A Semi-Riemannian Manifold of Quasi-Constant Curvature with Half Lightlike Submanifolds

Dae Ho Jin

Department of Mathematics, Dongguk University
Gyeongju 780-714, Republic of Korea

Copyright © 2015 Dae Ho Jin. This article is distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In this paper, we study the geometry of a semi-Riemannian manifold \(\bar{M} \) of quasi-constant curvature. The main result is two characterization theorems for \(\bar{M} \) endowed with a statical, screen homothetic or screen totally umbilical half lightlike submanifold \(M \).

Mathematics Subject Classification: 53C25, 53C40, 53C50

Keywords: extended screen homothetic, statical, half lightlike submanifold, semi-Riemannian manifold of quasi-constant curvature

1 Introduction

B.Y. Chen and K. Yano [1] introduced the notion of a Riemannian manifold of quasi-constant curvature as a Riemannian manifold \((\bar{M}, \bar{g}, \bar{\nabla})\) equipped with the curvature tensor \(\bar{R}\) of the Levi-Civita connection \(\bar{\nabla}\) satisfying

\[
\bar{g}(\bar{R}(X,Y)Z,W) = \alpha \{ \bar{g}(Y,Z)\bar{g}(X,W) - \bar{g}(X,Z)\bar{g}(Y,W) \} + \beta \{ \bar{g}(X,W)\theta(Y)\theta(Z) - \bar{g}(X,Z)\theta(Y)\theta(W) \\
+ \bar{g}(Y,Z)\theta(X)\theta(W) - \bar{g}(Y,W)\theta(X)\theta(Z) \},
\]

where \(\alpha\) and \(\beta\) are scalar functions, and \(\theta\) is a 1-form defined by \(\theta(X) = \bar{g}(X,\zeta)\) and \(\zeta\) is a unit vector field on \(\bar{M}\), which called the curvature vector field of \(\bar{M}\). If \(\beta = 0\), then \(\bar{M}\) is a space of constant curvature \(\alpha\).
Recently D.H. Jin and J.W. Lee studied half lightlike submanifolds [8] and lightlike submanifolds \(M \) [9] of a semi-Riemannian manifold \(\bar{M} \) of quasi-
constant curvature subject to the conditions; (1) \(\zeta \) is tangent to \(M \), (2) the
screen distribution \(S(TM) \) is totally umbilical in \(M \) and (3) the co-screen
distribution \(S(TM^\perp) \) is conformal Killing distribution. Each of this papers
proved two characterization theorems for their lightlike submanifolds.

In this paper, we study the curvature of semi-Riemannian manifold \(\bar{M} \) of
quasi-constant curvature admits either a screen homothetic or a screen totally
umbilical, and stactical half lightlike submanifold \(M \). We prove the following
two characterization theorems for such a semi-Riemannian manifold \(\bar{M} \):

Theorem 1.1. Let \(\bar{M} \) be a semi-Riemannian manifold of quasi-constant
curvature admits a screen homothetic and stactical half lightlike submanifold \(M \) satisfying one of the following two conditions;

(1) the curvature vector field \(\zeta \) is tangent to \(M \), or
(2) \(\zeta \) is parallel with respect to \(\bar{\nabla} \), the local screen second fundamental form
\(D \) is parallel and the lightlike transversal connection is flat,

Then the function \(\alpha \) and \(\beta \), defined by (1.1), vanish and \(\bar{M} \) is flat manifold.

Theorem 1.2. Let \(\bar{M} \) be a semi-Riemannian manifold of quasi-constant
curvature such that \(\dim \bar{M} > 4 \) admits a screen totally umbilical and stactical half lightlike submanifold \(M \) satisfying one of the following two conditions;

(1) \(\zeta \) is tangent to \(M \) and \(M \) is lightlike totally umbilical, or
(2) \(\zeta \) is parallel with respect to \(\bar{\nabla} \), the local screen second fundamental form
\(D \) is parallel and the lightlike transversal connection is flat,

Then the function \(\alpha \) and \(\beta \), defined by (1.1), vanish and \(\bar{M} \) is flat manifold.

To discuss the curvature of such a semi-Riemannian manifold, we need
the following structure equations: It is well-known [3] that the radical dis-
btribution \(\text{Rad}(TM) = TM \cap TM^\perp \) of half lightlike submanifold \((M, g)\) of a
semi-Riemannian manifold \((\bar{M}, \bar{g})\) of codimension 2 is a vector subbundle of
the tangent bundle \(TM \) and the normal bundle \(TM^\perp \), of rank 1. Therefore
there exist complementary non-degenerate distributions \(S(TM) \) and \(S(TM^\perp) \)
of \(\text{Rad}(TM) \) in \(TM \) and \(TM^\perp \) respectively, which called the screen and co-
screen distribution on \(M \), such that

\[
TM = \text{Rad}(TM) \oplus_{\text{orth}} S(TM), \quad TM^\perp = \text{Rad}(TM) \oplus_{\text{orth}} S(TM^\perp), \quad (1.2)
\]

where \(\oplus_{\text{orth}} \) denotes the orthogonal direct sum. We denote such a half lightlike
submanifold by \(M = (M, g, S(TM), S(TM^\perp)) \). Denote by \(F(M) \) the algebra
of smooth functions on \(M \) and by \(\Gamma(E) \) the \(F(M) \) module of smooth sections
of any vector bundle \(E \) over \(M \). Consider the orthogonal complementary
distribution \(S(TM)^\perp \) to \(S(TM) \) in \(TM \). Certainly \(TM^\perp \) is a vector subbundle
of \(S(TM^\perp) \). As \(S(TM^\perp) \) is a non-degenerate subbundle of \(S(TM)^\perp \), the orthogonal complementary distribution \(S(TM^\perp)^\perp \) of \(S(TM^\perp) \) in \(S(TM)^\perp \) is also a non-degenerate distribution such that

\[
S(TM)^\perp = S(TM^\perp)^\perp \oplus_{\text{orth}} S(TM^\perp)^\perp.
\]

