Differential and Operations on Graphs

Juan C. Hernández-Gómez

Facultad de Matemáticas
Universidad Autónoma de Guerrero
Carlos E. Adame No.54 Col. Garita
39650 Acapulco, Gro., Mexico

Copyright © 2014 Juan C. Hernández-Gómez. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

The differential of D is defined as $\partial(D) = |B(D)| - |D|$ and the differential of a graph G, written $\partial(G)$, is equal to $\max\{\partial(D) : D \subseteq V\}$. The Differential in Graphs, was introduced in [13]. The research and application of the $\partial(G)$ appears mainly in Computational Mathematics. The aim of this paper is to obtain new inequalities involving the operations in graphs, the Differential $\partial(G)$ and other well known parameter in graphs.

Mathematics Subject Classification: 05C07, 92E10

Keywords: Graph invariant, Differentials, Operations in Graphs

1 Introduction

The differential in graphs is a subject of increasing interest, both in pure and applied mathematics. In particular the study of the mathematical properties of the differential in graphs, together with a variety of other kinds of differentials of a set, started in [11, 13]. In these works, several bounds on the differential of a graph were given. This parameter has also been studied in [1, 2, 3, 14], and the differential of some products of graphs has been studied in [4, 15]. The differential of a set D was also considered in [7], where it was denoted by $\eta(D)$, and the minimum differential of an independent set was considered in
The case of the B-differential of a graph or enclaveless number, defined as $\psi(G) = \max\{|B(D)| : D \subseteq V\}$, was investigated in [13, 17].

Throughout this paper, $G = (V, E)$ denote a simple graph of order $n = |V|$ and size $m = |E|$. We denote two adjacent vertices u and v by $u \sim v$. For a vertex $v \in V$ we denote $N(v) = \{u \in V : u \sim v\}$ and $N[v] = N(v) \cup \{v\}$. The degree of a vertex $v \in V$ will be denoted by $\delta(v) = |N(v)|$. We denote by δ and Δ the minimum and maximum degree of the graph, respectively. The subgraph induced by a set $S \subseteq V$ will be denoted by $G[S]$. For a non-empty subset $S \subseteq V$, and any vertex $v \in V$, we denote by $N_S(v)$ the set of neighbors v has in S: $N_S(v) := \{u \in S : u \sim v\}$ and $\delta_S(v) = |N_S(v)|$. Finally, we denote $N(S) = \bigcup_{v \in S} N(v)$ and $N[S] = N(S) \cup S$.

Let $G = (V, E)$ be a graph of order n, for every set $D \subseteq V$ let $B(D)$ be the set of vertices in $V \setminus D$ that have a neighbor in the vertex set D, and let $C(D) = V \setminus (D \cup B(D))$. The differential of D is defined as $\partial(D) = |B(D)| - |D|$ and the differential of a graph G, written $\partial(G)$, is equal to $\max\{|\partial(D) : D \subseteq V\}$. A set D satisfying $\partial(D) = \partial(G)$ is called a ∂-set or differential set. Note that the connectivity of G is not an important restriction, since if G has connected components G_1, \ldots, G_k, then $\partial(G) = \partial(G_1) + \cdots + \partial(G_k)$. Therefore, we will only consider connected graphs.

2 Preliminaries

We start with the following basic results.

Proposition 2.1. For graphs with order n.

- If G' is a induced subgraph of G, $\partial(G') \leq \partial(G)$.
- For Complete Graphs K_n, $\partial(K_n) = n - 2$.
- For Paths Graphs P_n, $n \geq 1$, $\partial(P_n) = \left\lfloor \frac{n}{3} \right\rfloor$.
- For $K_{r,t}$ is a Complete Bipartite Graphs, $\partial(K_{r,t}) = \max\{r - 1, t - 1, r + t - 4\}$.
- For Wheel Graphs W_n, $\partial(W_n) = n - 2$.
- For cycles Graphs C_n, $n \geq 3$, $\partial(C_n) = \left\lfloor \frac{n}{3} \right\rfloor$.

