Restrained Locating-Domination and Restrained Differentiating-Domination in Graphs

Stephanie A. Omega and Sergio R. Canoy, Jr.

Department of Mathematics and Statistics
Mindanao State University-Iligan Institute of Technology
Tibanga Highway, Iligan City, Philippines

Abstract

In this paper, the restrained differentiating-dominating sets in the join, corona and composition of graphs are characterized. Also, the differentiating-domination numbers of these graphs are determined. Moreover, we rectify some of the results on restrained locating-dominating sets found in [5].

Mathematics Subject Classification: 05C69

Keywords: domination, restrained domination, differentiating-domination, restrained locating-domination, restrained differentiating-domination, join, corona, composition

1 Introduction

Let $G = (V(G), E(G))$ be a simple connected graph and $u \in V(G)$. The neighborhood of u is the set $N_G(u) = N(u) = \{v \in V(G) : uv \in E(G)\}$. The degree of a vertex $u \in V(G)$ is equal to the cardinality of $N_G(u)$ and the maximum degree of G is $\Delta(G) = \max \{\text{deg}_G(u) : u \in V(G)\}$. The distance $d_G(u, v)$ in G of two vertices u and v is defined as the length of a shortest path between u and v in G. The diameter of G is $\text{diam}(G) = \max \{d_G(u, v) : u, v \in V(G)\}$.
vertices u and v of G is the length of the shortest u-v path in G. If $X \subseteq V(G)$, then the open neighborhood of X is the set $N_G(X) = N(X) = \bigcup_{v \in X} N_G(v)$. The closed neighborhood of X is $N_G[X] = N[X] = X \cup N(X)$.

A connected graph G of order $n \geq 3$ is point distinguishing if for any two distinct vertices u and v of G, $N_G(u) \neq N_G(v)$. It is totally point determining if for any two distinct vertices u and v of G, $N_G(u) \neq N_G(v)$ and $N_G[u] \neq N_G[v]$.

A subset S of $V(G)$ is a dominating set of G if for every $v \in (V(G) \setminus S)$, there exists $w \in S$ such that $vw \in E(G)$, i.e., $N[S] = V(G)$. The domination number $\gamma(G)$ of G is the smallest cardinality of a dominating set of G.

A subset S of $V(G)$ is a restrained dominating set of G if S is a dominating set of G and for each $v \in V(G) \setminus S$, there exists $u \in (V(G) \setminus S) \cap N_G(v)$. Equivalently, a dominating subset S of $V(G)$ is a restrained dominating set of G if $S = V(G)$ or $\langle V(G) \setminus S \rangle$ has no isolated vertex. The minimum cardinality of a restrained dominating set of G, denoted by $\gamma_r(G)$, is called the restrained domination number of G.

Let G be a point distinguishing graph. A subset S of $V(G)$ is a differentiating set of G if for every two distinct vertices $u, v \in V(G)$, $N_G[u] \cap S \neq N_G[v] \cap S$. It is a strictly differentiating set if it is differentiating and $N_G[u] \cap S \neq S$, for all $u \in V(G)$. The minimum cardinality of a differentiating set of G, denoted by $dn(G)$, is called the differentiating number of G. The minimum cardinality of a strictly differentiating set of G denoted by $sdn(G)$, is called the strictly differentiating number of G.

A differentiating (resp. strictly differentiating) subset S of $V(G)$ is a restrained differentiating (resp. restrained strictly differentiating) set of G if either $S = V(G)$ or $\langle V(G) \setminus S \rangle$ has no isolated vertex. The minimum cardinality of a restrained differentiating (resp. restrained strictly differentiating) set of G, denoted by $rtn(G)$ (resp. $rstdn(G)$), is called the restrained differentiating number (resp. restrained strictly differentiating number) of G.

A differentiating (resp. strictly differentiating) subset S of $V(G)$ which is also dominating is called a differentiating-dominating (resp. strictly differentiating-dominating) set of G. The minimum cardinality of a differentiating-dominating (resp. strictly differentiating-dominating) set of G, denoted by $\gamma_D(G)$ (resp. $\gamma_{SD}(G)$), is called the differentiating domination (resp. strictly differentiating domination) number of G.

A set $S \subseteq V(G)$ of a point distinguishing graph G is called a restrained differentiating-dominating set of G if S is a differentiating-dominating set of G and $S = V(G)$ or $\langle V(G) \setminus S \rangle$ has no isolated vertex. The restrained differentiating domination number of G, denoted by $\gamma_{rD}(G)$, is the minimum cardinality of a restrained differentiating-dominating set of G.

Let G be a connected graph and suppose that there exist (distinct) adjacent vertices u and v of $V(G)$ such that $N_G[u] = N_G[v]$. Then $N_G[u] \cap S = N_G[v] \cap S$ for any subset S of $V(G)$. This implies that G cannot have a differentiating
Restrained locating-domination and restrained differentiating ... 2245

set. Also, if $\Delta(G) = n - 1$ and $v \in V(G)$ such that $\text{deg}(v) = n - 1$, then $N_G[v] \cap S = S$ for any subset S of $V(G)$. Thus, G cannot have a strictly differentiating set.

The concepts of differentiating sets, differentiating-dominating sets and the associated parameters are studied in [2] and [4]. On the other hand, restrained domination in graphs is defined and studied in [6] and [7].