Clearly \(\text{Rad}(TM) \) is a vector subbundle of \(S(TM^\perp)^\perp \). Choose \(L \in \Gamma(S(TM^\perp)) \) as a unit vector field with \(\bar{g}(L, L) = \pm 1 \). In this paper we may assume that \(\bar{g}(L, L) = 1 \) without loss of generality. For any null section \(\xi \) of \(\text{Rad}(TM) \), there exists a uniquely defined null vector field \(N \in \Gamma(S(TM^\perp)^\perp) \) satisfying

\[
\bar{g}(\xi, N) = 1, \quad \bar{g}(N, N) = \bar{g}(N, X) = \bar{g}(N, L) = 0, \quad \forall X \in \Gamma(S(TM)).
\]

Denote by \(\text{ltr}(TM) \) the subbundle of \(S(TM^\perp)^\perp \) locally spanned by \(N \). Then we show that \(S(TM^\perp)^\perp = \text{Rad}(TM) \oplus \text{ltr}(TM) \). Let \(\text{tr}(TM) = S(TM^\perp)^\perp \oplus_{\text{orth}} \text{ltr}(TM) \). We call \(N, \text{ltr}(TM) \) and \(\text{tr}(TM) \) the lightlike transversal vector field, lightlike transversal vector bundle and transversal vector bundle of \(M \) with respect to the screen distribution \(S(TM) \) respectively. Then the tangent bundle \(TM \) of \(M \) is decomposed as

\[
TM = TM \oplus \text{tr}(TM) = \{ \text{Rad}(TM) \oplus \text{tr}(TM) \} \oplus_{\text{orth}} S(TM) \quad (1.3)
\]

\[
= \{ \text{Rad}(TM) \oplus \text{ltr}(TM) \} \oplus_{\text{orth}} S(TM) \oplus_{\text{orth}} S(TM^\perp).
\]

Let \(P \) be the projection morphism of \(TM \) on \(S(TM) \). Then the local Gauss and Weingarten formulas of \(M \) and \(S(TM) \) are given respectively by

\[
\nabla_X Y = \nabla_X Y + B(X, Y)N + D(X, Y)L, \quad (1.4)
\]

\[
\nabla_X N = -A_N X + \tau(X)N + \rho(X)L, \quad (1.5)
\]

\[
\nabla_X L = -A_L X + \phi(X)N; \quad (1.6)
\]

\[
\nabla_X PY = \nabla_X^* PY + C(X, PY)\xi, \quad (1.7)
\]

\[
\nabla_X \xi = -A_\xi X - \tau(X)\xi, \quad \forall X, Y \in \Gamma(TM), \quad (1.8)
\]

where \(\nabla \) and \(\nabla^* \) are induced connections on \(TM \) and \(S(TM) \) respectively, \(B \) and \(D \) are called the local lightlike and screen second fundamental forms of \(M \), \(C \) is called the local second fundamental form on \(S(TM) \) respectively. \(A_N, A_\xi \) and \(A_L \) are linear operators on \(TM \) and \(\tau, \rho \) and \(\phi \) are 1-forms on \(TM \).

Since \(\nabla \) is torsion-free, \(\nabla \) is also torsion-free, and \(B \) and \(D \) are symmetric. The above three local second fundamental forms of \(M \) and \(S(TM) \) are related to their shape operators by

\[
B(X, Y) = g(A_\xi X, Y), \quad \bar{g}(A_\xi X, N) = 0, \quad (1.9)
\]

\[
C(X, PY) = g(A_N X, PY), \quad \bar{g}(A_N X, N) = 0, \quad (1.10)
\]

\[
D(X, Y) = g(A_L X, Y) - \phi(X)\eta(Y), \quad \bar{g}(A_L X, N) = \rho(X). \quad (1.11)
\]
where η is a 1-form on TM such that
\[
\eta(X) = \bar{g}(X, N), \quad \forall X \in \Gamma(TM).
\]
From the facts $B(X, Y) = \bar{g}(\bar{\nabla}_X Y, \xi)$ and $D(X, Y) = \bar{g}(\bar{\nabla}_X Y, L)$, we know that B and D are independent of the choice of a screen distribution and
\[
B(X, \xi) = 0, \quad D(X, \xi) = -\phi(X), \quad \forall X \in \Gamma(TM). \tag{1.12}
\]

The induced connection ∇ on M is not metric and satisfies
\[
(\nabla_X g)(Y, Z) = B(X, Y) \eta(Z) + B(X, Z) \eta(Y), \tag{1.13}
\]
for all $X, Y, Z \in \Gamma(TM)$. But the connection ∇^* on M^* is metric. By (1.9) and (1.10), we show that A^*_ξ and A^*_N are $S(TM)$-valued shape operators related to B and C respectively and A^*_ξ is self-adjoint on TM and
\[
A^*_\xi \xi = 0. \tag{1.14}
\]

Definition 1. A half lightlike submanifold M of a semi-Riemannian manifold (\bar{M}, \bar{g}) is said to be *statical* if $\bar{\nabla}_X L \in \Gamma(S(TM))$ for any $X \in \Gamma(TM)$.

