The Ideal Convergence of Difference Strongly of
\(\chi^2 \) in \(p \)-Metric Spaces Defined by Modulus

C. Murugesan

Department of Mathematics
Sathyabama University
Chennai-600 119, India

N. Subramanian

Department of Mathematics
SASTRA University
Thanjavur-613 401, India

Copyright © 2015 C. Murugesan and N. Subramanian. This article is distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

The aim of this paper is to introduce and study a new concept of the \(\chi^2 \) space via ideal convergence of difference defined by modulus. Some topological properties of the resulting sequence spaces are also examined.

Mathematics Subject Classification: 40A05, 40A99

Keywords: analytic sequence, modulus function, double sequences, \(\chi^2 \) space, n-metric space
We write w^2 for the set of all complex sequences (x_{mn}), where $m, n \in \mathbb{N}$, the set of positive integers. Then, w^2 is a linear space under the coordinate wise addition and scalar multiplication.

Some initial works on double sequence spaces is found in [1]. Later on it was investigated by [2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19] and many others.

Throughout w, χ and Λ denote the classes of all, gai and analytic scalar valued single sequences, respectively.

We write w^2 for the set of all complex sequences (x_{mn}), where $m, n \in \mathbb{N}$, the set of positive integers. Then, w^2 is a linear space under the coordinate wise addition and scalar multiplication.

Some initial works on double sequence spaces is found in [1]. Later on it was investigated by [2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19] and many others.

We procure the following sets of double sequences:

$M_u(t) := \{ (x_{mn}) \in w^2 : \sup_{m,n \in \mathbb{N}} |x_{mn}|^{t_{mn}} < \infty \},$

$C_p(t) := \{ (x_{mn}) \in w^2 : p - \lim_{m,n \to \infty} |x_{mn} - l|^{t_{mn}} = 1 \text{ for some } l \in \mathbb{C} \},$

$C_{0p}(t) := \{ (x_{mn}) \in w^2 : p - \lim_{m,n \to \infty} |x_{mn}|^{t_{mn}} = 1 \},$

$L_u(t) := \{ (x_{mn}) \in w^2 : \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} |x_{mn}|^{t_{mn}} < \infty \},$

$C_{0p}(t) := C_p(t) \cap M_u(t) \text{ and } C_{0bp}(t) = C_{0p}(t) \cap M_u(t);$

where $t = (t_{mn})$ be the sequence of positive reals t_{mn} for all $m, n \in \mathbb{N}$ and $p - \lim_{m,n \to \infty}$ denotes the limit in the Pringsheim’s sense. In the case $t_{mn} = 1$ for all $m, n \in \mathbb{N}; M_u(t), C_p(t), C_{0p}(t), L_u(t), C_{0bp}(t)$ and $C_{0bp}(t)$ reduce to the sets $M_u, C_p, C_{0p}, L_u, C_{0p}$ and C_{0bp}, respectively. Now, we may summarize the knowledge given in some document related to the double sequence spaces. [20] have proved that $M_u(t)$ and $C_p(t), C_{0p}(t)$ are complete paranormed spaces of double sequences and obtained the $\alpha-, \beta-, \gamma-$ duals of the spaces $M_u(t)$ and $C_{0p}(t)$. Zeltser (2001) in her phd thesis has essentially studied both the theory of topological double sequence spaces and the theory of summability of double sequences. [22-27] have independently introduced the statistical convergence and Cauchy for double sequences and established the relation between statistical convergent and strongly Cesàro summable double sequences. [28] have defined the spaces $\mathcal{B}_S, \mathcal{B}_S(t), C_{0S}, C_{Sbp}, C_{Sr}$ and $\mathcal{B}V$ of double sequences consisting of all double series whose sequence of partial sums are in the spaces $M_u, M_u(t), C_p, C_{0p}, C_p, L_u, C_{0p}$ and L_u, respectively, and also examined some properties of those sequence spaces and determined the $\alpha-$ duals of the spaces $\mathcal{B}S, \mathcal{B}V, C_{Sbp}$ and the $\beta(\theta)-$ duals of the spaces C_{Sbp} and C_{Sr} of double series. [29] have introduced the Banach space L_q of double sequences corresponding to the well-known space ℓ_q of single sequences and examined some properties of the space L_q. Subramanian et al. (2010) have studied the space $\chi_{M}^{2}(p, q, u)$ of double sequences and proved some inclusion relations.

The class of sequences which are strongly Cesàro summable with respect to a modulus was introduced by [31] as an extension of the definition of strongly Cesàro summable sequences. Connor (1989) further extended this definition to a definition of strong $A-$ summability with respect to a modulus where $A = (a_{n,k})$ is a nonnegative regular matrix and established some connections between strong $A-$ summability, strong $A-$ summability with respect to a modulus, and $A-$ statistical convergence. In [33] the four dimensional matrix transformation $(Ar)_{k,l} = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} a_{k,l}^{mn} x_{mn}$ was studied extensively by Robison and Hamilton.
We need the following inequality in the sequel of the paper. For \(a, b \geq 0 \) and \(0 < p < 1 \), we have

\[
(a + b)^p \leq a^p + b^p
\]

The double series \(\sum_{m,n=1}^\infty x_{mn} \) is called convergent if and only if the double sequence \((s_{mn}) \) is convergent, where \(s_{mn} = \sum_{i,j=1}^{m,n} x_{ij} \) for all \(m, n \in \mathbb{N} \).