Note that depending on the election of the differential set D of the graph, we have different properties for the partition $\{D, B(D), C(D)\}$.
Proposition 2.2. If D is a minimum ∂-set, then the set $\{D, B(D), C(D)\}$ is a partition of V such that:

(a) for all $v \in D$, $|\text{epn}[v, D]| \geq 2$,
(b) for all $v \in B(D)$, $\delta_{C(D)}(v) \leq 2$,
(c) for all $v \in C(D)$, $\delta_{C(D)}(v) \leq 1$.

Recall that a graph consisting of one central vertex c and d neighbors that in turn have no further neighbors other than c is also known as a star $S_d = K_{1,d}$. We also denote an S_d star S by $S = \{c; v_1, \ldots, v_d\}$ to indicate that c is its center and v_1, \ldots, v_d are its ray vertices. We will call an S_d star big if $d \geq 2$.

Given a graph $G = (V, E)$, a big star packing is given by a vertex-disjoint collection $S = \{X_i \mid 1 \leq i \leq k\}$ of (not necessarily induced) big stars $X_i \subseteq V$, i.e., the graph induced by X_i, written $G[X_i]$ for short, contains some S_d with $d = |X_i| - 1 \geq 2$. We will write $S(D)$ when we want to specify that D is the set of vertices which are star centers of S. The set $S_t(D)$ collects all S_t stars from $S(D)$ for $t \geq 2$, and $S_{\geq t}(D)$ collects all S_d stars from $S(D)$ such that $d \geq t$. If S is a big star packing of G, we denote this property by $S \in SP(G)$.

In [1] it was proved that $\partial(G) = \max \{\sum_{X \in S}(|X| - 2) : S \in SP(G)\}$. For every $S \in SP(G)$ we write $\partial(S) = \sum_{X \in S}(|X| - 2)$ and call this the differential of the big star packing S. We call a star packing $S \in SP(G)$ a differential (star) packing if it assumes the differential of the graph, i.e., if $\partial(S) = \partial(G)$. A maximum differential (star) packing is a differential packing of maximum cardinality, i.e., with the maximum number of stars contained in it. Let max $SP(G)$ collect all maximum differential packings of G.

Lemma 2.3. For every big star packing $S(D) \in \text{max } SP$ it is satisfied that $\delta_{C(D)}(v) \leq 1$ for every $v \in B(D)$. Moreover, there exists a big star packing $S(D) \in \text{max } SP$ such that $B(D)$ is a dominating set in G.

Theorem 2.4. Let G be a graph of order n and minimum degree δ. Then

$$\partial(G) \geq \left\lceil \frac{n(\delta - 1)}{3\delta - 1} \right\rceil.$$

Proof. If we take the big star packing $S(D) \in \text{max } SP$ given in Lemma 2.3, we have that $\delta_{C(D)}(v) \leq 1$ for every $v \in B(D)$ and $\delta_{C(D)}(v) \leq 1$ for every $v \in C(D)$, then, if $C(D) = \{c_1, \ldots, c_t\}$, we have that $(\delta - 1)|C(D)| \leq |B(D)|$. Thus,

$$n = |D| + |B(D)| + |C(D)| \leq |D| + |B(D)| + \frac{|B(D)|}{\delta - 1}.$$
Since $|D| \leq \partial(G)$, we conclude that $n(\delta - 1) \leq \partial(G)(3\delta - 1)$. That is,

$$\partial(G) \geq \frac{n(\delta - 1)}{3\delta - 1}.$$

A set $S \subset V$ is a dominating set if every vertex not in S is adjacent to a vertex in S. The domination number of G, denoted by $\gamma(G)$, is the minimum cardinality of a dominating set. For more information on domination in graphs see [8, 9].

It is known that $\gamma(G) \geq n\Delta + 1$ for every graph G of order n and maximum degree Δ. The following result shows that the graphs attaining this lower bound can be characterized by its differential (see [5]).

Theorem 2.5. Let G be a graph with order n and maximum degree Δ. Then, $\gamma(G) = \frac{n}{\Delta+1}$ if and only if $\partial(G) = \frac{n(\Delta-1)}{\Delta+1}$.