From (1.6) and (1.11), we show that this definition is equivalent to the following two conditions: $\phi = 0$ (M is *irrotational*) [10] and $\rho = 0$ (M is *solenoidal*). By M is *statical* we shall mean not only M is *irrotational* but also M is *solenoidal*.

2 The Ricci and scalar curvatures

Denote by \bar{R}, R and R^* the curvature tensors of the Levi-Civita connection ∇ on \bar{M}, the induced connection ∇ on M and the induced connection ∇^* on $S(TM)$ respectively. Using the Gauss-Weingarten equations (1.4)–(1.8) for M and $S(TM)$, we obtain the Gauss-Codazzi equations for M and $S(TM)$:

\[
\bar{g}(\bar{R}(X, Y)Z, PW) = g(R(X, Y)Z, PW)
\]
\[
+ B(X, Z)C(Y, PW) - B(Y, Z)C(X, PW)
\]
\[
+ D(X, Z)D(Y, PW) - D(Y, Z)D(X, PW), \tag{2.1}
\]
\[
\bar{g}(\bar{R}(X, Y)Z, \xi) = (\nabla_X B)(Y, Z) - (\nabla_Y B)(X, Z)
\]
\[
+ B(Y, Z)\tau(X) - B(X, Z)\tau(Y)
\]
\[
+ D(Y, Z)\phi(X) - D(X, Z)\phi(Y), \tag{2.2}
\]
\[
\bar{g}(\bar{R}(X, Y)Z, N) = \bar{g}(R(X, Y)Z, N)
\]
\[
+ D(X, Z)\rho(Y) - D(Y, Z)\rho(X), \tag{2.3}
\]
\[
\bar{g}(\bar{R}(X, Y)Z, L) = (\nabla_X D)(Y, Z) - (\nabla_Y D)(X, Z) \tag{2.4}
\]
\[
+ D(X, Z)\rho(Y) - D(Y, Z)\rho(X), \tag{2.3}
\]
\[
\bar{g}(\bar{R}(X, Y)Z, L) = (\nabla_X D)(Y, Z) - (\nabla_Y D)(X, Z) \tag{2.4}
\]
\[
+ D(X, Z)\rho(Y) - D(Y, Z)\rho(X), \tag{2.3}
\]
\[
\bar{g}(\bar{R}(X, Y)Z, L) = (\nabla_X D)(Y, Z) - (\nabla_Y D)(X, Z) \tag{2.4}
\]
A semi-Riemannian manifold of quasi-constant curvature

\[+ \rho(X)B(Y, Z) - \rho(Y)B(X, Z), \]
\[g(\bar{R}(X, Y)\xi, N) = g(A^\xi X, A^N Y) - g(A^\xi Y, A^N X) \]
\[- 2d\tau(X, Y) + \rho(X)\phi(Y) - \rho(Y)\phi(X), \]
\[g(R(X, Y)PZ, PW) = g(R^*(X, Y)PZ, PW) \]
\[+ C(X, PZ)B(Y, PW) - C(Y, PZ)B(X, PW), \]
\[g(R(X, Y)PZ, N) = (\nabla_X C)(Y, PZ) - (\nabla_Y C)(X, PZ) \]
\[+ C(X, PZ)\tau(Y) - C(Y, PZ)\tau(X). \]

for all \(X, Y, Z, W \in \Gamma(TM) \). In case \(\bar{R} = 0 \), we say that \(\bar{M} \) is flat.

The Ricci curvature tensor, denoted by \(\bar{\text{Ric}} \), of \(\bar{M} \) is defined by

\[\bar{\text{Ric}}(X, Y) = \text{trace}\{Z \rightarrow \bar{R}(Z, X)Y\}, \]

for any \(X, Y \in \Gamma(TM) \). Let \(\dim \bar{M} = m + 3 \). Locally, \(\bar{\text{Ric}} \) is given by

\[\bar{\text{Ric}}(X, Y) = \sum_{i=1}^{m+3} \epsilon_i \bar{g}(\bar{R}(E_i, X)Y, E_i), \]
\[\bar{r} = \sum_{i=1}^{m+3} \epsilon_i \bar{\text{Ric}}(E_i, E_i). \]

Consider an induced quasi-orthonormal frame field \(\{\xi, W_a, N, L\} \) on \(\bar{M} \) such that \(\text{Rad}(TM) = \text{Span}\{\xi\}, S(TM) = \text{Span}\{W_a\} \) and \(\text{tr}(TM) = \text{Span}\{N, L\} \).

Using this frame field, the equations (2.8) and (2.9) reduce respectively to

\[\bar{\text{Ric}}(X, Y) = \sum_{a=1}^{m} \epsilon_a \bar{g}(\bar{R}(W_a, X)Y, W_a) + \bar{g}(\bar{R}(\xi, X)Y, N) \]
\[+ \bar{g}(\bar{R}(N, X)Y, \xi) + \bar{g}(\bar{R}(L, X)Y, L), \quad \forall X, Y \in \Gamma(TM), \]
\[\bar{r} = \bar{\text{Ric}}(\xi, \xi) + \bar{\text{Ric}}(N, N) + \bar{\text{Ric}}(L, L) + \sum_{a=1}^{m} \epsilon_a \bar{\text{Ric}}(W_a, W_a). \]

Definition 2. For any \(X, Y \in \Gamma(TM) \), let \(\nabla_X^\perp N = \pi(\nabla_X N) \), where \(\pi \) is the projection morphism of \(TM \) on \(ltr(TM) \). Then \(\nabla^\perp \) is a linear connection on \(ltr(TM) \). We say that \(\nabla^\perp \) is the lightlike transversal connection of \(M \). We define the curvature tensor \(R^\perp \) on \(ltr(TM) \) by

\[R^\perp(X, Y)N = \nabla_X^\perp \nabla_Y^\perp N - \nabla_Y^\perp \nabla_X^\perp N + \nabla^\perp_{[X,Y]}N. \]

The lightlike transversal connection \(\nabla^\perp \) is said to be flat \([5, 6]\) if \(R^\perp = 0 \).
Theorem 2.1 [5, 6]. Let M be a half lightlike submanifold of a semi-Riemannian manifold \bar{M}. Then the lightlike transversal connection of M is flat if and only if the 1-form τ is closed, i.e., $d\tau = 0$, on any coordinate neighborhood $U \subset M$.