A sequence \(x = (x_{mn}) \) is said to be double analytic if \(\sup_{m,n} |x_{mn}|^{1/m+n} < \infty \). The vector space of all double analytic sequences will be denoted by \(\Lambda^2 \). A sequence \(x = (x_{mn}) \) is called double gai sequence if \(((m+n)! |x_{mn}|)^{1/m+n} \to 0 \) as \(m, n \to \infty \). The double gai sequences will be denoted by \(\chi^2 \).

An FK-space (or a metric space) \(X \) is said to have AK property if \((\mathcal{I}_{mn}) \) is a Schauder basis for \(X \). Or equivalently \(x[m,n] \to x \).

An FDK-space is a double sequence space endowed with a complete metrizable, locally convex topology under which the coordinate mappings \(x = (x_k) \to (x_{mn})(m, n \in \mathbb{N}) \) are also continuous.

An Orlicz function is a function \(f : [0, \infty) \to [0, \infty) \) which is continuous, non-decreasing and convex with \(f(0) = 0, f(x) > 0 \), for \(x > 0 \) and \(f(x) \to \infty \) as \(x \to \infty \). If convexity of Orlicz function \(f \) is replaced by \(f(x+y) \leq f(x) + f(y) \), then this function is called modulus function. An modulus function \(f \) is said to satisfy \(\Delta^2 \)-condition for all values \(u \), if there exists \(K > 0 \) such that \(f(2u) \leq Kf(u), u \geq 0 \).

Remark 1: An Modulus function satisfies the inequality \(f(\lambda x) \leq \lambda f(x) \) for all \(\lambda \) with \(0 < \lambda < 1 \).

1.1. **Lemma.** Let \(f \) be an modulus function which satisfies \(\Delta^2 \)-condition and let \(0 < \delta < 1 \). Then for each \(t \geq \delta \), we have \(f(t) \leq K \delta^{-1} f(2) \) for some constant \(K > 0 \).

Let \(M \) and \(\Phi \) be mutually complementary modulus functions. Then, we have

(i) For all \(u, y \geq 0 \),

\[
uy \leq M(u) + \Phi(y), \quad (Young's\ inequality)[34]
\]

(ii) For all \(u \geq 0 \),

\[
\eta(u) = M(u) + \Phi(\eta(u)).
\]
(iii) For all \(u \geq 0 \), and \(0 < \lambda < 1 \),
\[
M(\lambda u) \leq \lambda M(u).
\]

[35] used the idea of Orlicz function to construct Orlicz sequence space
\[
\ell_M = \{ x \in w : \sum_{k=1}^{\infty} M\left(\frac{|x_k|}{\rho}\right) < \infty, \text{ for some } \rho > 0 \},
\]
The space \(\ell_M \) with the norm
\[
\|x\| = \inf \left\{ \rho > 0 : \sum_{k=1}^{\infty} M\left(\frac{|x_k|}{\rho}\right) \leq 1 \right\},
\]
becomes a Banach space which is called an Orlicz sequence space. For \(M(t) = t^p \) \((1 \leq p < \infty)\),
the spaces \(\ell_M \) coincide with the classical sequence space \(\ell_p \).

A sequence \(f = (f_{mn}) \) of modulus function is called a Musielak-modulus function. A sequence
\(g = (g_{mn}) \) defined by
\[
g_{mn}(v) = \sup \{ |v| - f_{mn}(u) : u \geq 0 \}, m, n = 1, 2, \ldots
\]
is called the complementary function of a Musielak-modulus function \(f \). For a given Musielak modulus function \(f \),
the Musielak-modulus sequence space \(t_f \) is defined by
\[
t_f = \left\{ x \in w^3 : M_f(|x_{mnk}|)^{1/m+n+k} \to 0, \text{as } m, n, k \to \infty \right\},
\]
where \(M_f \) is a convex modular defined by
\[
M_f(x) = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \sum_{k=1}^{\infty} f_{mnk}(|x_{mnk}|)^{1/m+n+k}, x = (x_{mnk}) \in t_f.
\]
We consider \(t_f \) equipped with the Luxemburg metric space, (i.e)
Let \((X_i, d_i) \), \(i \in I \) be a family of metric spaces such that each two elements of the family are disjoint. Denote \(X : \bigcup_{i \in I} X_i \). If we define
\[
d(x, y) = \begin{cases}
 d_i(x, y), & \text{if } x, y \in X_i \\
 +\infty, & \text{if } x \in X_i, y \in X_j, i \neq j
\end{cases}
\]
then the pair \((X, d) \) is a Luxemburg metric space. The notion of difference sequence spaces (for single sequences) was introduced by Kizmaz [36] as follows
\[
Z(\Delta) = \{ x = (x_k) \in w : (\Delta x_k) \in Z \},
\]
for \(Z = c, c_0 \) and \(\ell_\infty \), where \(\Delta x_k = x_k - x_{k+1} \) for all \(k \in \mathbb{N} \).
Here \(c, c_0 \) and \(\ell_\infty \) denote the classes of convergent.null and bounded scalar valued single sequences respectively. The difference sequence space \(bv_p \) of the classical space \(\ell_p \) is introduced and studied in the case \(1 \leq p \leq \infty \) by Başar and Altay and in the case \(0 < p < 1 \). The spaces \(c(\Delta), c_0(\Delta), \ell_\infty(\Delta) \) and \(bv_p \) are Banach spaces normed by
\[
\|x\| = |x_1| + \sup_{k \geq 1} |\Delta x_k| \text{ and } \|x\|_{bv_p} = \left(\sum_{k=1}^{\infty} |x_k|^p \right)^{1/p}, (1 \leq p < \infty) .
\]
Later on the notion was further investigated by many others. We now introduce the following difference double sequence spaces defined by
\[
Z(\Delta) = \{ x = (x_{mn}) \in w^2 : (\Delta x_{mn}) \in Z \},
\]
where \(Z = \Lambda^2, \chi^2 \) and \(\Delta x_{mn} = (x_{mn} - x_{mn+1}) - (x_{m+1n} - x_{m+1n+1}) = x_{mn} - x_{mn+1} - x_{m+1n} + x_{m+1n+1} \) for all \(m, n \in \mathbb{N} \). The generalized difference double notion has the following representation:
\[\Delta^m x_{mn} = \Delta^{m-1} x_{mn} - \Delta^{m-1} x_{m+1n+1} - \Delta^{m-1} x_{m+1n+1} + \Delta^{m-1} x_{m+1n+1} + \Delta^{m-1} x_{m+1n+1} + \Delta^{m-1} x_{m+1n+1} \]
and also this generalized difference double notion has the following binomial representation:
\[\Delta^m x_{mn} = \sum_{i=0}^{m} \sum_{j=0}^{m} (-1)^{i+j} \binom{m}{i} \binom{m}{j} x_{m+i,n+j}. \]

