(\mathcal{H}(G) \).

Henceforth, suppose that \(L \neq 0 \). Then \(N(1) = 1 \). Since \(L \neq 0 \), setting \(g = 1 \) in (2) we have \(M(1) = 1 \). Therefore, if \(L(1) = 0 \), then \(M(1) = N(1) = 1 \).

We now show that there exists a polynomial of the form \(p(z) = z^2 + bz + c \) which is a zero of each of functionals \(L \) and \(M \). This is equivalent to the fact that the system

\[
\begin{cases}
L(z^2) + bL(z) + cL(1) = 0; \\
M(z^2) + bM(z) + cM(1) = 0,
\end{cases}
\tag{7}
\]

has at least one solution \((b, c)\) in the set of complex numbers. Since \(L(1) = 0 \) and \(L(z^2) = L(z)(M(z) + N(z)) \), the first equation of (7) takes the form \(L(z)(M(z) + N(z) + b) = 0 \). If \(L(z) = 0 \), then \(b \) we can take any complex number. If \(L(z) \neq 0 \), then \(b = -(M(z) + N(z)) \). Hence, we uniquely obtain \(c \) from the second equation of (7).

Since \(L, M, N \) satisfy (2) and \(L \neq 0 \), the constructed polynomial \(p(z) \) has the following properties:

\(\alpha) \ N(p) = 0; \)
\(\beta) \ L(pf) = M(pf) = N(pf) = 0 \) for any \(f \in \mathcal{H}(G) \).

Indeed, setting \(g = p \) in (2) we get \(L(pf) = 0 \) for any \(f \in \mathcal{H}(G) \). Since \(L \neq 0 \), there exists \(g_0 \in \mathcal{H}(G) \) such that \(L(g_0) \neq 0 \). Setting \(f = p, \ g = g_0 \) in (2) we get \(N(p) = 0 \). Hence, the property \(\alpha \) and the first of properties \(\beta \) are proved. Replacing in (2) \(pf \) instead of \(f \) and setting \(g = g_0 \) we get \(N(pf) = 0 \) for any \(f \in \mathcal{H}(G) \). Similarly, we see that \(M(pf) = 0 \) for any \(f \in \mathcal{H}(G) \). Thus, the property \(\beta \) is proved.

Let us consider the following two possible cases.

1) Assume that the polynomial \(p(z) \) has two different real roots \(z_1, z_2 \) i.e., \(p(z) = (z - z_1)(z - z_2) \). We consider different cases of location of \(z_1, z_2 \):

a) suppose that \(z_1 \notin G, \ z_2 \notin G \). The function \(h(z) = \frac{f(z)}{(z-z_1)(z-z_2)} \) belongs to the space \(\mathcal{H}(G) \) for any \(f(z) \in \mathcal{H}(G) \). Using \(\beta \), we obtain that \(L(f) = L(ph) = 0 \) for an arbitrary function \(f \) from \(\mathcal{H}(G) \). We get the contradiction because \(L \neq 0 \).

b) suppose that \(z_1 \in G, \ z_2 \notin G \). Then an arbitrary function \(f \in \mathcal{H}(G) \) we can present in the form \(f(z) = (z - z_1)g_1(z) + f(z_1) \), where \(g_1(z) \in \mathcal{H}(G) \). Then using \(\beta \) and \(L(1) = 0 \) we get \(L(f) = L \left(p(z)\frac{g_1(z)}{z-z_2} + f(z_1) \right) = 0 \) for any \(f \in \mathcal{H}(G) \). We obtain a contradiction, since \(L \neq 0 \).
c) let \(z_2 \in G, \ z_1 \notin G \). Similarly, as in the previous case we get a contradiction.

d) suppose that \(z_1 \in G, \ z_2 \in G \). Then an arbitrary function \(f \in \mathcal{H}(G) \) we can present in the form
\[
 f(z) = (z - z_1)(z - z_2)g_2(z) + \frac{f(z_1) - f(z_2)}{z_1 - z_2}z + \frac{z_1f(z_2) - z_2f(z_1)}{z_1 - z_2}
\]
where \(g_2(z) \) is some function of \(\mathcal{H}(G) \). Using the property \(\beta \), we obtain that for an arbitrary \(f \in \mathcal{H}(G) \) the following equalities hold:
\[
 L(f) = C(f(z_1) - f(z_2))
\]
\[
 M(f) = A_1f(z_1) + A_2f(z_2),
\]
\[
 N(f) = B_1f(z_1) + B_2f(z_2),
\]
where \(A_1, A_2, B_1, B_2, C \in \mathbb{C}, \ C \neq 0 \).