Proof. From (1.5), (2.12) and the definition of the connection ∇^\perp, we have

$$\nabla^\perp_X N = \tau(X)N, \quad R^\perp(X,Y)N = 2d\tau(X,Y)N.$$

From this equations, we have our assertion.

Note 1 [3, 5]. In case $d\tau = 0$, by the cohomology theory there exist a smooth function f such that $\tau = df$. Thus we get $\tau(X) = X(f)$. If we take $\xi = \gamma\xi$, then we have $\tau(X) = \bar{\tau}(X) + X(\ln \gamma)$. Setting $\gamma = \exp(f)$ in this equation, we get $\bar{\tau}(X) = 0$. We call the pair $\{\xi, N\}$ such that the corresponding 1-form τ vanishes the canonical null pair of M. Although $S(TM)$ is not unique but it is canonically isomorphic to the factor vector bundle $S(TM) \cong TM/Rad(TM)$ considered by Kupeli [10]. Thus all $S(TM)$ are mutually isomorphic. In the sequel, in case $d\tau = 0$ we deal with only half lightlike submanifolds M equipped with the canonical null pair $\{\xi, N\}$.

3 Proof of Theorem 1.1

Let M be a half lightlike submanifold of a semi-Riemannian manifold \bar{M} of quasi-constant curvature. In the entire discussion of this article, we shall assume the curvature vector field ζ of \bar{M} is a unit spacelike one without loss of generality. Let λ, μ and ν are the smooth functions defined by $\lambda = \theta(N)$, $\mu = \theta(\xi)$ and $\nu = \theta(L)$. Substituting (1.1) into (2.7), we have

$$\bar{\text{Ric}}(X,Y) = \{(m+2)\alpha + \beta\}\bar{g}(X,Y) + (m+1)\beta \theta(X)\theta(Y),$$

for any $X, Y \in \Gamma(TM)$. Substituting (3.1) into (2.9) and (2.11), we have

$$\bar{r} = (m+2)\{(m+3)\alpha + 2\beta\},$$

$$\bar{r} = (m+1)\{(m+2)\alpha + \beta\} + (m+1)\beta(\lambda^2 + \mu^2 + 1 - 2\lambda\mu),$$

respectively. Comparing the last two equations, we obtain

$$2(m+2)\alpha + (m+3)\beta = (m+1)\beta(\lambda^2 + \mu^2 + 1 - 2\lambda\mu).$$ (3.2)

Replacing W by N to (1.1), for any $X, Y, Z \in \Gamma(TM)$, we have

$$\bar{g}(\bar{R}(X,Y)Z, N) = \{\alpha\eta(X) + \lambda\beta\theta(X)\}g(Y, Z)$$

$$- \{\alpha\eta(Y) + \lambda\beta\theta(Y)\}g(X, Z) + \beta\theta(Y)\eta(X) - \theta(X)\eta(Y)\theta(Z).$$ (3.3)

Taking $X = W = L$ to (1.1) and using the fact $\bar{g}(L, L) = 1$, we have

$$\bar{g}(\bar{R}(L,Y)L, N) = (\alpha + \nu^2)g(X, Y) + \beta \theta(X)\theta(Y),$$

(3.4)
for all \(X, Y \in \Gamma(TM)\). From (3.2), we have the following result:

Theorem 3.1. Let \(\bar{M}\) be semi-Riemannian manifold of quasi-constant curvature admits a half lightlike submanifold \(M\). If the function \(\beta\), defined by (1.1), vanishes, then the function \(\alpha\) also vanishes and \(\bar{M}\) is a flat manifold.

Definition 3. A half lightlike submanifold \(M\) of a semi-Riemannian manifold \(\bar{M}\) is screen homothetic [4] if the shape operators \(A_N\) and \(A^*_\xi\) of \(M\) and \(S(TM)\) respectively are related by \(A_N = \varphi A^*_\xi\), or equivalently, the second fundamental forms \(B\) and \(C\) of \(M\) and \(S(TM)\) respectively satisfy

\[
C(X, PY) = \varphi B(X, Y), \quad \forall X, Y \in \Gamma(TM), \tag{3.5}
\]

where \(\varphi\) is a non-zero constant on any coordinate neighborhood \(U\) in \(M\). In particular, if \(\varphi = 0\), i.e., \(C = A_N = 0\), then \(M\) is called screen totally geodesic.

