An Extension of Zadeh’s Max-Min Composition Operator

Chul Kang

Department of Applied Mathematics
Hankyong National University
Kyonggi-Do 456-749, Korea

Yong Sik Yun

Department of Mathematics
Jeju National University
Jeju 690-756, Korea

Copyright © 2015 Chul Kang and Yong Sik Yun. This article is distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

We generate the triangular fuzzy numbers on \mathbb{R} to \mathbb{R}^2. By defining parametric operations between two regions valued α-cuts, we get the parametric operations for two triangular fuzzy numbers defined on \mathbb{R}^2. We prove that the results for the parametric operations are the generalization of Zadeh’s extended algebraic operations.

Mathematics Subject Classification: 47N99, 60D05

Keywords: extension, 2-dimensional triangular fuzzy number

1 Introduction

A triangular fuzzy number is the most famous fuzzy number. The membership function of triangular fuzzy number is very simple and consisting of two

\footnote{Corresponding author}
monotone increasing and decreasing lines. We had Zadeh’s max-min compositions for two generalized triangular fuzzy sets and normal fuzzy probability for generalized triangular fuzzy sets. Furthermore, we had exponential fuzzy probability for generalized triangular fuzzy sets\(^\[4\]\). We generated the triangular fuzzy numbers on \(\mathbb{R} \to \mathbb{R}^2\) \([3]\). By defining parametric operations between two regions valued \(\alpha\)-cuts, we get the parametric operations for two triangular fuzzy numbers defined on \(\mathbb{R}^2\). In this paper, we prove that the results for the parametric operations are the generalization of Zadeh’s extended algebraic operations.

2 Preliminaries

Let \(X\) be a set. We define \(\alpha\)-cut and \(\alpha\)-set of the fuzzy set \(A\) with the membership function \(\mu_A(x)\).

Definition 2.1 An \(\alpha\)-cut of the fuzzy number \(A\) is defined by \(A_\alpha = \{x \in \mathbb{R} \mid \mu_A(x) \geq \alpha\}\) if \(\alpha \in (0, 1]\) and \(A_\alpha = \text{cl}\{x \in \mathbb{R} \mid \mu_A(x) > \alpha\}\) if \(\alpha = 0\). For \(\alpha \in (0, 1]\), the set \(A^\alpha = \{x \in X \mid \mu_A(x) = \alpha\}\) is said to be the \(\alpha\)-set of the fuzzy set \(A\), \(A^0\) is the boundary of \(\{x \in \mathbb{R} \mid \mu_A(x) > \alpha\}\) and \(A^1 = A_1\).

In the calculations between two fuzzy numbers, the concept of \(\alpha\)-cut is very important. Furthermore, some operations between \(\alpha\)-cuts are very useful and \(\alpha\)-set plays a very important role in a 2-dimensional case.

Definition 2.2 ([5]) The extended addition \(A(+)B\), extended subtraction \(A(-)B\), extended multiplication \(A(\cdot)B\) and extended division \(A(/)B\) are fuzzy sets with membership functions as follows.

1. \(\mu_{A(+)B}(z) = \sup_{z=x+y} \min\{\mu_A(x), \mu_B(y)\}\), \(x \in A, y \in B\)
2. \(\mu_{A(-)B}(z) = \sup_{z=x-y} \min\{\mu_A(x), \mu_B(y)\}\), \(x \in A, y \in B\)
3. \(\mu_{A(\cdot)B}(z) = \sup_{z=x-y} \min\{\mu_A(x), \mu_B(y)\}\), \(x \in A, y \in B\)
4. \(\mu_{A(/)B}(z) = \sup_{z=x/y} \min\{\mu_A(x), \mu_B(y)\}\), \(x \in A, y \in B\)

We proved that for all fuzzy numbers \(A\) and all \(\alpha \in [0, 1]\), there exists a piecewise continuous function \(f_\alpha(t)\) defined on \([0, 1]\) such that \(A_\alpha = \{f_\alpha(t)\mid t \in [0, 1]\}\). If \(A\) is continuous, then the corresponding function \(f_\alpha(t)\) is also continuous. The corresponding function \(f_\alpha(t)\) is said to be the parametric \(\alpha\)-function of \(A\). The parametric \(\alpha\)-function of \(A\) is denoted by \(f_\alpha(t)\) or \(f_A(t)\).
Definition 2.3 ([1]) Let A and B be two continuous fuzzy numbers defined on \mathbb{R} and $f_A(t), f_B(t)$ be the parametric α-functions of A and B, respectively. The parametric addition, parametric subtraction, parametric multiplication and parametric division are fuzzy numbers that have their α-cuts as follows.