Using (8), (9), (10) we obtain that (2) is equivalent to
\[
 f(z_1)g(z_1) - f(z_2)g(z_2) =
\]
\[
 = (f(z_1) - f(z_2))(A_1g(z_1) + A_2g(z_2)) + (g(z_1) - g(z_2))(B_1f(z_1) + B_2f(z_2))
\]
for any \(f, g \in \mathcal{H}(G) \). Setting \(g(z) = 1 \), \(f(z) = z \) in (11) we get \(A_1 + A_2 = 1 \). Substituting \(f(z) = 1 \), \(g(z) = z \) in (11) we get \(B_1 + B_2 = 1 \). Setting \(f(z) = g(z) = \frac{z - z_2}{z_1 - z_2} \) in (11) we have \(A_1 + B_1 = 1 \). Setting \(f(z) = g(z) = \frac{z - z_1}{z_1 - z_2} \) in (11) we get \(A_2 + B_2 = 1 \). Using the previous equalities we get \(A_1 = B_2, \ A_2 = B_1 \).

Let \(A_1 = B_2 = A \) and \(A_2 = B_1 = B \). Since \(A_1 + A_2 = 1 \), we have \(B = 1 - A \). Thus, there exist \(z_1, z_2 \in G \) and \(A, C \in \mathbb{C} \) such that \(L(f) = C(f(z_1) - f(z_2)) \), \(M(f) = Af(z_1) + (1 - A)f(z_2) \), \(N(f) = (1 - A)f(z_1) + Af(z_2) \) for any \(f \in \mathcal{H}(G) \).

2) Assume now that the polynomial \(p(z) \) is the form \(p(z) = (z - z_0)^2 \), where \(z_0 \in \mathbb{C} \). We show that \(z_0 \) belongs to \(G \). Suppose the contrary, i.e., \(z_0 \notin G \). Then for any \(f \in \mathcal{H}(G) \) the function \(\frac{f(z)}{(z - z_0)^2} \) also belongs to \(\mathcal{H}(G) \). Hence using \(\beta \) we get \(L = 0 \), a contradiction. Thus, \(z_0 \in G \).

Let choose an arbitrary function \(f \in \mathcal{H}(G) \). Then we can present \(f \) in the following form:
\[
 f(z) = (z - z_0)^2g_3(z) + f'(z_0)z + f(z_0) - z_0f'(z_0),
\]
where \(g_3(z) \) is some function of \(\mathcal{H}(G) \). Using \(\beta \) we get
\[
 L(f) = Cf'(z_0), \ M(f) = Af'(z_0) + f(z_0), \ N(f) = Bf'(z_0) + f(z_0) \]
for any \(f \in \mathcal{H}(G) \), where \(A, B, C \in \mathbb{C}, \ C \neq 0 \). Substituting the obtained \(L, M, N \) in (2) we get
\[
 (A + B)f'(z_0)g'(z_0) = 0.
\]
for any \(f, g \in \mathcal{H}(G) \). Setting \(f = g = z \) in (12) we get \(A + B = 0 \).

Thus, in this case we establish that \(L(f) = Cf'(z_0), \ M(f) = Af'(z_0) + f(z_0) \)
\[
 N(f) = -Af'(z_0) + f(z_0),
\]
where \(z_0 \in G, \ A, C, \in \mathbb{C} \).

Summarizing all the above cases, we have proved the necessity part of the following theorem.
Theorem 2.1. Let G be an arbitrary domain of the complex plane. In order that linear functionals L, M, N on $\mathcal{H}(G)$ satisfy equality (2) it is necessary and sufficient that these functionals belong to one of the following classes:

1° $L = 0$, M, N are arbitrary linear functionals on $\mathcal{H}(G)$;
2° $L(f) = Af(z_0)$, $M(f) = (1 - B)f(z_0)$, $N(f) = Bf(z_0)$, $z_0 \in G$, $A, B \in \mathbb{C}$;
3° $L(f) = Cf'(z_0)$, $M(f) = Af'(z_0) + f(z_0)$, $N(f) = -Af'(z_0) + f(z_0)$, $z_0 \in G$, $A, C \in \mathbb{C}$;
4° $L(f) = C(f(z_1) - f(z_2))$, $M(f) = Af(z_1) + (1 - A)f(z_2)$, $N(f) = (1 - A)f(z_1) + Af(z_2)$, where $z_1, z_2 \in G$, $A, C \in \mathbb{C}$.

By a direct calculation we can obtain the sufficiency part of Theorem 2.1.

In the light of the above-proved theorem, there naturally arises an interesting problem of the description of all linear operators A, B, C on the space $\mathcal{H}(G)$ such that

$$
(Afg)(z) = (Af)(z)(Bg)(z) + (Ag)(z)(Cf)(z)
$$

for any $f, g \in \mathcal{H}(G)$, $z \in G$. Notice that in case $C = B$ all solutions of corresponding equation (13) in the class of linear continuous operators that act in spaces of analytic functions in arbitrary simply connected domains were described in [7]. In [8] Rubel’s operator equation was solved in the class of linear operators that act in spaces of analytic functions in domains.

References

Received: January 6, 2015; Published: January 25, 2015