Proof of Theorem 1.1. Assume that \(M\) is statical and screen homothetic. Replacing \(Z\) by \(\xi\) to (3.3) and using the fact \(\mu = \theta(\xi)\), we get

\[
g(\bar{R}(X,Y)\xi, N) = \mu \beta\{\theta(Y)\eta(X) - \theta(X)\eta(Y)\}. \tag{3.6}
\]

Comparing this with (2.5) and using the facts \(A_N = \varphi A^*_\xi\) and \(\phi = 0\), we get

\[
2d\tau(X,Y) = \mu \beta\{\theta(X)\eta(Y) - \theta(Y)\eta(X)\}, \quad \forall X, Y \in \Gamma(TM). \tag{3.7}
\]

(1) In case \(\zeta\) is tangent to \(M\): It is known [8] that if \(M\) is statical and screen homothetic, then \(\bar{M}\) is a flat manifold. Here we sketch out this proof briefly: If \(\zeta\) belongs to \(Rad(TM)\), then we have \(\zeta = \lambda \xi\). This implies \(1 = g(\zeta, \zeta) = \lambda^2 g(\xi, \xi) = 0\). It is a contradiction. This enables one to choose a screen distribution \(S(TM)\) which contains \(\zeta\). This implies that if \(\zeta\) is tangent to \(M\), then it belongs to \(S(TM)\) which we assume in this case. Thus we get \(\lambda = 0\). As \(\mu = 0\), we have \(d\tau = 0\) by (3.6). Therefore the lightlike transversal connection of \(M\) is flat by Theorem 2.1. We can take \(\tau = 0\) by Note 1.

Replacing \(X\) by \(\xi\) to (3.3) and the fact \(\mu = 0\), we have

\[
g(\bar{R}(\xi,Y)X, N) = \alpha g(X,Y) + \beta \theta(X)\theta(Y), \quad \forall X, Y \in \Gamma(TM). \tag{3.8}
\]

Replacing \(W\) by \(\xi\) to (1.1) and using (2.2) and the fact \(\tau = \phi = 0\), we get

\[
(\nabla_X B)(Y,Z) - (\nabla_Y B)(X,Z) = 0, \quad \forall X, Y, Z \in \Gamma(TM). \tag{3.9}
\]

Substituting (3.5) into (2.7) and using (2.3) with \(\rho = 0\) and (3.8), we obtain

\[
g(\bar{R}(X,Y)PZ, N) = 0, \quad \forall X, Y, Z \in \Gamma(TM).
\]

From this and the fact \(g(\bar{R}(X,Y)\xi, N) = 0\), we have

\[
g(\bar{R}(X,Y)Z, N) = 0, \quad \forall X, Y, Z \in \Gamma(TM).
\]
Replacing X by ξ and Z by X to this and then, comparing with (3.7), we have

$$\alpha g(X,Y) + \beta \theta(X)\theta(Y) = 0, \quad \forall X, Y \in \Gamma(TM).$$

Taking $X = Y = \zeta$, we get $\alpha = -\beta$. Substituting $\beta = -\alpha$ into (3.2) and using the fact $\lambda = \mu = 0$, we have $2(m+1)\alpha = 0$. Thus $\alpha = \beta = 0$ and \bar{M} is a flat manifold.

(2) In case ζ is parallel with respect to $\bar{\nabla}$, D is parallel and the lightlike transversal connection is flat: If ζ is tangent to M, then, by Case (1) we show that $\alpha = \beta = 0$ and \bar{M} is a flat manifold. Thus we may assume that ζ is not tangent to M. In this case, we show that $(\mu, \nu) \neq (0, 0)$.

(i) In case $\mu \neq 0$: As the lightlike transversal connection is flat, by Theorem 2.1, we get $d\tau = 0$. From this result, (3.6) and the fact $\mu \neq 0$, we have $2(m+1)\alpha = 0$. Thus $\alpha = \beta = 0$ and \bar{M} is a flat manifold.

As ζ is parallel with respect to $\bar{\nabla}$, applying $\bar{\nabla}_X$ to (3.9) and using (1.4)~(1.8), (1.12) and the facts $\tau = \phi = \rho = 0$ and $A_N^\iota = \varphi A^\iota_N$, we show that the functions λ, μ and ν are constants and $(\lambda + \mu \varphi)A^\iota_N + \nu A_L = 0$. As D is parallel and $\rho = 0$, (2.4) reduce

$$\bar{g}(\bar{R}(X,Y)Z, L) = 0, \quad \forall X, Y, Z \in \Gamma(TM).$$

On the other hand, replacing W by L to (1.1), we get

$$\bar{g}(\bar{R}(X,Y)Z, L) = \nu \beta \{\theta(X)g(Y,Z) - \theta(Y)g(X,Z)\},$$

for all $X, Y, Z \in \Gamma(TM)$. From the last two equations, we obtain

$$\nu \beta \{\theta(X)g(Y,Z) - \theta(Y)g(X,Z)\} = 0, \quad \forall X, Y, Z \in \Gamma(TM).$$

Replacing X by ξ to this, we get $\mu \nu \beta = 0$. As $\mu \nu$ is a constant and $\beta \neq 0$, we have $\mu \nu = 0$. As μ is a non-zero constant, we have $\nu = 0$. Therefore we get

$$\zeta = \lambda \xi + \mu N, \quad (\lambda + \mu \varphi)A^\iota_N = 0.$$
In case $\lambda + \mu \phi = 0$: Replacing W by ξ to (1.1) and using (2.2) and the fact $\tau = \phi = 0$, for any $X, Y, Z \in \Gamma(TM)$, we have
\[(\nabla_X B)(Y, Z) - (\nabla_Y B)(X, Z) = \mu \beta \{\theta(X)g(Y, Z) - \theta(Y)g(X, Z)\}.\] (3.10)
Substituting (3.5) into (2.7) with $\tau = 0$ and using (2.3) with $\rho = 0$, (3.10) and the fact $\bar{g}(\bar{R}(X, Y)\xi, N) = 0$, we have
\[\bar{g}(\bar{R}(X, Y)Z, N) = \mu \beta \{\theta(X)g(Y, Z) - \theta(Y)g(X, Z)\},\] (3.11)
for all $X, Y, Z \in \Gamma(TM)$. Replacing X by ξ and Z by X to (3.3), we get
\[\bar{g}(\bar{R}(\xi, Y)X, N) = (\alpha + \lambda \mu \beta)g(X, Y), \quad \forall X, Y \in \Gamma(TM).\] (3.12)
Replacing X by ξ and Z by X to (3.11) and then, comparing this result and (3.12), we have $\alpha = -\beta$. Substituting $\beta = -\alpha$ into (3.2), we have
\[\alpha(1 + \lambda^2 + \mu^2) = 0.\]
This implies $\alpha = 0$. Consequently $\beta = 0$ and \bar{M} is a flat manifold.