A subset S of $V(G)$ is a locating set in a connected graph G if every two vertices u and v of $V(G)\setminus S$, $N_G(u) \cap S \neq N_G(v) \cap S$. It is a strictly locating set if it is locating and $N_G(u) \cap S \neq S$ for all $u \in V(G)\setminus S$. The minimum cardinality of a locating set of G, denoted by $ln(G)$, is called the locating number of G. The minimum cardinality of a strictly locating set of G, denoted by $sln(G)$, is called the strictly locating number of G.

A locating subset S of $V(G)$ is a restrained locating set of a connected graph G if $S = V(G)$ or $(V(G)\setminus S)$ has no isolated vertex. The restrained locating number of G, denoted by $rln(G)$, is the smallest cardinality of a restrained locating set of G.

A locating (resp. strictly locating) subset S of $V(G)$ which is dominating is called a locating-dominating (resp. strictly locating-dominating) set or simply L-dominating (resp. SL-dominating) set of a graph G. The minimum cardinality of a locating-dominating (resp. strictly locating-dominating) set of G, denoted by $\gamma_L(G)$ (resp. $\gamma_{SL}(G)$), is called the L-domination (resp. SL-domination) number of G.

A subset S of a connected graph G is a restrained locating-dominating set of G if S is a locating-dominating set of G and either $S = V(G)$ or $(V(G)\setminus S)$ has no isolated vertex. The restrained L-domination number of G, denoted by $\gamma_{rL}(G)$, is the smallest cardinality of a restrained locating-dominating set of G.

2 Results on Restrained Locating-Dominating Sets in Graphs

Theorem 2.1 [1] Let G be a connected graph of order $n \geq 2$. If $ln(G) < sln(G)$, then $1 + ln(G) = sln(G)$.

Theorem 2.2 [5] Let G and H be connected non-trivial graphs. A set $S \subseteq V(G + H)$ is a restrained locating-dominating set of $G + H$ if and only if $S_1 = V(G) \cap S$ and $S_2 = V(H) \cap S$ are locating sets of G and H, respectively, where S_1 or S_2 is a strictly locating set and one of the following holds:

(i) $S_1 = V(G)$ and S_2 is a restrained locating set of H;

(ii) $S_2 = V(H)$ and S_1 is a restrained locating set of G;
Suppose that γ.

Case 1.

Corollary 2.3 Let G and H be connected non-trivial graphs of order m and n, respectively. Then

$$\gamma_{rL}(G + H) = \begin{cases} m + n, & \text{if } sln(G) = m \text{ and } sln(H) = n \\ \min \{sln(G) + ln(H), sln(H) + ln(G)\}, & \text{otherwise.} \end{cases}$$

Proof: Suppose that $sln(G) = m$ and $sln(H) = n$. Then $V(G)$ and $V(H)$ are the only strictly locating sets of G and H, respectively. Since $ln(G) \leq m - 1$, it follows that by Theorem 2.1, $1 + ln(G) = sln(G)$. Thus, $ln(G) = m - 1$. Since $ln(G) \leq rln(G)$ and $rln(G)$ cannot be equal to $m - 1$, it follows that $rln(G) = m$. Similarly, $rln(H) = n$. Thus, $V(G)$ and $V(H)$ are the only restrained locating sets of G and H, respectively. Hence, by Theorem 2.2, if S is a minimum restrained locating-dominating set of $G + H$, then $S = V(G) \cup V(H)$. Therefore, $\gamma_{rL}(G + H) = m + n$.

Suppose that $sln(G) \neq m$ or $sln(H) \neq n$. Consider the following cases:

Case 1. Suppose that $sln(G) = m$ and $sln(H) \neq n$ or $sln(G) \neq m$ and $sln(H) = n$.

Suppose first that $sln(G) = m$ and $sln(H) \neq n$. Let S_1 and S_2 be minimum locating set and minimum strictly locating set of G and H, respectively. Then by Theorem 2.2, $S = S_1 \cup S_2$ is a restrained locating-dominating set of $G + H$. Thus, $\gamma_{rL}(G + H) \leq |S| = sln(H) + ln(G)$.

Now, suppose that S' is a minimum restrained locating-dominating set of $G + H$. Then by Theorem 2.2, $S' = S'_1 \cup S'_2$, where $S'_1 \neq V(G)$ is a locating set of G and $S'_2 \neq V(H)$ is a strictly locating set of H. Hence, $\gamma_{rL}(G + H) = |S'| \geq ln(G) + sln(H)$. Therefore, $\gamma_{rL}(G + H) = ln(G) + sln(H)$. Similarly, if $sln(G) \neq m$ and $sln(H) = n$, then $\gamma_{rL}(G + H) = sln(G) + ln(H)$.

Case 2. Suppose that $sln(G) \neq m$ and $sln(H) \neq n$.

Let S be a minimum restrained locating-dominating set of $G + H$. Let $S_1 = V(G) \cap S$ and $S_2 = V(H) \cap S$. Then by Theorem 2.2, S_1 and S_2 are locating sets of G and H, respectively, where S_1 or S_2 is a strictly locating set. If $S_1 = V(G)$, then by Theorem 2.2(i), S_2 is a restrained locating set of H. Thus, $\gamma_{rL}(G + H) = m + rln(H) \geq sln(G) + ln(H)$. Similarly, by Theorem 2.2(ii), if $S_2 = V(H)$, then $\gamma_{rL}(G + H) = n + rln(G) \geq sln(H) + ln(G)$. Suppose that $S_1 \neq V(G)$ and $S_2 \neq V(H)$. Assume first that S_1 is a strictly locating set of G. Then $sln(G) + ln(H) \leq |S_1| + |S_2| = |S| = \gamma_{rL}(G + H)$. If S_2 is a strictly locating set of H, then $sln(H) + ln(G) \leq |S_2| + |S_1| = |S| = \gamma_{rL}(G + H)$. Thus, $\gamma_{rL}(G + H) \geq \min \{sln(G) + ln(H), sln(H) + ln(G)\}$.