2. Definitions and Preliminaries

Let \(\Delta^m X \) be a non empty set. A non-void class \(I \subseteq 2^{\Delta^m X} \) (power set of \(\Delta^m X \)) is called an ideal if \(I \) is additive (i.e \(A, B \in I \Rightarrow A \cup B \in I \)) and hereditary (i.e \(A \in I \) and \(B \subseteq A \Rightarrow B \in I \)). A non-empty family of sets \(F \subseteq 2^{\Delta^m X} \) is said to be a filter on \(\Delta^m X \) if \(\phi \notin F; A, B \in F \Rightarrow A \cap B \in F \) and \(A \in F, A \subseteq B \Rightarrow B \in F \). For each ideal \(I \) there is a filter \(F(I) \) given by \(F(I) = \{ K \subseteq N : N \setminus K \in I \} \). A non-trivial ideal \(I \subset 2^{\Delta^m X} \) is called admissible if and only if \(\{ \{ x \} : x \in \Delta^m X \} \subset I \).

A double sequence space \(E \) is said to be solid or normal if \((\alpha_{mn} \Delta^m x_{mn}) \in E \), whenever \((\Delta^m x_{mn}) \in E \) and for all double sequences \(\alpha = (\alpha_{mn}) \) of scalars with \(|\alpha_{mn}| \leq 1 \) for all \(m, n \in \mathbb{N} \).

Let \(n \in \mathbb{N} \) and \(X \) be a real vector space of dimension \(w \), where \(n \leq w \). A real valued function \(d_p(x_1, \ldots, x_n) = \|(d_1(x_1, 0), \ldots, d_n(x_n, 0))\|_p \) on \(X \) satisfying the following four conditions:

(i) \(\|(d_1(x_1, 0), \ldots, d_n(x_n, 0))\|_p = 0 \) if and only if \(d_1(x_1, 0), \ldots, d_n(x_n, 0) \) are linearly dependent,

(ii) \(\|(d_1(x_1, 0), \ldots, d_n(x_n, 0))\|_p \) is invariant under permutation,

(iii) \(\|(\alpha d_1(x_1, 0), \ldots, d_n(x_n, 0))\|_p = |\alpha| \|(d_1(x_1, 0), \ldots, d_n(x_n, 0))\|_p \), \(\alpha \in \mathbb{R} \)

(iv) \(d_p((x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)) = (d_X(x_1, x_2, \ldots, x_n)^p + d_Y(y_1, y_2, \ldots, y_n)^p)^{1/p} \) for \(1 \leq p < \infty \); (or)

(v) \(d((x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)) := \sup \{ d_X(x_1, x_2, \ldots, x_n), d_Y(y_1, y_2, \ldots, y_n) \} \),

for \(x_1, x_2, \ldots, x_n \in X, y_1, y_2, \ldots, y_n \in Y \) is called the \(p \)-product metric of the Cartesian product of \(n \)-vector of the norms of the \(n \)-sub spaces.

A trivial example of \(p \)-product metric of \(n \)-metric space is the \(p \)-norm space is \(X = \mathbb{R} \) equipped with the following Euclidean metric in the product space is the \(p \)-norm:

\[\|(d_1(x_1, 0), \ldots, d_n(x_n, 0))\|_E = \sup \{ |\det(d_{mn}(x_{mn}, 0))| \} = \left\{ \begin{array}{cccc} d_{11}(x_{11}, 0) & d_{12}(x_{12}, 0) & \cdots & d_{1n}(x_{1n}, 0) \\ d_{21}(x_{21}, 0) & d_{22}(x_{22}, 0) & \cdots & d_{2n}(x_{2n}, 0) \\ \vdots & \vdots & \ddots & \vdots \\ d_{n1}(x_{n1}, 0) & d_{n2}(x_{n2}, 0) & \cdots & d_{nn}(x_{nn}, 0) \end{array} \right\} \]
where \(x_i = (x_{i1}, \cdots x_{in}) \in \mathbb{R}^n \) for each \(i = 1, 2, \cdots n \).