1. parametric addition $A(+)_pB : (A(+)_pB)_\alpha = \{f_A(t) + f_B(t) \mid t \in [0, 1]\}$
2. parametric subtraction $A(-)_pB : (A(-)_pB)_\alpha = \{f_A(t) - f_B(1 - t) \mid t \in [0, 1]\}$
3. parametric multiplication $A(\cdot)_pB : (A(\cdot)_pB)_\alpha = \{f_A(t) \cdot f_B(t) \mid t \in [0, 1]\}$
4. parametric division $A(/)_pB : (A(/)_pB)_\alpha = \{f_A(t)/f_B(1 - t) \mid t \in [0, 1]\}$

Theorem 2.4 ([1]) Let A and B be two continuous fuzzy numbers defined on \mathbb{R}. Then we have the followings.

1. $A(+)_pB = A(+)B$
2. $A(-)_pB = A(-)B$
3. $A(\cdot)_pB = A(\cdot)B$
4. $A(/)_pB = A(/)B$

3 2-dimensional triangular fuzzy numbers

Definition 3.1 A fuzzy set A with a membership function

$$
\mu_A(x, y) = \begin{cases}
1 - \frac{(x-x_1)^2}{a^2} + \frac{(y-y_1)^2}{b^2}, & b^2(x-x_1)^2 + a^2(y-y_1)^2 \leq a^2b^2, \\
0, & \text{otherwise},
\end{cases}
$$

where $a, b > 0$ is called the 2-dimensional triangular fuzzy number and denoted by $(a, x_1, b, y_1)^2$.

The α-cut A_α of a 2-dimensional triangular fuzzy number $A = (a, x_1, b, y_1)^2$ is an interior of ellipse in an xy-plane including the boundary

$$
A_\alpha = \{(x, y) \in \mathbb{R}^2 \mid b^2(x-x_1)^2 + a^2(y-y_1)^2 \leq a^2b^2(1-\alpha)^2\}
$$

$$
= \{(x, y) \in \mathbb{R}^2 \mid \left(\frac{x-x_1}{a(1-\alpha)}\right)^2 + \left(\frac{y-y_1}{b(1-\alpha)}\right)^2 \leq 1\}.
$$

Theorem 3.2 ([3]) Let A be a convex fuzzy number defined on \mathbb{R}^2 and $A^\alpha = \{(x, y) \in \mathbb{R}^2 \mid \mu_A(x, y) = \alpha\}$ be the α-set of A. Then for all $\alpha \in (0, 1)$, there exist piecewise continuous functions $f_1^\alpha(t)$ and $f_2^\alpha(t)$ defined on $[0, 2\pi]$ such that

$$
A^\alpha = \{(f_1^\alpha(t), f_2^\alpha(t)) \in \mathbb{R}^2 \mid 0 \leq t \leq 2\pi\}.
$$
If \(A \) is a continuous convex fuzzy number defined on \(\mathbb{R}^2 \), then the \(\alpha \)-set \(A^\alpha \) is a closed circular convex subset in \(\mathbb{R}^2 \).

Definition 3.3 ([3]) Let \(A \) and \(B \) be convex fuzzy numbers defined on \(\mathbb{R}^2 \) and
\[
A^\alpha = \{(f_1^\alpha(t), f_2^\alpha(t)) \in \mathbb{R}^2 | 0 \leq t \leq 2\pi \},
\]
\[
B^\alpha = \{(g_1^\alpha(t), g_2^\alpha(t)) \in \mathbb{R}^2 | 0 \leq t \leq 2\pi \}
\]
be the \(\alpha \)-sets of \(A \) and \(B \), respectively. For \(\alpha \in (0, 1) \), we define that the parametric addition \(A(+)_pB \), parametric subtraction \(A(-)_pB \), parametric multiplication \(A(\cdot)_pB \) and parametric division \(A(\bigg/)_pB \) of two fuzzy numbers \(A \) and \(B \) are fuzzy numbers that have their \(\alpha \)-sets as follows.