Now, suppose that $sln(G) + ln(H) \leq sln(H) + ln(G)$. Let S_1 be a minimum strictly locating set of G and S_2 be a minimum locating set of H. Then $S = S_1 \cup S_2$ is a restrained locating-dominating set of $G + H$ by Theorem 2.2.
Thus, $\gamma_{rL}(G + H) \leq |S| = |S_1| + |S_2| = sln(G) + ln(H)$.

Therefore, $\gamma_{rL}(G + H) = \min \{sln(G) + ln(H), sln(H) + ln(G)\}$. □

Corollary 2.4 Let G be connected non-trivial graph of order m and let K_n be a complete graph of order n. Then

$$\gamma_{rL}(G + K_n) = \begin{cases} sln(G) + n - 1, & \text{if } sln(G) \neq m \\ m + n, & \text{otherwise.} \end{cases}$$

Proof: Suppose that $sln(G) \neq m$. Since $ln(K_n) = n - 1$ and $sln(K_n) = n$, it follows that by Corollary 2.3, $\gamma_{rL}(G + K_n) = \min \{sln(G) + n - 1, ln(G) + n\}$. By Theorem 2.1, $sln(G) - 1 \leq ln(G)$. Thus, $sln(G) \leq ln(G) + 1$. Therefore, $\gamma_{rL}(G + K_n) = \min \{sln(G) + n - 1, ln(G) + n\} = sln(G) + n - 1$. Now, suppose that $sln(G) = m$. Since $sln(K_n) = n$, it follows that by Corollary 2.3, $\gamma_{rL}(G + K_n) = m + n$. □

Theorem 2.5 [5] Let G be a connected non-trivial graph and $K_1 = \langle v \rangle$. Then $S \subseteq V(G + K_1)$ is a restrained locating-dominating set of $G + K_1$ if and only if either $S = S_1 \cup \{v\}$, where S_1 is a restrained locating set of G or $v \notin S$ and S is a strictly locating-dominating set of G with $V(G) \neq S$.

Corollary 2.6 Let G be a connected non-trivial graph of order m. Then

$$\gamma_{rL}(G + K_1) = \begin{cases} m + 1, & \text{if } \gamma_{SL}(G) = m \text{ and } rln(G) = m \\ \min \{\gamma_{SL}(G), rln(G) + 1\}, & \text{otherwise.} \end{cases}$$

3 Results on Restrained Differentiating-Dominating Sets in Graphs

Remark 3.1 If G is a point distinguishing graph of order $n \geq 3$, then $\gamma_{rD}(G) \in \{3, 4, \ldots, n - 2, n\}$.

Remark 3.2 [2] Let G be a point distinguishing graph of order $n \geq 3$. Then $2 \leq \gamma_{D}(G) \leq n - 1$.

Remark 3.3 If G is a point distinguishing graph of order $n \geq 3$ with $\Delta(G) \leq n - 2$, then $dn(G) \leq \gamma_{D}(G) \leq \gamma_{rD}(G) \leq \gamma_{rSD}(G)$ and $dn(G) \leq sln(G) \leq \gamma_{rSD}(G)$.

Let A and B be sets which are not necessarily disjoint. The disjoint union of A and B, denoted by $A \dot{\cup} B$, is the set obtained by taking the union of A and B treating each element in A as distinct from each element in B. The join $G + H$ of two graphs G and H is the graph with vertex-set $V(G + H) = V(G) \cup V(H)$ and edge-set $E(G + H) = E(G) \cup E(H) \cup \{uv : u \in V(G), v \in V(H)\}$.

Theorem 3.4 [2] Let G and H be point distinguishing graphs of orders $m \geq 2$ and $n \geq 2$, respectively, with $\Delta(G) \leq m - 2$ and $\Delta(H) \leq n - 2$. Then $S \subseteq V(G + H)$ is a differentiating-dominating set of $G + H$ if and only if $S_G = V(G) \cap S$ and $S_H = V(H) \cap S$ are differentiating sets of G and H, respectively, and either S_G or S_H is a strictly differentiating set.

Theorem 3.5 Let G and H be point distinguishing graphs of orders $m \geq 3$ and $n \geq 3$, respectively, with $\Delta(G) \leq m - 2$ and $\Delta(H) \leq n - 2$. Then $S \subseteq V(G + H)$ is a restrained differentiating-dominating set of $G + H$ if and only if $S_G = V(G) \cap S$ and $S_H = V(H) \cap S$ are differentiating sets of G and H, respectively, where S_G or S_H is a strictly differentiating set and one of the following holds:

(i) $S_G = V(G)$ and S_H is a restrained differentiating set of H;

(ii) $S_H = V(H)$ and S_G is a restrained differentiating set of G;

(iii) $S_G \neq V(G)$ and $S_H \neq V(H)$.

Proof: Let $S \subseteq V(G + H)$ be a restrained differentiating-dominating set of $G + H$. Then by Theorem 3.4, $S_G = V(G) \cap S$ and $S_H = V(H) \cap S$ are differentiating set of G and H, respectively, where S_G or S_H is a strictly differentiating set. To show that (i), (ii) and (iii) hold, we consider the following cases:

Case 1: $S_G = V(G)$.