If every Cauchy sequence in \(X \) converges to some \(L \in X \), then \(X \) is said to be complete with respect to the \(p \)- metric. Any complete \(p \)-metric space is said to be \(p \)-Banach metric space.
3. Main Results

In this section we introduce the notion of different types of I-convergent double sequences. This generalizes and unifies different notions of convergence for χ^2. We shall denote the ideal of $2^{N \times N}$ by I_2.

Let I_2 be an ideal of $2^{N \times N}$, f be an modulus function, $\eta = (\eta_{mn})$ be a double analytic sequence of strictly positive real numbers and $(\Delta^m X, \|(d_1(x_1,0), \ldots, d_n(x_n,0))\|_p)$ be an p-product of n metric spaces is the p norm of the n-vector of the norms of the n subspaces. Further $\chi^2 (p - \Delta^m X)$ denotes $\Delta^m X-$valued sequence space. Now, we define the following sequence spaces:

$$\chi_{\Delta_f}^2 [\| (d_1(x_1,0), \ldots, d_n(x_n,0))\|_p]^\eta = x = (\Delta^m x_{mn}) \in \chi^2 (p - \Delta^m X) : \forall \epsilon > 0,$$

$$\{ (r, s) \in N \times N : \frac{1}{r^2} \sum_{m=1}^r \sum_{n=1}^s f \| (\Delta^m x_{mn})^{1/m+n}, d_1(x_1,0), \ldots, d_n(x_n-1,0) \|_p \} \eta_{mn} \geq \epsilon \} \in I_2,$$ for every $d_1(x_1,0), \ldots, d_n(x_n-1,0) \in \Delta^m X$.

$$\Lambda_{\Delta_f}^2 [\| (d_1(x_1,0), \ldots, d_n(x_n,0))\|_p]^\eta = x = (x_{mn}) \in \Lambda^2 (p - \Delta^m X) : \exists K > 0,$$

$$\{ (r, s) \in N \times N : \frac{1}{r^2} \sum_{m=1}^r \sum_{n=1}^s f \| (\Delta^m x_{mn})^{1/m+n}, d_1(x_1,0), \ldots, d_n(x_n-1,0) \|_p \} \eta_{mn} \geq K \} \in I_2,$$ for every $d_1(x_1,0), \ldots, d_n(x_n-1,0) \in \Delta^m X$.

$$\Lambda_{\Delta_f}^2 [\| (d_1(x_1,0), \ldots, d_n(x_n,0))\|_p]^\eta = x = (x_{mn}) \in \Lambda^2 (p - \Delta^m X) : \exists K > 0,$$

$$\{ (r, s) \in N \times N : \frac{1}{r^2} \sum_{m=1}^r \sum_{n=1}^s f \| (\Delta^m x_{mn})^{1/m+n}, d_1(x_1,0), \ldots, d_n(x_n-1,0) \|_p \} \eta_{mn} \leq K \} \text{, for}
$$

every $d_1(x_1,0), \ldots, d_n(x_n-1,0) \in \Delta^m X$.

If $\eta = \eta_{mn} = 1$ for all $m, n \in \mathbb{N}$ we obtain

$$\chi_{\Delta_f}^2 [\| (d_1(x_1,0), \ldots, d_n(x_n,0))\|_p]^\eta = \chi_{\Delta_f}^2 [\| (d_1(x_1,0), \ldots, d_n(x_n,0))\|_p],$$

$$\Lambda_{\Delta_f}^2 [\| (d_1(x_1,0), \ldots, d_n(x_n,0))\|_p]^\eta = \Lambda_{\Delta_f}^2 [\| (d_1(x_1,0), \ldots, d_n(x_n,0))\|_p],$$

The following well-known inequality will be used in this study: $0 \leq \min f_{mn} \eta_{mn} = H_0 \leq \eta_{mn} \leq \sup_{mn} = H < \infty, D = \max (1, 2^H - 1)$, then

$$|x_{mn} + y_{mn}|^{\eta_{mn}} \leq D \{ |x_{mn}|^{\eta_{mn}} + |y_{mn}|^{\eta_{mn}} \}$$

for all $m, n \in \mathbb{N}$ and $x_{mn}, y_{mn} \in \mathbb{C}$. Also $|x_{mn}|^{\eta_{mn}/m+n} \leq \max \left(1, |x_{mn}|^{H/m+n} \right)$ for all $x_{mn} \in \mathbb{C}$.

3.1. Theorem. The classes of sequences $\chi_{\Delta_f}^2 [\| (d_1(x_1,0), \ldots, d_n(x_n,0))\|_p]^\eta_{mn}$,

$\Lambda_{\Delta_f}^2 [\| (d_1(x_1,0), \ldots, d_n(x_n,0))\|_p]^\eta_{mn}$ are linear spaces over the complex field \mathbb{C}

Proof: Now we establish the result for the case $\chi_{\Delta_f}^2 [\| (d_1(x_1,0), \ldots, d_n(x_n,0))\|_p]^\eta_{mn}$ and the others can be proved similarly. Let $x, y \in \chi_{\Delta_f}^2 [\| (d_1(x_1,0), \ldots, d_n(x_n,0))\|_p]^\eta_{mn}$ and $\alpha, \beta \in \mathbb{C}$.