1. \(A(+)_pB : (A(+)_pB)^\alpha = \{(f_1^\alpha(t) + g_1^\alpha(t), f_2^\alpha(t) + g_2^\alpha(t)) \in \mathbb{R}^2 | 0 \leq t \leq 2\pi \} \)
2. \(A(-)_pB : (A(-)_pB)^\alpha = \{(x(t), y(t)) \in \mathbb{R}^2 | 0 \leq t \leq 2\pi \}, \) where
\[
\begin{align*}
x_\alpha(t) &= \begin{cases} f_1^\alpha(t) - g_1^\alpha(t + \pi), & \text{if } 0 \leq t \leq \pi \\ f_1^\alpha(t) - g_1^\alpha(t - \pi), & \text{if } \pi \leq t \leq 2\pi \end{cases}
\end{align*}
\]
and
\[
\begin{align*}
y_\alpha(t) &= \begin{cases} f_2^\alpha(t) - g_2^\alpha(t + \pi), & \text{if } 0 \leq t \leq \pi \\ f_2^\alpha(t) - g_2^\alpha(t - \pi), & \text{if } \pi \leq t \leq 2\pi \end{cases}
\end{align*}
\]
3. \(A(\cdot)_pB : (A(\cdot)_pB)^\alpha = \{(f_1^\alpha(t) \cdot g_1^\alpha(t), f_2^\alpha(t) \cdot g_2^\alpha(t)) \in \mathbb{R}^2 | 0 \leq t \leq 2\pi \} \)
4. \(A(\bigg/)_pB : (A(\bigg/)_pB)^\alpha = \{(x(t), y(t)) \in \mathbb{R}^2 | 0 \leq t \leq 2\pi \}, \) where
\[
\begin{align*}
x_\alpha(t) &= \frac{f_1^\alpha(t)}{g_1^\alpha(t + \pi)} \quad (0 \leq t \leq \pi), \quad x_\alpha(t) = \frac{f_1^\alpha(t)}{g_1^\alpha(t - \pi)} \quad (\pi \leq t \leq 2\pi)
\end{align*}
\]
and
\[
\begin{align*}
y_\alpha(t) &= \frac{f_2^\alpha(t)}{g_2^\alpha(t + \pi)} \quad (0 \leq t \leq \pi), \quad y_\alpha(t) = \frac{f_2^\alpha(t)}{g_2^\alpha(t - \pi)} \quad (\pi \leq t \leq 2\pi)
\end{align*}
\]

For \(\alpha = 0 \) and \(\alpha = 1 \), \((A(\cdot)_pB)^0 = \lim_{\alpha \to 0^+} (A(\cdot)_pB)^\alpha \) and \((A(\cdot)_pB)^1 = \lim_{\alpha \to 1^-} (A(\cdot)_pB)^\alpha \), where \(* = +, -, \cdot, / \).

Theorem 3.4 ([3]) Let \(A = (a_1, x_1, b_1, y_1)^2 \) and \(B = (a_2, x_2, b_2, y_2)^2 \) be two 2-dimensional triangular fuzzy numbers. Then we have the followings.

1. \(A(+)_pB = \left(a_1 + a_2, x_1 + x_2, b_1 + b_2, y_1 + y_2 \right)^2 \)
2. \(A(-)_pB = \left(a_1 + a_2, x_1 - x_2, b_1 + b_2, y_1 - y_2 \right)^2 \)
(3) \((A\cdot p)B\)^\alpha = \{(x_\alpha(t), y_\alpha(t)) \mid 0 \leq t \leq 2\pi\}, \text{ where}

\[x_\alpha(t) = x_1 x_2 + (x_1 a_2 + x_2 a_1)(1 - \alpha) \cos t + a_1 a_2 (1 - \alpha)^2 \cos^2 t \]

and

\[y_\alpha(t) = y_1 y_2 + (y_1 b_2 + y_2 b_1)(1 - \alpha) \sin t + b_1 b_2 (1 - \alpha)^2 \sin^2 t. \]

(4) \((A/)pB\)^\alpha = \{(x_\alpha(t), y_\alpha(t)) \mid 0 \leq t \leq 2\pi\}, \text{ where}

\[x_\alpha(t) = \frac{x_1 + a_1 (1 - \alpha) \cos t}{x_2 - a_2 (1 - \alpha) \cos t} \quad \text{and} \quad y_\alpha(t) = \frac{y_1 + b_1 (1 - \alpha) \sin t}{y_2 - b_2 (1 - \alpha) \sin t}. \]

Thus \((A+)pB\) and \((A-)pB\) become 2-dimensional triangular fuzzy numbers, but \((A\cdot)pB\) and \((A/)pB\) need not to be 2-dimensional triangular fuzzy numbers.

Theorem 3.5 Parametric operations on \(\mathbb{R}^2\) in Definition 3.3 are the generalization of Zadeh’s extension principles on \(\mathbb{R}\) in Definition 2.2.