Suppose that $S_H \neq V(H)$. Since $V(G + H) \setminus S = V(H) \setminus S_H$ and $\langle V(G + H) \setminus S \rangle$ has no isolated vertex, it follows that $\langle V(H) \setminus S_H \rangle$ has no isolated vertex. Thus, S_H is a restrained differentiating set of H. Hence, (i) holds.

Case 2: $S_G \neq V(G)$.

If $S_H \neq V(H)$, then (iii) holds. If $S_H = V(H)$, then $\langle V(G + H) \setminus S \rangle = \langle V(G) \setminus S_G \rangle$ has no isolated vertex. Thus, S_G is a restrained differentiating set of G. Hence, (ii) holds.

For the converse, suppose that $S_G = V(G) \cap S$ and $S_H = V(H) \cap S$ are differentiating sets of G and H, respectively, where S_G or S_H is a strictly differentiating set. Then by Theorem 3.4, $S = S_G \cup S_H$ is a differentiating-dominating set of $G + H$. Suppose that $S_G = V(G)$. If $S_H = V(H)$, then $S = V(G + H)$ is a restrained dominating set of $G + H$. If $S_H \neq V(H)$, then $\langle V(G + H) \setminus S \rangle = \langle V(H) \setminus S_H \rangle$ has no isolated vertex, by assumption. Thus, S is a restrained dominating set of $G + H$. Therefore, S is a restrained differentiating-dominating set of $G + H$. Similarly, if (ii) holds, S is a restrained differentiating-dominating set of $G + H$. Finally, suppose that $S_G \neq V(G)$ and $S_H \neq V(H)$. Then clearly, S is a restrained differentiating-dominating set of $G + H$. □

Theorem 3.6 [2] Let G be a point distinguishing graph of order $n \geq 3$ with $\Delta(G) \leq n - 2$ such that $dn(G) < sdn(G)$. Then $1 + dn(G) = sdn(G)$.
Corollary 3.7 Let G and H be point distinguishing graphs of orders $m \geq 3$ and $n \geq 3$, respectively, with $\Delta(G) \leq m - 2$ and $\Delta(H) \leq n - 2$. Then

$$\gamma_{rD}(G + H) = \begin{cases} m + n, & \text{if } sdn(G) = m \text{ and } sdn(H) = n \\ \min \{ sdn(G) + dn(H), sdn(H) + dn(G) \}, & \text{otherwise.} \end{cases}$$

Proof: Suppose that $sdn(G) = m$ and $sdn(H) = n$. Then $V(G)$ and $V(H)$ are the only strictly differentiating sets of G and H, respectively. Since $dn(G) \leq m - 1$, it follows that by Theorem 3.6, $1 + dn(G) = sdn(G)$. Thus, $dn(G) = m - 1$. Since $dn(G) \leq rdn(G)$ and $rdn(G)$ cannot be equal to $m - 1$, it follows that $rdn(G) = m$. Similarly, $rdn(H) = n$. Thus, $V(G)$ and $V(H)$ are the only restrained differentiating sets of G and H, respectively. Hence, by Theorem 3.5, if S is a minimum restrained differentiating-dominating set of $G + H$, then $S = V(G) \cup V(H)$. Therefore, $\gamma_{rD}(G + H) = m + n$.

Suppose that $sdn(G) \neq m$ or $sdn(H) \neq n$. Consider the following cases:

Case 1. Suppose that $sdn(G) = m$ and $sdn(H) \neq n$ or $sdn(G) \neq m$ and $sdn(H) = n$.

Suppose first that $sdn(G) = m$ and $sdn(H) \neq n$. Let S_1 and S_2 be minimum differentiating set and minimum strictly differentiating set of G and H, respectively. Then by Theorem 3.5, $S = S_1 \cup S_2$ is a restrained differentiating-dominating set of $G + H$. Thus, $\gamma_{rD}(G + H) \leq |S| = sdn(H) + dn(G)$.

Now, suppose that S' is a minimum restrained differentiating-dominating set of $G + H$. Then by Theorem 3.5, $S' = S_1' \cup S_2'$, where $S_1' \neq V(G)$ is a differentiating set of G and $S_2' \neq V(H)$ is a strictly differentiating set of H. Hence, $\gamma_{rD}(G + H) = |S'| \geq dn(G) + sdn(H)$. Therefore, $\gamma_{rD}(G + H) = dn(G) + sdn(H)$. Similarly, if $sdn(G) \neq m$ and $sdn(H) = n$, then $\gamma_{rD}(G + H) = sdn(G) + dn(H)$.

Case 2. Suppose that $sdn(G) \neq m$ and $sdn(H) \neq n$.

Let S be a minimum restrained differentiating-dominating set of $G + H$. Let $S_G = V(G) \cap S$ and $S_H = V(H) \cap S$. Then by Theorem 3.5, S_G and S_H are differentiating sets of G and H, respectively, where S_G or S_H is a strictly differentiating set. If $S_G = V(G)$, then by Theorem 3.5(i), S_H is a restrained differentiating set of H. Thus, $\gamma_{rD}(G + H) = m + rdn(H) \geq sdn(G) + dn(H)$. Similarly, by Theorem 3.5(ii), if $S_H = V(H)$, then $\gamma_{rD}(G + H) = n + rdn(G) \geq sdn(H) + dn(G)$. Suppose that $S_G \neq V(G)$ and $S_H \neq V(H)$. Assume first that S_G is a strictly differentiating set of G. Then $sdn(G) + dn(H) \leq |S_G| + |S_H| = |S| = \gamma_{rD}(G + H)$. If S_H is a strictly differentiating set of H, then $sdn(H) + dn(G) \leq |S_H| + |S_G| = |S| = \gamma_{rD}(G + H)$. Thus, $\gamma_{rD}(G + H) \geq \min \{ sdn(G) + dn(H), sdn(H) + dn(G) \}$.