Then

$$\{ (r, s) \in N \times N : \frac{1}{r^2} \sum_{m=1}^r \sum_{n=1}^s \left[f \| (\Delta^m x_{mn})^{1/m+n}, d_1(x_1,0), \ldots, d_n(x_n-1,0) \|_p \} \eta_{mn} \geq \frac{\epsilon}{2} \} \in I_2$$

and

$$\{ (r, s) \in N \times N : \frac{1}{r^2} \sum_{m=1}^r \sum_{n=1}^s \left[f \| (\Delta^m y_{mn})^{1/m+n}, d_1(x_1,0), \ldots, d_n(x_n-1,0) \|_p \} \eta_{mn} \geq \frac{\epsilon}{2} \} \in I_2$$

for all $x, y \in \chi_{\Delta_f}^2 [\| (d_1(x_1,0), \ldots, d_n(x_n,0))\|_p]^\eta_{mn}$ and $\alpha, \beta \in \mathbb{C}$.
I_2.

Since \(\| (d_1(x_1,0),\ldots,d_n(x_n,0)) \|_p \) be an \(p \)-product of \(n \) metric spaces is the \(p \)-norm of the \(n \)-vector of the norms of the \(n \) subspaces and \(f \) is an modulus function, the following inequality holds:

\[
\begin{align*}
\frac{1}{r^s} \sum_{m=1}^{r^s} \sum_{n=1}^{s} & \left[f \left(\| (\Delta^m x_{mn} + \Delta^m y_{mn}) \|^{1/m+n} \right), d_1(x_1,0), \ldots, d_n(x_n-1,0) \right] \|_p \right] \left[\eta_{mn}^p \right] \leq \\
\frac{1}{r^s} \sum_{m=1}^{r^s} \sum_{n=1}^{s} & \left[f \left(\| (\Delta^m x_{mn}) \|^{1/m+n} d_1(x_1,0), \ldots, d_n(x_n-1,0) \right) \right] \|_p \right] \left[\eta_{mn}^n \right] + \\
\frac{1}{r^s} \sum_{m=1}^{r^s} \sum_{n=1}^{s} & \left[f \left(\| (\Delta^m y_{mn}) \|^{1/m+n} d_1(x_1,0), \ldots, d_n(x_n-1,0) \right) \right] \|_p \right] \left[\eta_{mn}^n \right] + \\
\frac{1}{r^s} \sum_{m=1}^{r^s} \sum_{n=1}^{s} & \left[f \left(\| (\Delta^m x_{mn}) \|^{1/m+n} + \| (\Delta^m y_{mn}) \|^{1/m+n} \right), d_1(x_1,0), \ldots, d_n(x_n-1,0) \right] \|_p \right] \left[\eta_{mn}^n \right] .
\end{align*}
\]

From the above inequality we get

\[
\{(r,s) \in N \times N : \frac{1}{r^s} \sum_{m=1}^{r^s} \sum_{n=1}^{s} f \left(\| (\Delta^m x_{mn} + \Delta^m y_{mn}) \|^{1/m+n} d_1(x_1,0), \ldots, d_n(x_n-1,0) \right) \|_p \right] \left[\eta_{mn}^n \right] \geq \epsilon \}
\subset \{(r,s) \in N \times N : \frac{1}{r^s} \sum_{m=1}^{r^s} \sum_{n=1}^{s} f \left(\| (\Delta^m x_{mn}) \|^{1/m+n} d_1(x_1,0), \ldots, d_n(x_n-1,0) \right) \|_p \right] \left[\eta_{mn}^n \right] \geq \frac{\epsilon}{2} \}
\subset \{ (r,s) \in N \times N : \frac{1}{r^s} \sum_{m=1}^{r^s} \sum_{n=1}^{s} f \left(\| (\Delta^m y_{mn}) \|^{1/m+n} d_1(x_1,0), \ldots, d_n(x_n-1,0) \right) \|_p \right] \left[\eta_{mn}^n \right] \geq \frac{\epsilon}{2} \} \in I_2.
\]

This completes the proof.

3.2. **Theorem.** The class of sequence \(\chi_{2f}^{2f} \left[\| (d_1(x_1,0), \ldots, d_n(x_n,0)) \|_p \right] \) is a paranormed space with respect to the paranorm defined by

\[
g_{rs}(x) = \inf \left\{ \left(\sup_{r,s} \left(\sum_{m=1}^{r^s} \sum_{n=1}^{s} f \left(\| (\Delta^m x_{mn} + \Delta^m y_{mn}) \|^{1/m+n} d_1(x_1,0), \ldots, d_n(x_n-1,0) \right) \|_p \right] \left[\eta_{mn}^n \right] \right)^{1/\pi} \leq 1 \right\},
\]

for every \(d_1(x_1,0), \ldots, d_n(x_n-1,0) \in X \).