A graph G is said to be dominant differential if it contains a ∂-set which is also a dominating set. Some examples of dominant differential graphs are complete graphs, star graphs, wheel graphs, and path graphs P_n and cycle graphs C_n with $n = 3k$ or $n = 3k + 2$. For more information see [15].

3 Main Results

The Corona Product of graphs was introduced in [6] as a new and important operation on two graphs. Let G and H be two graphs of order n_1 and n_2, respectively, the corona product $G \circ H$ is defined as the graph obtained from G and H by taking one copy of G and n_1 copies of H and joining by an edge each vertex from the ith copy of G with the ith-vertex of H. We will denote by $V = \{v_1, v_2, \ldots, v_{n_1}\}$ the set of vertices of G and by $H_i = (V_i, E_i)$, $V_i = \{v_1^{(i)}, v_2^{(i)}, \ldots, v_{n_2}^{(i)}\}$, the copy of H such that $v_k^{(i)} \sim v_i$ for every $i \leq k \leq n_2$. For more information see [10].

Theorem 3.1. Let G and H be two graphs of order n_1 and n_2, respectively.

(a) If $n_2 \geq 2$, then $\delta(G \circ H) = n_1(n_2 - 1)$.

(b) If $n_2 = 1$, then $\delta(G \circ H) = n_1 - \gamma(G)$.

Proof. Firstly, let us see that, if D is a δ-set in $G \circ H$, we can assume that $D \subseteq V$. We suppose that

$$\{v_1^{(i)}, v_2^{(i)}, \ldots, v_{n_2}^{(i)}\} = D \cap H_i,$$
with $1 \leq k \leq n_2$. If $v_i \in D$, then
\[
\delta(D \setminus \{v_{j_1}^{(i)}\}, v_{j_2}^{(i)}, \ldots, v_{j_k}^{(i)}) = \delta(D) + 2k > \delta(D)
\]
which is a contradiction.

If $v_i \notin D$, then $\delta((D \setminus \{v_{j_1}^{(i)}\}, v_{j_2}^{(i)}, \ldots, v_{j_k}^{(i)}) \cup \{v_i\}) \geq \delta(D) + 2k - 2 \geq \delta(D)$, so we can take
\[
D' = (D \setminus \{v_{j_1}^{(i)}\}, v_{j_2}^{(i)}, \ldots, v_{j_k}^{(i)}) \cup \{v_i\}
\]
instead of D.

(a) If $n_2 \geq 2$ and $v_i \notin D$, then $\delta(D \cup \{v_i\}) = |B(d \cup \{v_i\})| - |D \cup \{v_i\}| \geq |B(D)| \geq \delta(D)$, in consequence, we can take $D = V$ and, therefore,
\[
\delta(G \circ H) = \delta(V) = n_1n_2 - n_1 = n_1(n_2 - 1).
\]

(b) For every $D \subseteq V$ we have $\delta(D) = \delta_G(D) + |D| = |B_G(D)|$. Thus, since $\max_{D \subseteq V} |B_D(D)| = n_1 - \gamma(G)$ (see [17]), we conclude
\[
\delta(G \circ H) = \max_{D \subseteq V} |B_D(D)| = n_1 - \gamma(G).
\]

The Join of two graphs G and H, denoted by $H + G$, is defined as the graph obtained from disjoint graphs G and H by taking one copy of G and one copy of H and joining by an edge each vertex of G with each vertex of H. In this section we will give explicit formulas for the differential of a join graph. The following result was proved in [13], it relates the domination number and the differential of a graph.

Theorem 3.2. For any connected graph G of order n,
\[
n - 2\gamma(G) \leq \delta(G) \leq n - \gamma(G) - 1.
\]

Moreover, it is easy to check the following statement.

Proposition 3.3. For any graph $G + H$,
\[
1 \leq \gamma(G + H) \leq 2.
\]

(a) $\gamma(G + H) = 1$ if and only if $\gamma(G) = 1$ or $\gamma(H) = 1$.