Now, suppose that $sdn(G) + dn(H) \leq sdn(H) + dn(G)$. Let S_G be a minimum strictly differentiating set of G and S_H be a minimum differentiating set of H. Then $S = S_G \cup S_H$ is a restrained differentiating-dominating set of
G + H by Theorem 3.5. Thus, \(\gamma_{rD}(G + H) \leq |S| = |S_G| + |S_H| = sdn(G) + dn(H) \).

Therefore, \(\gamma_{rD}(G + H) = \min \{ sdn(G) + dn(H), sdn(H) + dn(G) \} \). \(\square \)

Theorem 3.8 [2] Let \(G = K_1 = \langle v \rangle \) and \(H \) a point distinguishing graph of order \(n \geq 3 \) with \(\Delta(H) \leq n - 2 \). Then \(S \subseteq V(G + H) \) is a differentiating-dominating set of \(G + H \) if and only if \(v \in S \) and \(V(H) \cap S \) is a strictly differentiating set of \(H \) or \(v \notin S \) and \(S \) is strictly differentiating-dominating set of \(H \).

Theorem 3.9 Let \(G \) be a point distinguishing graph of order \(n \geq 3 \) such that \(\Delta(G) \leq n - 2 \) and let \(K_1 = \langle v \rangle \). Then \(S \subseteq V(G + K_1) \) is a restrained differentiating-dominating set of \(G + K_1 \) if and only if either \(S = S_G \cup \{v\} \), where \(S_G \) is a restrained strictly differentiating set of \(G \) or \(v \notin S \) and \(S \) is a strictly differentiating-dominating set of \(G \) with \(V(G) \neq S \).

Proof: Suppose \(S \) is a restrained differentiating-dominating set of \(G + K_1 \). Let \(S_G = V(G) \cap S \). Then by Theorem 3.8, either \(S = S_G \cup \{v\} \), where \(S_G \) is a strictly differentiating set of \(G \) or \(v \notin S \) and \(S \) is a strictly differentiating-dominating set of \(G \). Suppose first that \(S_G \cup \{v\} \) and suppose \(S_G = V(G) \). Then \(S_G \) is a restrained strictly differentiating set of \(G \). If \(G \neq V(G) \), then \(\langle V(G + K_1) \setminus S \rangle = \langle V(G) \setminus S_G \rangle \). Since \(S \) is a restrained dominating set of \(G + K_1 \), it follows that \(\langle V(G) \setminus S_G \rangle \) has no isolated vertex. Hence, \(S_G \) is a restrained strictly differentiating set of \(G \). Next, suppose that \(v \notin S \). Then \(\langle V(G + K_1) \setminus S \rangle = \langle \{v\} \cup (V(G) \setminus S) \rangle \) has no isolated vertex. Hence, \(S \neq V(G) \).

For the converse, assume first that \(S = S_G \cup \{v\} \), where \(S_G \) is a restrained strictly differentiating set of \(G \). Then by Theorem 3.8, \(S \) is a differentiating-dominating set of \(G + K_1 \). If \(S_G = V(G) \), then \(S = V(G + K_1) \) is a restrained differentiating-dominating set of \(G + K_1 \). If \(S_G \neq V(G) \), then \(\langle V(G + K_1) \setminus S \rangle = \langle V(G) \setminus S_G \rangle \) has no isolated vertex, by assumption. It follows that \(S \) is a restrained differentiating-dominating set of \(G + K_1 \). Finally, suppose that \(v \notin S \) and \(S \) is a strictly differentiating-dominating set of \(G \) with \(V(G) \neq S \). Then again by Theorem 3.8, \(S \) is a differentiating-dominating set of \(G + K_1 \). Since \(\langle V(G + K_1) \setminus S \rangle = \langle \{v\} \cup (V(G) \setminus S) \rangle \) and \(V(G) \setminus S \neq \emptyset \), it follows that \(\langle V(G + K_1) \setminus S \rangle \) has no isolated vertex. Therefore, \(S \) is a restrained differentiating-dominating set of \(G + K_1 \). \(\square \)

Corollary 3.10 Let \(G \) be a point distinguishing graph with \(\Delta(G) \leq |V(G)| - 2 \). Then

\[
\gamma_{rD}(G + K_1) = \begin{cases}
|V(G)| + 1, & \text{if } \gamma_{SD}(G) = |V(G)| \text{ and } rsdn(G) = |V(G)| \\
\min \{ \gamma_{SD}(G), rsdn(G) + 1 \}, & \text{otherwise.}
\end{cases}
\]
Let G and H be graphs of order m and n, respectively. The corona of two graphs G and H is the graph $G \circ H$ obtained by taking one copy of G and m copies of H, then joining the ith vertex of G to every vertex of the ith copy of H. For every $v \in V(G)$, denote by H^v the copy of H whose vertices are attached one by one to the vertex v. Denote by $v + H^v$ the subgraph of the corona $G \circ H$ corresponding the join $\langle \{v\}\rangle + H^v$.