Proof: \(g_{rs}(\theta) = 0 \) and \(g_{rs}(-x) = g_{rs}(x) \) are easy to prove, so we omit them. Let us take \(x,y \in \chi_{2f}^{2f} \left[\| (d_1(x_1,0), \ldots, d_n(x_n,0)) \|_p \right] \eta_{mn}^n \). Let

\[
g_{rs}(x) = \inf \left\{ \sup_{r,s} \left(\sum_{m=1}^{r^s} \sum_{n=1}^{s} f \left(\| (\Delta^m x_{mn}) \|^{1/m+n} d_1(x_1,0), \ldots, d_n(x_n-1,0) \right) \|_p \right] \left[\eta_{mn}^n \right] \leq 1, \forall x \in X \right\}
\]

and

\[
g_{rs}(y) = \inf \left\{ \sup_{r,s} \left(\sum_{m=1}^{r^s} \sum_{n=1}^{s} f \left(\| (\Delta^m y_{mn}) \|^{1/m+n} d_1(x_1,0), \ldots, d_n(x_n-1,0) \right) \|_p \right] \left[\eta_{mn}^n \right] \leq 1, \forall x \in X \right\}.
\]

Then we have

\[
\sup_{r,s} \left(\sum_{m=1}^{r^s} \sum_{n=1}^{s} f \left(\| (\Delta^m x_{mn} + \Delta^m y_{mn}) \|^{1/m+n} d_1(x_1,0), \ldots, d_n(x_n-1,0) \right) \|_p \right] \left[\eta_{mn}^n \right] \leq
\]

\[
\sup_{r,s} \left(\sum_{m=1}^{r^s} \sum_{n=1}^{s} f \left(\| (\Delta^m x_{mn}) \|^{1/m+n} d_1(x_1,0), \ldots, d_n(x_n-1,0) \right) \|_p \right] \left[\eta_{mn}^n \right] +
\]

\[
\sup_{r,s} \left(\sum_{m=1}^{r^s} \sum_{n=1}^{s} f \left(\| (\Delta^m y_{mn}) \|^{1/m+n} d_1(x_1,0), \ldots, d_n(x_n-1,0) \right) \|_p \right] \left[\eta_{mn}^n \right] .
\]

Thus

\[
\sup_{r,s} \left(\sum_{m=1}^{r^s} \sum_{n=1}^{s} f \left(\| (\Delta^m x_{mn} + \Delta^m y_{mn}) \|^{1/m+n} d_1(x_1,0), \ldots, d_n(x_n-1,0) \right) \|_p \right] \left[\eta_{mn}^n \right] \leq 1
\]

and \(g_{rs}(x + y) = g_{rs}(x) + g_{rs}(y) \).

Now, let \(\lambda_{mn}^{u} \rightarrow \lambda \), where \(\lambda_{mn}^{u}, \lambda \in \mathbb{C} \) and \(g_{rs} (\Delta^m x_{mn} - \Delta^m x_{mn}) \rightarrow 0 \) as \(u \rightarrow \infty \). We have to prove that \(g_{rs} \left(\lambda_{mn} \Delta^m x_{mn} - \lambda \Delta^m x_{mn} \right) \rightarrow 0 \) as \(u \rightarrow \infty \). Let

\[
g_{rs}(x^u) =
\]
\[\left\{ \sup_{rs} \frac{1}{r^s} \sum_{m=1}^{r} \sum_{n=1}^{s} \left[f \left(\left(\| \Delta^m x_{mn} \|^{1/m+n}, d_1(x_1, 0), \ldots, d_n(x_{n-1}, 0) \right) \right) \right]^{\eta_{mn}} \leq 1, \forall x \in X \right\} \\

\text{and}

\[g_{rs} \left(x^u - x \right) = \left\{ \sup_{rs} \frac{1}{r^s} \sum_{m=1}^{r} \sum_{n=1}^{s} \left[f \left(\left(\| \Delta^m x_{mn} - \Delta^m x_{mn} \|^{1/m+n}, d_1(x_1, 0), \ldots, d_n(x_{n-1}, 0) \right) \right) \right]^{\eta_{mn}} \leq 1, \right\} \text{for all} \ x \in X. \]

We observe that

\[f \left(\left(\| \frac{\lambda u}{\Delta^m x_{mn} - \lambda \Delta^m x_{mn}} \|^{1/m+n}, d_1(x_1, 0), \ldots, d_n(x_{n-1}, 0) \right) \right) \leq \frac{1}{r^s} \sum_{m=1}^{r} \sum_{n=1}^{s} \left[f \left(\left(\| \frac{\lambda u}{\Delta^m x_{mn} - \lambda \Delta^m x_{mn}} \|^{1/m+n}, d_1(x_1, 0), \ldots, d_n(x_{n-1}, 0) \right) \right) \right]^{\eta_{mn}} \]

From this inequality, it follows that

\[\left[f \left(\left(\| \frac{\lambda u}{\Delta^m x_{mn} - \lambda \Delta^m x_{mn}} \|^{1/m+n}, d_1(x_1, 0), \ldots, d_n(x_{n-1}, 0) \right) \right) \right]^{\eta_{mn}} \leq 1 \]

and consequently

\[g_{rs} \left(\lambda u \Delta^m x_{mn} - \lambda \Delta^m x_{mn} \right) \leq \left(\| \frac{\lambda u}{\Delta^m x_{mn} - \lambda \Delta^m x_{mn}} \|^{1/m+n} \right)^{\eta_{mn}} \inf_{g_{rs} \left(\Delta^m x_{mn} \right)} \left(1, \ldots, d_n(x_{n-1}, 0) \right) \]

Hence by our assumption the right hand side tends to zero as \(u, m \) and \(n \to \infty \). This completes the proof.