In case M is screen totally geodesic: From (2.3) and (2.7), we get
\[\bar{g}(\bar{R}(X, Y)PZ, N) = 0, \quad \forall X, Y, Z \in \Gamma(TM).\]
From this equation and the fact $\bar{g}(\bar{R}(X, Y)\xi, N) = 0$, we show that
\[\bar{g}(\bar{R}(X, Y)Z, N) = 0, \quad \forall X, Y, Z \in \Gamma(TM).\] (3.13)
Replacing X by ξ and Z by X to (3.3), we get
\[\bar{g}(\bar{R}(\xi, Y)X, N) = (\alpha + \lambda \mu \beta)g(X, Y), \quad \forall X, Y \in \Gamma(TM).\] (3.14)
Using (3.13) and (3.14) and the fact $S(TM)$ is non-degenerate, we have $\alpha + \lambda \mu \beta = 0$, i.e., $\beta = -2\alpha$. Substituting $\beta = -2\alpha$ into (3.2), we have
\[\alpha\{1 - (m + 1)(\lambda^2 + \mu^2)\} = 0.\]
As $\{1 - (m + 1)(\lambda^2 + \mu^2)\}$ is constant, if $\alpha \neq 0$, then $1 = (m + 1)(\lambda^2 + \mu^2)$. As $\lambda^2 + \mu^2 < (m + 1)(\lambda^2 + \mu^2) = 1$. Using $2\lambda \mu = 1$, we have
\[(\lambda - \mu)^2 = \lambda^2 + \mu^2 - 2\lambda \mu < 1 - 1 = 0.\]
It is a contradiction. This implies $\alpha = \beta = 0$ and \bar{M} is a flat manifold.

(ii) In case $\mu = 0$: As $(\mu, \nu) \neq (0, 0)$, we have $\nu \neq 0$. Since $\mu = 0$, by (3.6) we get $d\tau = 0$. Thus we can take $\tau = 0$. Replacing X by ξ to (3.3), we get
\[\bar{g}(\bar{R}(\xi, Y)X, N) = \alpha g(X, Y) + \beta \theta(X)\theta(Y).\] (3.15)
Replacing W by ξ to (1.1) and using (2.2) and the fact $\tau = \phi = \mu = 0$, we get
\[
(\nabla_X B)(Y, Z) - (\nabla_Y B)(X, Z) = 0, \quad \forall \, X, Y, Z \in \Gamma(TM).
\] (3.16)
Substituting (3.5) into (2.7) and using (2.3) satisfying $\rho = 0$ and (3.16), we get
\[
g(\bar{\nabla}(X, Y)PZ, N) = 0. \quad \forall \, X, Y, Z \in \Gamma(TM).
\]
Replacing X by ξ to this and then, comparing with (3.15), we have
\[
\alpha g(X, Y) + \beta \theta(X)\theta(Y) = 0, \quad \forall \, X, Y \in \Gamma(TM).
\]
Taking $X = Y = \zeta$ to this equation, we have $\alpha = -\beta$. Substituting $\alpha = -\beta$ into (3.2), we get $(m + 1)(2 + \lambda^2)\alpha = 0$. Thus we have $\alpha = 0$. Consequently we also have $\beta = 0$ and \bar{M} is a flat manifold.

Corollary 1. Let \bar{M} be a semi-Riemannian manifold of quasi-constant curvature admits a screen totally geodesic and statical half lightlike submanifold M satisfying one of the following two conditions:

1. the curvature vector field ζ is tangent to M, or

2. ζ is parallel with respect to $\bar{\nabla}$, the local screen second fundamental form D is parallel and the lightlike transversal connection is flat,

Then the function α and β, defined by (1.1), vanish and \bar{M} is flat manifold.

Corollary 2. Let \bar{M} be a semi-Riemannian manifold of quasi-constant curvature admits either a screen homothetic or a screen totally geodesic and statical half lightlike submanifold M such that $\mu = 0$. Then the function α and β, defined by (1.1), vanish and \bar{M} is flat manifold.

Proof. In case $\mu = 0$. By the same method of Case (1) of above theorem, we have $\alpha = -\beta$. Substituting $\beta = -\alpha$ into (3.2), we have $(m + 1)(2 + \lambda^2)\alpha = 0$. Thus we have $\alpha = \beta = 0$ and \bar{M} is a flat manifold.

4 Proof of Theorem 1.2

Definition 4. (1) We say that the half lightlike submanifold M is **screen totally umbilical**[2] if there exist a smooth function γ on any coordinate neighborhood $U \subset M$ such that $A_N X = \gamma PX$ for any $X \in \Gamma(TM)$, or equivalently,
\[
C(X, PY) = \gamma g(X, Y), \quad \forall \, X, Y \in \Gamma(TM).
\] (4.1)

(2) We say that M is **lightlike totally umbilical** if there is a smooth function σ on any coordinate neighborhood U such that
\[
B(X, Y) = \sigma g(X, Y), \quad \forall \, X, Y \in \Gamma(TM).
\] (4.2)
Note that, in case $\gamma = 0$ on \mathcal{U}, M is screen totally geodesic.