Theorem 3.11 Let G be non-trivial connected graph and H a point distinguishing graph of order $n \geq 3$, such that $\Delta(H) \leq n - 2$. Then $C \subseteq G \circ H$ is a restrained differentiating-dominating set of $G \circ H$ if and only if for every $v \in V(G)$, one of the following statements is true:

(i) $v \in C$, $N_G(v) \cap C \neq \emptyset$ and $C \cap V(H^v)$ is a restrained differentiating set of H^v;

(ii) $v \in C$, $N_G(v) \cap C = \emptyset$ and $C \cap V(H^v)$ is a restrained strictly differentiating set of H^v;

(iii) $v \notin C$, $N_G(v) \cap C \neq \emptyset$ and $C_1 = C \cap V(H^v)$ is a differentiating-dominating set of H^v with $v \in N_G(V(G) \setminus C)$ if $V(H^v) = C_1$;

(iv) $v \notin C$, $N_G(v) \cap C = \emptyset$ and $C_1 = C \cap V(H^v)$ is a strictly differentiating-dominating set of H^v.

Proof: Suppose C is a restrained differentiating-dominating set of $G \circ H$. Let $v \in V(G)$, $C_1 = V(H^v) \cap C$ and let $x, y \in V(H^v)$ with $x \neq y$. Then $N_{G \circ H}[x] \cap C = (N_{H^v}[x] \cap C_1) \cup (C \cap \{v\})$, $N_{G \circ H}[y] \cap C = (N_{H^v}[y] \cap C_1) \cup (C \cap \{v\})$ and $N_{G \circ H}[v] \cap C = (N_G(v) \cap C_2) \cup (N_{v+H^v}[v] \cap C_1) \cup (C \cap \{v\})$, where $C_2 = C \cap V(G)$.

Suppose first that $v \in C$. If $N_G(v) \cap C \neq \emptyset$, then, since C is a differentiating set of $G \circ H$, $(N_{H^v}[x] \cap C_1) \cup \{v\} = N_{G \circ H}[x] \cap C \neq N_{G \circ H}[y] \cap C = (N_{H^v}[y] \cap C_1) \cup \{v\}$. Thus, $N_{H^v}[x] \cap C_1 \neq N_{H^v}[y] \cap C_1$. Hence, C_1 is a differentiating set of H^v. Now, since C is a restrained differentiating-dominating set of $G \circ H$ and $v \in C$, it follows that either $V(H^v) = C_1$ or $\langle V(H^v) \setminus C_1 \rangle$ has no isolated vertex. Thus, C_1 is a restrained differentiating set of H^v. Hence, (i) holds. Suppose that $N_G(v) \cap C = \emptyset$. Then, again, since C is a differentiating set of $G \circ H$, C_1 is a differentiating set in H^v. Also, since $N_{G \circ H}[v] \cap C_1 = N_{v+H^v}[v] \cap C_1 = \{v\} \cup C_1$, it follows that C_1 must be a strictly differentiating set of H^v. Moreover, since C is a restrained differentiating set of $G \circ H$ and $v \in C$, it follows that either $V(H^v) = C_1$ or $\langle V(H^v) \setminus C_1 \rangle$ has no isolated vertex. Hence, C_1 is a restrained differentiating set of H^v. Thus, (ii) holds.

Next, suppose that $v \notin C$. If $N_G(v) \cap C \neq \emptyset$, then, since C is a restrained differentiating-dominating set of $G \circ H$, it follows that $N_{H^v}[x] \cap C_1 = \emptyset$. Then, $\langle N_{H^v}[x] \cap C_1 \rangle = \emptyset$ and $\langle N_{H^v}[y] \cap C_1 \rangle = \emptyset$. Thus, (iii) holds. If $N_G(v) \cap C = \emptyset$, then, again, since C is a differentiating set of $G \circ H$, C_1 is a differentiating set in H^v. Also, since $N_{G \circ H}[v] \cap C_1 = \emptyset$, it follows that C_1 must be a strictly differentiating set of H^v. Moreover, since C is a restrained differentiating set of $G \circ H$ and $v \in C$, it follows that either $V(H^v) = C_1$ or $\langle V(H^v) \setminus C_1 \rangle$ has no isolated vertex. Hence, C_1 is a restrained differentiating set of H^v. Thus, (iv) holds.
Case 1: Suppose that $u = v$. If $c, d \in V(H^w)$, then, $N_{H^w}[c] \cap C_1 \neq N_{H^w}[d] \cap C_1$, since $C_1 = C \cap V(H^w)$ is a differentiating set of H^w by (i), (ii), (iii) and (iv). Hence, $(N_{G[H]}[c] \cap C) \setminus \{v\} \cap C \neq (N_{G[H]}[d] \cap C) \setminus \{v\} \cap C$. Thus, $N_{G[H]}[c] \cap C \neq N_{G[H]}[d] \cap C$. Suppose $c = v$ and $d \in V(H^w)$. If $N_G[v] \cap C \neq \emptyset$, say $w \in N_G[v] \cap C$, then $w \in [N_{G[H]}[c] \cap C] \setminus [N_{G[H]}[d] \cap C]$. Hence, $N_{G[H]}[c] \cap C \neq N_{G[H]}[d] \cap C$. If $N_G(v) \cap C = \emptyset$, then $V(H^w) \cap C$ is a strictly differentiating set of H^w by (ii) and (iv). Thus, there exists $z \in V(H^w) \cap C$ such that $z \notin N_{G[H]}[d] \cap C$.