(b) $\gamma(G + H) = 2$ if and only if $\gamma(G) \geq 2$ and $\gamma(H) \geq 2$.

From propositions 3.2 and 3.3 we have following proposition.

Proposition 3.4. For any graphs G and H of order n_1 and n_2, respectively,

$$n_1 + n_2 - 4 \leq \delta(G + H) \leq n_1 + n_2 - 2.$$

Next proposition was proved in [3].

Proposition 3.5. Let G be a graph of order n and maximum degree Δ,

a) $\delta(G) = n - 2$ if and only if $\Delta = n - 1$.

b) $\delta(G) = n - 3$ if and only if $\Delta = n - 2$.

In order to proof Theorem 3.6 note that for two graphs G and H of order n_1 and n_2 and maximum degrees Δ_1 and Δ_2, respectively, the maximum degree of the join of G and H is

$$\Delta(G + H) = \max\{\Delta_1 + n_2, \Delta_2 + n_1\},$$

as a direct consequence of the previous propositions, we can give the exact value for the differential of a join of two graphs depending on the maximum degree of these graphs.

Theorem 3.6. Let G and H two graphs of order n_1 and n_2 and maximum degrees Δ_1 and Δ_2, respectively. Then

(a) $\delta(G + H) = n_1 + n_2 - 2$ if and only if $\Delta_1 = n_1 - 1$ or $\Delta_2 = n_2 - 1$.

(b) $\delta(G + H) = n_1 + n_2 - 3$ if and only if $\Delta_1 = n_1 - 2$ and $\Delta_2 \leq n_2 - 2$ or $\Delta_1 = n_1 - 2$ and $\Delta_2 = n_2 - 2$.

(c) $\delta(G + H) = n_1 + n_2 - 4$ if and only if $\Delta_1 \leq n_1 - 3$ and $\Delta_2 = n_2 - 3$.

The Cartesian product $G \times H$ of graphs G and H is a graph such that the vertex set of $G \times H$ is the Cartesian product $V(G) \times V(H)$; and any two vertices (a, c) and (b, d) are adjacent in $G \times H$ if and only if either

- $a = b$ and c is adjacent d in G, or
- $c = d$ and a is adjacent b in H.

Some applications of this type of product can be seen in [16]. We will need the following results.
Lemma 3.7. For any graph, $\partial(\Gamma) = 1$ if and only if $\Gamma = C_3, C_4, C_5, P_3, P_4 \circ P_5$.

Lemma 3.8. For any graph Γ with maximum degree Δ, the following statement hold: $\partial(\Gamma) = 2$ if and only if Γ is a graph with either:

(a) Γ is isomorphic to $C_6, C_7, C_8, P_6, P_7 \circ P_8$. or

(b) $\Delta = 3$, and, for every vertex $v \in V$ such that $\delta(v) = 3$, the subgraph induced by $V \setminus N[v]$ has no subgraph isomorphic to P_3, and Γ, has no 3 independent subgraphs isomorphic to P_3.

Proposition 3.9. Let G and H be two graphs of order n_1 and n_2, respectively. If $n_1 + n_2 \geq 11$, then