Proof of Theorem 1.2. Assume that M is statical and screen totally umbilical. From (2.5), (3.3), (4.1) and the fact $A^* \xi$ is self-adjoint, we get

$$2d\tau(X,Y) = \mu \beta \{\theta(X)\eta(Y) - \theta(Y)\eta(X)\}, \quad \forall X, Y \in \Gamma(TM). \quad (4.3)$$

(1) In case ζ is tangent to M: In this case we show that $\mu = \nu = 0$ and ζ belongs to $S(TM)$ by Case 1 of Theorem 1.1. Thus $\lambda = 0$. As $\mu = 0$, we get $d\tau = 0$. Therefore the transversal connection is flat and $\bar{g}(\bar{R}(X,Y)\xi, N) = 0$. Replacing X by ξ to (3.3) and using the fact $\mu = 0$, we have

$$\bar{g}(\bar{R}(\xi,Y)X, N) = \alpha g(X,Y) + \beta \theta(X)\theta(Y), \quad \forall X, Y \in \Gamma(TM). \quad (4.4)$$

As $d\tau = 0$, we can take $\tau = 0$. Assume that M is lightlike totally umbilical. Substituting (4.1) into (2.7) and using (2.3) and (4.2), we get

$$\bar{g}(\bar{R}(X,Y)Z, N) = \{X[\gamma] - \sigma \gamma \eta(X)\}g(Y,Z) - \{Y[\gamma] - \sigma \gamma \eta(Y)\}g(X,Z).$$

Replacing X by ξ and Z by X to this equation, we have

$$\bar{g}(\bar{R}(\xi,Y)X, N) = \{\xi[\gamma] - \sigma \gamma\}g(X,Y), \quad \forall X, Y \in \Gamma(TM).$$

Comparing this equation and (4.4), we obtain

$$\{\xi[\gamma] - \sigma \gamma - \alpha\}g(X,Y) = \beta \theta(X)\theta(Y), \quad \forall X, Y \in \Gamma(TM).$$

Taking $X = Y = \zeta$ to this equation, we have $\beta = \xi[\gamma] - \sigma \gamma - \alpha$ and

$$\beta g(X,Y) = \beta \theta(X)\theta(Y), \quad \forall X, Y \in \Gamma(TM). \quad (4.5)$$

Substituting (4.5) into (3.1), (3.7) and (3.4), we obtain

$$\bar{R}ic(X,Y) = (m + 2)(\alpha + \beta)g(X,Y), \quad \forall X, Y \in \Gamma(T\bar{M}), \quad (4.6)$$

$$\bar{g}(\bar{R}(\xi,X)Y, N) = (\alpha + \beta)g(X,Y), \quad \forall X, Y \in \Gamma(TM), \quad (4.7)$$

$$\bar{g}(\bar{R}(\xi,X)Y, L) = (\alpha + \beta)g(X,Y), \quad \forall X, Y \in \Gamma(TM). \quad (4.8)$$

Substituting (4.5) into (1.1), for any $X, Y, Z, W \in \Gamma(TM)$, we have

$$\bar{g}(\bar{R}(X,Y)Z, W) = (\alpha + 2\beta)\{g(Y,Z)g(X,W) - g(X,Z)g(Y,W)\}. \quad (4.9)$$

Substituting (4.7), (4.8) and (4.9) into (2.9), we also have

$$\bar{R}ic(X,Y) = \{(m + 2)\alpha + (2m + 1)\beta\}g(X,Y). \quad (4.10)$$

Comparing (4.6) and (4.10), we obtain $\beta = 0$ as $m > 1$. As $\beta = 0$, from (3.2) we have $\alpha = 0$. Thus \bar{M} is a flat manifold.
(2) In case ζ is parallel with respect to $\bar{\nabla}$, D is parallel and the lightlike transversal connection is flat: If ζ is tangent to M, then, by Case (1) of this theorem, we show that $\alpha = \beta = 0$ and M is a flat manifold. Thus we may assume that ζ is not tangent to M. In this case, we find $(\mu, \nu) \neq (0, 0)$.

(i) In case $\mu \neq 0$: As the lightlike transversal connection is flat, we get $d\tau = 0$ by Theorem 2.1. Thus, from (3.6), we have
\[\beta\{\theta(X)\eta(Y) - \theta(Y)\eta(X)\} = 0, \quad \forall X, Y \in \Gamma(TM). \] (4.11)
Replacing Y by ξ to (4.11), we have
\[\beta\theta(PX) = \beta\{\theta(X) - f\eta(X)\} = 0. \]
By Theorem 3.1, we set $\beta \neq 0$. As $\theta(PX) = 0$ for all $X \in \Gamma(TM)$, we get
\[\zeta = \lambda\xi + \mu N + \nu L. \] (4.12)