Case 2: Suppose that $u \neq v$. Since $V(H^w) \cap C$ and $V(H^v) \cap C$ are non-empty disjoint sets and $(V(H^w) \cap C) \setminus (N_{G[H]}[c] \cap C) \neq \emptyset$ and $(V(H^v) \cap C) \setminus (N_{G[H]}[d] \cap C) \neq \emptyset$, it follows that $N_{G[H]}[c] \cap C \neq N_{G[H]}[d] \cap C$.

Therefore, C is a differentiating-dominating set of $G \circ H$.

Finally, suppose that $V(G \circ H) = C$, then C is a restrained differentiating-dominating set of $G \circ H$. Suppose that $V(G \circ H) \neq C$. Let $w \in V(G \circ H) \setminus C$ and let $v \in V(G)$ such that $w \in V(v + H^w)$. Consider the following cases:

Case 1: Suppose that $w = v$.

Then $w = v \notin C$. If $N_G(w) \cap C \neq \emptyset$, then $C_1 = V(H^w) \cap C$ is a differentiating-dominating set of H^w. If $V(H^w) \cap C \neq V(H^w)$, then there exists $x \in V(H^w) \cap C \subseteq V(G \circ H) \setminus C$ such that $xw \in E(G \circ H)$. If $V(H^w) = C_1$, then by (iii), $w \in N_G(V(G) \setminus C)$. Thus, there exists $y \in V(G) \setminus C \subseteq V(G \circ H) \setminus C$ such that $wy \in E(G \circ H)$. Suppose that $N_G(w) \cap C = \emptyset$. Since G is connected and non-trivial, there exists $a \in V(G) \setminus C$ such that $wa \in E(G \circ H)$.

Case 2: Suppose that $w \neq v$.

Then $w \in V(H^v) \setminus C_1$, where $C_1 = V(H^v) \cap C$. If $v \in C$, then by (i) and (ii), C_1 is a restrained differentiating set of H^v. If $v \notin C$, then $vw \in E(G \circ H)$.

Hence, in all cases, C has no isolated vertex. Therefore, C is a restrained differentiating-dominating set of $G \circ H$. □
Lemma 3.12 [2] Let G be a point distinguishing graph of order \(n \geq 3 \) such that \(dn(G) < \gamma_D(G) \). Then \(1 + dn(G) = \gamma_D(G) \).

Corollary 3.13 Let G be a non-trivial connected graph and H a point distinguishing graph of order \(n \geq 3 \) such that \(\Delta(H) \leq n - 2 \). Then \(|V(G)| \gamma_D(H) \leq \gamma_{rD}(G \circ H) \leq |V(G)| \gamma_{SD}(H) \).

Proof: Let S be a minimum restrained differentiating-dominating set of \(G \circ H \). Then \(\gamma_{rD}(G \circ H) = |S| = \sum_{v \in V(G) \cap S} (1 + |V(H^v) \cap S|) + \sum_{v \in V(G) \setminus S} |V(H^v) \cap S| \). By Lemma 3.12 and Theorem 3.11(i) and (ii) and the fact that \(rdn(H) \geq dn(H) \), \((1 + |V(H^v) \cap S|) \geq 1 + rdn(H) \geq 1 + dn(H) \geq \gamma_D(H) \) for every \(v \in V(G) \cap S \). By Theorem 3.11(iii) and (iv), \(|V(H^v) \cap S| \geq \gamma_D(H) \) for every \(v \in V(G) \setminus S \). Thus, \(\gamma_{rD}(G \circ H) = |S| \leq |V(G)| \gamma_{SD}(H) \).

Now, let \(F \) be a minimum strictly differentiating-dominating set of \(H \). For each \(v \in V(G) \), pick \(F_v \subseteq V(H^v) \), where \(\langle F_v \rangle \cong \langle F \rangle \). Then \(S = \bigcup_{v \in V(G)} F_v \) is a restrained differentiating-dominating set of \(G \circ H \) by Theorem 3.11. Hence, \(\gamma_{rD}(G \circ H) \leq |S| \leq |V(G)| \gamma_{SD}(H) \). \(\square \)

The composition (lexicographic product) \(G[H] \) of two graphs \(G \) and \(H \) is the graph with \(V(G[H]) = V(G) \times V(H) \) and \((u, u')(v, v') \in E(G[H]) \) if and only if either \(uv \in E(G) \) or \(u = v \) and \(u' v' \in E(H) \).

Theorem 3.14 [2] Let G be a connected non-trivial graph and H a point distinguishing graph of order \(n \geq 3 \) with \(\Delta(H) \leq n - 2 \). Then \(C = \bigcup_{x \in S} \{x\} \times T_x \), where \(S \subseteq V(G) \) and \(T_x \subseteq V(H) \) for each \(x \in S \), is a differentiating dominating set of \(G[H] \) if and only if

(i) \(S = V(G) \);

(ii) \(T_x \) is a differentiating set of \(H \) for every \(x \in V(G) \);

(iii) \(T_x \) or \(T_y \) is a strictly differentiating set of \(H \) whenever \(x \) and \(y \) are adjacent vertices of \(G \) with \(N_G[x] = N_G[y] \); and

(iv) \(T_x \) or \(T_y \) is (differentiating) dominating of \(H \) whenever \(x \) and \(y \) are distinct non-adjacent vertices of \(G \) with \(N_G(x) = N_G(y) \).