$$\partial(G \times H) \geq 3.$$

Proof. By contradiction, suppose that $\partial(G \times H) \leq 2$. Then, by previous lemmas, we need only consider the case $\partial(G \times H) = 2$ with $\Delta_{G \times H} = 3$. Taking a vertex u such that $N(u) = \{u_1, u_2, u_3\}$. The grater number of adjacent vertices to $N[u]$ could be 6, in this case, $\delta(u_1) = \delta(u_2) = \delta(u_3) = 3$. But, taking $S = \{u_1, u_2, u_3\}$ we obtain $\partial(S) = 4$. If the number of adjacent vertices to $N[u]$ is 5, it is, $\delta(u_1) = 2$ and $\delta(u_2) = \delta(u_3) = 3$, taking $S = \{u_1, u_2, u_3\}$ we obtain $\partial(S) = 3$. Therefore, the number of adjacent vertices to $N[u]$ is 4, for example, $\delta(u_1) = \delta(u_2) = 2$ and $\delta(u_3) = 3$. Denote by $N(u_1) = \{u, v_1\}$, $N(u_2) = \{u, v_2\}$ and $N(u_3) = \{u, v_3, v_4\}$. Denote by $A = \{u, u_1, u_2, u_3, v_1, v_2, v_3, v_4\}$. If exist a vertex $z \notin A$ adjacent to u_1 or u_2, we could form a path P_3 in the induced subgraph by $V \setminus N(u_3)$, it is a contradiction to Lemma 3.8. If v_3 has two adjacent vertices outside of A, taking $S = \{u, v_3\}$, we obtain $\partial(S) = 4$. The same applies to v_4. Therefore, the maximum number of adjacent vertices to v_3 or v_4 outside of A is one. Is clear that adding any other vertex we get a contradiction with Lemma 3.7. Therefore, the maximum number of adjacent vertices is 10; which is a contradiction. \hfill \square

Theorem 3.10. Let G and H two graphs of order n_1 and n_2 and maximum degrees Δ_1 and Δ_2, respectively. Then

$$n_1n_2 - 2\min\{\gamma(G)n_2, \gamma(H)n_1\} \leq \partial(G \times H) \leq \min\{\gamma(G)n_2, \gamma(H)n_1\}(\Delta_1 + \Delta_2 - 1).$$

Proof.

Let us prove the following result which will be used in the proof of the theorem. If D is a ∂-set of a graph G, then $|D| \leq \gamma(G)$. Let A be a minimum dominating set. If $|A| < |D|$, we have

$$\partial(A) = n - 2|A| > n - |D| - |D| \geq |B(D)| - |D| = \partial(G),$$

which is a contradiction. Therefore, $|A| = |D|$. If $|A| = |D| = n$, then $\partial(G \times H) \geq \gamma(G \times H) = n$. Let Γ be a graph on n vertices such that $\partial(\Gamma) = 1$. Then Γ is a path P_n. Let $S \subseteq V(\Gamma)$ be a set of at least two vertices such that $\partial(S) = 1$. Then $\partial(S \setminus \{x\}) > 2$ for any $x \in S$. By Proposition 3.9, we obtain

$$n \geq \min\{\gamma(G)n_2, \gamma(H)n_1\}(\Delta_1 + \Delta_2 - 1) \leq n \Delta_1 \Delta_2 - 1,$$

which is a contradiction. Therefore, $|A| < n$. Then $\partial(G \times H) \geq \gamma(G \times H) = n - |A|$. Therefore, $\partial(G \times H) \geq n - |A| - 2|A| = n - 3|A| = \min\{\gamma(G)n_2, \gamma(H)n_1\}(\Delta_1 + \Delta_2 - 1)$. Therefore, $\partial(G \times H) \geq \min\{\gamma(G)n_2, \gamma(H)n_1\}(\Delta_1 + \Delta_2 - 1)$. \hfill \square
a contradiction. Therefore, $|D| \leq \gamma(G)$.

If D is a ∂-set of $G \times H$, since $|B(D)| \leq \Delta_{G \times H}|D|$ we have that

$$\partial(G \times H) = |B(D)| - |D| \leq |D|\Delta_{G \times H} - 1).$$

Thus, if $G \times H$ is a graph with order $n \geq 3$ and maximum degree $\Delta_{G \times H}$, then

$$\partial(G \times H) \leq \gamma(G \times H)(\Delta_{G \times H} - 1).$$

Now, using Vizing inequality: $\gamma(G \times H) \leq \min\{\gamma(G)n_2, \gamma(H)n_1\}$; the upper bound follow.

We know that for any graph $G \times H$ of order n without isolated vertices,

$$n - 2\gamma(G \times H) \leq \partial(G \times H).$$

Using Vizing inequality: $\gamma(G \times H) \leq \min\{\gamma(G)n_2, \gamma(H)n_1\}$; the lower bound follow.

Acknowledgements. Supported in part by a grant from UAGro (UAGro I00/2014), México.

References

Received: November 16, 2014; Published: January 31, 2015