Proof. Consider two 2-dimensional triangular fuzzy numbers \(A = (a_1, x_1, b_1, 0)^2\) and \(B = (a_2, x_2, b_2, 0)^2\). By Theorem 3.4,

1. \((A+)pB = (a_1 + a_2, x_1 + x_2, b_1 + b_2, 0)^2\)
2. \((A-)pB = (a_1 + a_2, x_1 - x_2, b_1 + b_2, 0)^2\)
3. \((A\cdot)pB = \{(x_\alpha(t), y_\alpha(t)) \mid 0 \leq t \leq 2\pi\}, \text{ where}

\[x_\alpha(t) = x_1 x_2 + (x_1 a_2 + x_2 a_1)(1 - \alpha) \cos t + a_1 a_2 (1 - \alpha)^2 \cos^2 t \]

and

\[y_\alpha(t) = b_1 b_2 (1 - \alpha)^2 \sin^2 t. \]

4. \((A/)pB \} = \{(x_\alpha(t), y_\alpha(t)) \mid 0 \leq t \leq 2\pi\}, \text{ where}

\[x_\alpha(t) = \frac{x_1 + a_1 (1 - \alpha) \cos t}{x_2 - a_2 (1 - \alpha) \cos t} \quad \text{and} \quad y_\alpha(t) = -\frac{b_1}{b_2}. \]

The intersections of these 2-dimensional triangular fuzzy numbers and vertical \(xz\)-plane \((y = 0)\) are as follows.

1. \((A+)pB\) : Note that

\[\mu_{A(+)pB}(x, y) = 1 - \sqrt{\left(\frac{x - x_1 - x_2}{a_1 + a_2}\right)^2 + \left(\frac{y}{b_1 + b_2}\right)^2}. \]

If \(y = 0\) and \(\mu_{A(+)pB}(x, y) = 0\),

\[x = x_1 + x_2 \pm (a_1 + a_2). \]
Thus the intersection is the symmetric triangular fuzzy number C on the xz-plane with $\mu_C(x_1 + x_2) = 1$ and the zero cut

$$C_0 = [x_1 + x_2 - (a_1 + a_2), x_1 + x_2 + (a_1 + a_2)].$$

(2) $A(-)pB$; Note that

$$\mu_{A(-)pB}(x, y) = 1 - \sqrt{\left(\frac{x - x_1 + x_2}{a_1 + a_2}\right)^2 + \left(\frac{y}{b_1 + b_2}\right)^2}.$$

If $y = 0$ and $\mu_{A(-)pB}(x, y) = 0$,

$$x = x_1 - x_2 \pm (a_1 + a_2).$$

Thus the intersection is the symmetric triangular fuzzy number D on the xz-plane with $\mu_D(x_1 - x_2) = 1$ and the zero cut

$$D_0 = [x_1 - x_2 - (a_1 + a_2), x_1 - x_2 + (a_1 + a_2)].$$

(3) $A(\cdot)pB$; If $\alpha = 0$,

$$x_0(t) = x_1x_2 + (x_1a_2 + x_2a_1) \cos t + a_1a_2 \cos^2 t.$$

Since

$$x_0(0) = x_1x_2 + x_1a_2 + x_2a_1 + a_1a_2 \text{ and } x_0(\pi) = x_1x_2 - (x_1a_2 + x_2a_1) + a_1a_2,$$

the intersection is a fuzzy number E on the xz-plane with $\mu_E(x_1x_2) = 1$ and the zero cut

$$E_0 = [x_1x_2 - (x_1a_2 + x_2a_1) + a_1a_2, x_1x_2 + x_1a_2 + x_2a_1 + a_1a_2].$$

(4) $A(/)pB$; If $\alpha = 0$,

$$x_0(t) = \frac{x_1 + a_1 \cos t}{x_2 - a_2 \cos t}.$$

Since

$$x_0(0) = \frac{x_1 + a_1}{x_2 - a_2 \text{ and } x_0(\pi) = \frac{x_1 - a_1}{x_2 + a_2},$$

the intersection is a fuzzy number F on the xz-plane with $\mu_F(x_1x_2) = 1$ and the zero cut

$$F_0 = \left[\frac{x_1 - a_1}{x_2 + a_2}, \frac{x_1 + a_1}{x_2 - a_2}\right].$$

On the other hand, the intersection of 2-dimensional triangular fuzzy number $A = (a_1, x_1, b_1, 0)^2$ and vertical xz-plane ($y = 0$) is the symmetric triangular fuzzy number G on the xz-plane with $\mu_G(x_1) = 1$ and the zero cut
An extension of Zadeh’s max-min composition operator

\[G_0 = [x_1 - a_1, x_1 + a_1]. \]

The intersection of 2-dimensional triangular fuzzy number \(B = (a_2, x_2, b_2, 0)^2 \) and vertical \(xz \)-plane \((y = 0) \) is the symmetric triangular fuzzy number \(H \) on the \(xz \)-plane with \(\mu_H(x_2) = 1 \) and the zero cut

\[H_0 = [x_2 - a_2, x_2 + a_2]. \]

For two triangular fuzzy numbers \(G \) and \(H \), the following result for Zadeh’s extension principle is well known.

\[G(+)H = C, \ G(-)H = D, \ G(\cdot)H = E \text{ and } G(/)H = F \]

The proof is complete.

References

Received: June 7, 2015; Published: August 12, 2015