Theorem 3.15 Let G be a connected non-trivial graph and H a point distinguishing graph of order \(n \geq 3 \) with \(\Delta(H) \leq n - 2 \). Then \(C = \bigcup_{x \in S} \{x\} \times T_x \), where \(S \subseteq V(G) \) and \(T_x \subseteq V(H) \) for each \(x \in S \), is a restrained differentiating-dominating set of \(G[H] \) if and only if

(i) \(S = V(G) \);
(ii) \(T_x \) is a differentiating set of \(H \) for every \(x \in V(G) \), where \(T_x \) is a restrained differentiating set of \(H \) for all \(x \in S_1 \setminus N_G(S_1) \) with \(S_1 = \{ y \in V(G) : T_y \neq V(H) \} \);

(iii) \(T_x \) or \(T_y \) is a strictly differentiating set of \(H \) whenever \(x \) and \(y \) are adjacent vertices of \(G \) with \(N_G(x) = N_G(y) \);

(iv) \(T_x \) or \(T_y \) is (differentiating) dominating of \(H \) whenever \(x \) and \(y \) are distinct non-adjacent vertices of \(G \) with \(N_G(x) = N_G(y) \).

Proof: Let \(C = \bigcup_{x \in V(G)} \{ \{ x \} \times T_x \} \), where \(S \subseteq V(G) \) and \(T_x \subseteq V(H) \) be a restrained differentiating-dominating set of \(G[H] \). Thus, by Theorem 3.14, (i), (iii) and (iv) hold and \(T_x \) is a differentiating set of \(H \) for each \(x \in V(G) \). Let \(S_1 = \{ y \in V(G) : T_y \neq V(H) \} \) and \(x \in S_1 \setminus N_G(S_1) \). Suppose that \(T_x \) is not a restrained differentiating set of \(H \). Then \(\langle V(H) \setminus T_x \rangle \) has an isolated vertex, say \(a \). Then \((x,a) \notin C \) and \((x,a) \) is an isolated vertex in \(\langle V(G[H]) \setminus C \rangle \), contrary to the assumption that \(S \) is a restrained differentiating-dominating set of \(G[H] \). Hence, \(T_x \) is a restrained differentiating set of \(H \) for all \(x \in S_1 \setminus N_G(S_1) \). Hence, (ii) holds.

For the converse, suppose that (i), (ii), (iii) and (iv) hold. Then by Theorem 3.14, \(C = \bigcup_{x \in V(G)} \{ \{ x \} \times T_x \} \) is a differentiating-dominating set of \(G[H] \). Suppose that \(V(G[H]) = C \). Then \(C \) is a restrained differentiating-dominating set of \(G[H] \). Suppose that \(V(G[H]) \neq C \). Let \((y,a) \in V(G[H]) \setminus C \). Then \(y \in S_1 \). If \(y \in N_G(S_1) \), then there exists \(z \in S_1 \cap N_G(y) \). Pick any \(b \in V(H) \setminus T_z \). Then \((y,a)(z,b) \in E(G[H]) \). If \(y \notin N_G(S_1) \), then by (ii), there exists \(c \in V(H) \setminus T_y \cap N_G(a) \). Thus, \((y,a)(y,c) \in E(G[H]) \). Hence, \(\langle V(G[H]) \setminus C \rangle \) has no isolated vertex. Therefore, \(C \) is a restrained differentiating-dominating set of \(G[H] \). \(\square \)

Corollary 3.16 Let \(G \) be a totally point determining graph and \(H \) a point distinguishing graph of orders \(m \geq 3 \) and \(n \geq 3 \), respectively, with \(\Delta(H) \leq n - 2 \). Then \(|V(G)| \cdot dn(H) \leq \gamma_{rD}(G[H]) \leq |V(G)| \cdot rdn(H) \).

Proof: Let \(D \) be a minimum restrained differentiating set of \(H \). Then by Theorem 3.15, \(C = \bigcup_{x \in V(G)} \{ \{ x \} \times D \} \) is a restrained differentiating-dominating set of \(G[H] \). Hence, \(\gamma_{rD}(G[H]) \leq |V(G)| \cdot rdn(H) \).

Now, let \(C \) be a minimum restrained differentiating-dominating set of \(G[H] \). Then by Theorem 3.15 and the fact that \(dn(H) \leq rdn(H) \),

\[
\gamma_{rD}(G[H]) = |C| = \sum_{x \in V(G) \setminus S_1} |T_x| + \sum_{x \in S_1 \setminus N_G(S_1)} |T_x| + \sum_{x \in S_1 \setminus N_G(S_1)} |T_x|
\]

\[
= |V(G) \setminus S_1| \cdot n + |S_1 \cap N_G(S_1)| \cdot dn(H) + |S_1 \setminus N_G(S_1)| \cdot rdn(H)
\]
\[\geq |V(G)\setminus S_1|dn(H) + |S_1|dn(H) \]
\[= |V(G)|dn(H). \]

Therefore,
\[|V(G)|dn(H) \leq \gamma_{rD}(G[H]) \leq |V(G)|rdn(H). \]

Corollary 3.17 Let \(G \) be a totally point determining graph and \(H \) a point distinguishing graph of orders \(m \geq 3 \) and \(n \geq 3 \), respectively, with \(\Delta(H) \leq n-2 \) such that \(dn(H) = rdn(H) \). Then \(\gamma_{rD}(G[H]) = |V(G)|rdn(H) \).

References

Received: July 31, 2015; Published: September 23, 2015