3.3. Theorem. (i) If \(0 < \inf_{\eta_{mn}} = H_0 \leq \eta_{mn} < 1 \), then \(\chi_{\Delta^m} \left[\left(\| \Delta^m x_{mn} \|^{1/m+n}, d_1(x_1, 0), \ldots, d_n(x_{n-1}, 0) \right) \right]^{\eta_{mn}} \subset \chi_{\Delta^m} \left[\left(\| \Delta^m x_{mn} \|^{1/m+n}, d_1(x_1, 0), \ldots, d_n(x_{n-1}, 0) \right) \right]^{\eta_{mn}} \).

(ii) If \(1 \leq \eta_{mn} \leq \sup_{\eta_{mn}} = H < \infty \), then \(\chi_{\Delta^m} \left[\left(\| \Delta^m x_{mn} \|^{1/m+n}, d_1(x_1, 0), \ldots, d_n(x_{n-1}, 0) \right) \right] \subset \chi_{\Delta^m} \left[\left(\| \Delta^m x_{mn} \|^{1/m+n}, d_1(x_1, 0), \ldots, d_n(x_{n-1}, 0) \right) \right]^{\eta_{mn}} \).

(iii) If \(0 < \eta_{mn} < \mu_{mn} < \infty \) and \(\left\{ \frac{\mu_{mn}}{\eta_{mn}} \right\} \) is double analytic, then \(\chi_{\Delta^m} \left[\left(\| \Delta^m x_{mn} \|^{1/m+n}, d_1(x_1, 0), \ldots, d_n(x_{n-1}, 0) \right) \right]^{\eta_{mn}} \subset \chi_{\Delta^m} \left[\left(\| \Delta^m x_{mn} \|^{1/m+n}, d_1(x_1, 0), \ldots, d_n(x_{n-1}, 0) \right) \right]^{\mu_{mn}} \).

Proof: The proof can be established using standard technique.

The following result is well known.

3.4. Lemma. If a sequence space \(E \) is solid, then it is monotone.

3.5. Theorem. The class of sequence \(\chi_{\Delta^m} \left[\left(\| \Delta^m x_{mn} \|^{1/m+n}, d_1(x_1, 0), \ldots, d_n(x_{n-1}, 0) \right) \right]^{\eta_{mn}} \) is not solid and hence not monotone.

Proof: It is routine verification. Therefore we omit the proof.

3.6. Theorem. Let \(f, f_1 \) and \(f_2 \) be modulus functions. Then we have

(i) \(\chi_{\Delta^m} \left[\left(\| \Delta^m x_{mn} \|^{1/m+n}, d_1(x_1, 0), \ldots, d_n(x_{n-1}, 0) \right) \right]^{\eta_{mn}} \subset \chi_{\Delta^m} \left[\left(\| \Delta^m x_{mn} \|^{1/m+n}, d_1(x_1, 0), \ldots, d_n(x_{n-1}, 0) \right) \right]^{\eta_{mn}} \)

(ii) \(\chi_{\Delta^m} \left[\left(\| \Delta^m x_{mn} \|^{1/m+n}, d_1(x_1, 0), \ldots, d_n(x_{n-1}, 0) \right) \right]^{\eta_{mn}} \cap \chi_{\Delta^m} \left[\left(\| \Delta^m x_{mn} \|^{1/m+n}, d_1(x_1, 0), \ldots, d_n(x_{n-1}, 0) \right) \right]^{\eta_{mn}} \subset \chi_{\Delta^m} \left[\left(\| \Delta^m x_{mn} \|^{1/m+n}, d_1(x_1, 0), \ldots, d_n(x_{n-1}, 0) \right) \right]^{\eta_{mn}} \).
The ideal convergence of difference strongly of χ^2 ...

$\chi^2_{\Delta f_1+\Delta f_2} \left[\| (d_1(x_1, 0), \ldots, d_n(x_n, 0)) \|_p \right]^\eta$

Proof: (i) Let $\inf_{m,n} \eta_{mn} = H_0$. For given $\epsilon > 0$, we first choose $\epsilon_0 > 0$ such that $\max \left\{ \epsilon^H_0, \epsilon_0^H \right\} < \epsilon$. Now using the continuity of f, choose $0 < \delta < 1$ such that $0 < t < \delta$ implies $f(t) < \epsilon_0$. Let $\Delta^m x \in \chi^2_{\Delta f_1} \left[\| (d_1(x_1, 0), \ldots, d_n(x_n, 0)) \|_p \right]^\eta$

We observe that

$$A(\delta) = \left\{ (r, s) \in N \times N : \frac{1}{rs} \sum_{m=1}^r \sum_{n=1}^s \left[f_1 \| (\| \Delta^m x_{mn} \|^{1/m+n}, d_1(x_1, 0), \ldots, d_n(x_{n-1}, 0)) \|_p \right]^\eta_{mn} \geq \delta^H \right\} \in I_2.$$