As D is parallel and $\rho = 0$, from (1.1) and (2.4) we have
\[\nu\beta\{\theta(X)g(Y, Z) - \theta(Y)g(X, Z)\} = 0, \quad \forall X, Y, Z \in \Gamma(TM). \]
Replacing X by ξ, we get $\mu \nu \beta = 0$. As $\mu \nu$ is a non-zero constant and $\beta \neq 0$, we have $\mu \nu = 0$. As μ is a non-zero constant, we have $\nu = 0$. Thus we get
\[\zeta = \lambda\xi + \mu N, \quad A^*_\xi X = \sigma PX, \quad \text{where} \quad \sigma = -2\mu^2\gamma. \] (4.13)
As $\bar{g}(\zeta, \zeta) = 1$, we get $2\lambda \mu = 1$. Replacing X by ξ to (3.3), we get
\[\bar{g}(\bar{R}(\xi, Y)X, N) = (\alpha + \lambda\mu\beta)g(X, Y), \quad \forall X, Y \in \Gamma(TM). \] (4.14)
Substituting (4.1) into (2.6) and using (2.3), the second equation of (4.13) and the fact that $\bar{g}(\bar{R}(X, Y)\xi, N) = 0$, we get
\[\bar{g}(\bar{R}(X, Y)Z, N) = \{X[\gamma] - \sigma\gamma\eta(X)\}g(Y, Z) - \{Y[\gamma] - \sigma\gamma\eta(Y)\}g(X, Z). \]
Replacing X by ξ and Z by X to this equation, we have
\[\bar{g}(\bar{R}(\xi, Y)X, N) = \{\xi[\gamma] - \sigma\gamma\}g(X, Y), \quad \forall X, Y \in \Gamma(TM). \]
Comparing this and (4.14) and using $\sigma = -2\mu^2\gamma$ and $2\lambda \mu = 1$, we get
\[2\{\xi[\gamma] + 2\mu^2\gamma^2\} = 2\alpha + \beta. \] (4.15)
Replacing W by ξ to (1.1) and using (2.2) and the fact $\tau = \phi = 0$, we have
\[(\nabla_X B)(Y, Z) - (\nabla_Y B)(X, Z) = \mu \beta \{\theta(X)g(Y, Z) - \theta(Y)g(X, Z)\} \tag{4.16}\]
Applying ∇_X to $B(Y, Z) = -2\mu^2 \gamma g(Y, Z)$ and using μ is a constant, we have
\[(\nabla_X B)(Y, Z) = -2\mu^2 \gamma \{\theta(Y)g(X, Z) - \theta(X)g(Y, Z)\}, \quad \forall X, Y, Z \in \Gamma(TM). \tag{1.9}\]
Substituting this into (4.16) and using (1.9) and the fact $\mu \neq 0$, we have
\[2\mu \{X[\gamma] + 2\mu^2 \gamma^2 \eta(Y)\}g(Y, Z) - 2\mu \{Y[\gamma] + 2\mu^2 \gamma^2 \eta(Y)\}g(X, Z) = \beta \{\theta(Y)g(X, Z) - \theta(X)g(Y, Z)\}, \quad \forall X, Y, Z \in \Gamma(TM). \tag{4.15}\]
Thus we have $\alpha = -\beta$. Substituting this into (3.2), we get
\[\alpha(1 + \lambda^2 + \mu^2) = 0. \tag{4.17}\]
From (4.15) and (4.17), we get $\alpha = -\beta$. Substituting this into (3.2), we get
\[\alpha(1 + \lambda^2 + \mu^2) = 0. \tag{4.18}\]
Thus we have $\alpha = 0$. Consequently we get $\beta = 0$ and \bar{M} is a flat manifold.

(ii) In case $\mu = 0$: As $(\mu, \nu) \neq (0, 0)$, we have $\nu \neq 0$. By Theorem 3.1, we let $\beta \neq 0$. As D is parallel and $\rho = 0$, from (1.1) with $W = L$, we get
\[\theta(X)g(Y, Z) - \theta(Y)g(X, Z) = 0, \quad \forall X, Y, Z \in \Gamma(TM). \tag{1.10}\]
Using this and the fact $S(TM)$ is non-degenerate, we obtain
\[\theta(PX)PY = \theta(PY)PX, \quad \forall X, Y \in \Gamma(TM). \tag{1.11}\]
Suppose there exists a vector field $X_o \in \Gamma(TM)$ such that $\theta(PX_o) \neq 0$, then $PX = fPX_o$ for any $X \in \Gamma(TM)$, where f is a smooth function. It is a contradiction as rank $S(TM) > 1$. Thus we have $\theta(PX) = 0$ for all $X \in \Gamma(TM)$. From this and $\theta(\xi) = 0$, we have $\theta(X) = 0$ for any $X \in \Gamma(TM)$. Replacing X by ξ to (3.3), we get
\[\bar{g}(\bar{\nabla}(\xi, Y)X, N) = \alpha g(X, Y), \quad \forall X, Y \in \Gamma(TM). \tag{4.19}\]
Substituting (4.1) into (2.7) and using (1.13) and (2.3) with $\rho = 0$, we get
\[\bar{g}(\bar{\nabla}(X, Y)Z, N) = X[\gamma]g(Y, Z) - Y[\gamma]g(X, Z) + \gamma \{B(X, Z)\eta(Y) - B(Y, Z)\eta(X)\}. \tag{4.20}\]
Replacing X by ξ and Z by X to this equation, we have
\[\bar{g}(\bar{\nabla}(\xi, Y)X, N) = \xi[\gamma]g(X, Y) - \gamma B(X, Y), \quad \forall X, Y \in \Gamma(TM). \tag{4.21}\]
Comparing this equation and (4.18), we obtain
\[\gamma B(X, Y) = (\xi[\gamma] - \alpha)g(X, Y), \quad \forall X, Y \in \Gamma(TM). \tag{4.22}\]
Thus M is either lightlike totally umbilical or M is screen totally geodesic. In case M is lightlike totally umbilical, by the method of Case (1) of this theorem, we have $\alpha = \beta = 0$ and \bar{M} is a flat manifold. In case M is screen totally geodesic, by Corollary 2, we have $\alpha = \beta = 0$ and \bar{M} is a flat manifold.
References

Received: August 21, 2015; Published: October 23, 2015