Thus if $(r, s) \notin A(\delta)$ then

$$\frac{1}{rs} \sum_{m=1}^r \sum_{n=1}^s \left[f_1 \| (\| \Delta^m x_{mn} \|^{1/m+n}, d_1(x_1, 0), \ldots, d_n(x_{n-1}, 0)) \|_p \right]^\eta_{mn} < \delta^H$$

$$\Rightarrow \frac{1}{rs} \sum_{m=1}^r \sum_{n=1}^s \left[f_1 \| (\| \Delta^m x_{mn} \|^{1/m+n}, d_1(x_1, 0), \ldots, d_n(x_{n-1}, 0)) \|_p \right]^\eta_{mn} < rs\delta^H,$$

$$\Rightarrow f \left(f_1 \| (\| \Delta^m x_{mn} \|^{1/m+n}, d_1(x_1, 0), \ldots, d_n(x_{n-1}, 0)) \|_p \right)^\eta_{mn} < \delta^H,$$

$$\Rightarrow f \left(f_1 \| (\| \Delta^m x_{mn} \|^{1/m+n}, d_1(x_1, 0), \ldots, d_n(x_{n-1}, 0)) \|_p \right)^\eta_{mn} < \delta^H,$$

Hence from above inequality and using continuity of f, we must have

$$f \left(f_1 \| (\| \Delta^m x_{mn} \|^{1/m+n}, d_1(x_1, 0), \ldots, d_n(x_{n-1}, 0)) \|_p \right)^\eta_{mn} < \epsilon,$$

$$\Rightarrow \frac{1}{rs} \sum_{m=1}^r \sum_{n=1}^s \left[f_1 \| (\| \Delta^m x_{mn} \|^{1/m+n}, d_1(x_1, 0), \ldots, d_n(x_{n-1}, 0)) \|_p \right]^\eta_{mn} < \epsilon.$$

Hence we have

$$\left\{ (r, s) \in N \times N : \frac{1}{rs} \sum_{m=1}^r \sum_{n=1}^s \left[f_1 \| (\| \Delta^m x_{mn} \|^{1/m+n}, d_1(x_1, 0), \ldots, d_n(x_{n-1}, 0)) \|_p \right]^\eta_{mn} \geq \epsilon \right\} \in I_2.$$

(ii) Let $x \in \chi^2_{\Delta f_1} \left[\| (d_1(x_1, 0), \ldots, d_n(x_n, 0)) \|_p \right]^\eta \cap \chi^2_{\Delta f_2} \left[\| (d_1(x_1, 0), \ldots, d_n(x_n, 0)) \|_p \right]^\eta$. Then the fact that

$$\frac{1}{rs} \sum_{m=1}^r \sum_{n=1}^s \left[(f_1 + f_2) \left(\| (\| \Delta^m x_{mn} \|^{1/m+n}, d_1(x_1, 0), \ldots, d_n(x_{n-1}, 0)) \|_p \right) \right]^\eta_{mn} \leq$$

$$\frac{1}{rs} \sum_{m=1}^r \sum_{n=1}^s \left[f_1 \left(\| (\| \Delta^m x_{mn} \|^{1/m+n}, d_1(x_1, 0), \ldots, d_n(x_{n-1}, 0)) \|_p \right) \right]^\eta_{mn} +$$

$$\frac{1}{rs} \sum_{m=1}^r \sum_{n=1}^s \left[f_2 \left(\| (\| \Delta^m x_{mn} \|^{1/m+n}, d_1(x_1, 0), \ldots, d_n(x_{n-1}, 0)) \|_p \right) \right]^\eta_{mn}.$$ This completes the proof.

3.7. **Theorem.** The class of sequence $\Lambda^2_{\Delta f} \left[\| (d_1(x_1, 0), \ldots, d_n(x_n, 0)) \|_p \right]^\eta$ is a sequence algebra

Proof: Let $(\Delta^m x_{mn}, \Delta^m y_{mn}) \in \Lambda^2_{\Delta f} \left[\| (d_1(x_1, 0), \ldots, d_n(x_n, 0)) \|_p \right]^\eta$ and $0 < \epsilon < 1$. Then the result follows from the following inclusion relation:

$$\left\{ (r, s) \in N \times N : \frac{1}{rs} \sum_{m=1}^r \sum_{n=1}^s \left[f_1 \| (\| \Delta^m x_{mn} \|^{1/m+n}, d_1(x_1, 0), \ldots, d_n(x_{n-1}, 0)) \|_p \right]^\eta_{mn} < \epsilon \right\} \in I_2$$

$$\sup \left\{ \left\{ (r, s) \in N \times N : \frac{1}{rs} \sum_{m=1}^r \sum_{n=1}^s \left[f_1 \| (\| \Delta^m x_{mn} \|^{1/m+n}, d_1(x_1, 0), \ldots, d_n(x_{n-1}, 0)) \|_p \right]^\eta_{mn} < \epsilon \right\} \in I_2 \right\}$$

$$\cap \left\{ \left\{ (r, s) \in N \times N : \frac{1}{rs} \sum_{m=1}^r \sum_{n=1}^s \left[f_1 \| (\| \Delta^m y_{mn} \|^{1/m+n}, d_1(x_1, 0), \ldots, d_n(x_{n-1}, 0)) \|_p \right]^\eta_{mn} < \epsilon \right\} \in I_2 \right\}.$$ Similarly we can prove the result for other cases.
References

The ideal convergence of difference strongly of χ^2 ...

C. Murugesan and N. Subramanian

Received: August 10, 2015; Published: September 11, 2015