1-Movable Total Dominating, Connected Dominating, and Double Dominating Sets in the Composition of Graphs

Jocecar Lomarda

College of Teacher Education
Bohol Island State University-Main Campus
CPG North Avenue, 6300 Tagbilaran City, Bohol, Philippines

Sergio R. Canoy, Jr.

Department of Mathematics and Statistics
Mindanao State University-Iligan Institute of Technology
Tibanga Highway, 9200 Iligan City, Philippines

Copyright © 2015 Jocecar Lomarda and Sergio R. Canoy, Jr. This article is distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

This study aimed to characterize 1-movable total dominating sets and 1-movable connected dominating sets in the composition $G[H]$ of arbitrary connected nontrivial graphs G and H and determine the corresponding value of the parameters. This also aimed to determine the bounds of the 1-movable double domination number in the composition $G[H]$ of arbitrary connected nontrivial graphs G and H.

Mathematics Subject Classification: 05C69

Keywords: 1-movable total domination, 1-movable connected domination, 1-movable double domination, graph composition

1This research is partially funded by the Commission on Higher Education, Philippines under Faculty Development Program Phase II
1 Introduction

Let $G = (V(G), E(G))$ be a graph with $n = |V(G)|$ and $m = |E(G)|$. For any vertex $v \in V(G)$, the open neighborhood of v is the set $N_G(v) = N(v) = \{u \in V(G) : uv \in E(G)\}$ and the closed neighborhood of v is the set $N_G[v] = N[v] = N(v) \cup \{v\}$. If $S \subseteq V(G)$, then the open neighborhood of S is the set $N_G(S) = N(S) = \bigcup_{v \in S} N_G(v)$ and the closed neighborhood of S is the set $N_G[S] = N[S] = S \cup N(S)$.

A set $S \subseteq V(G)$ is a dominating set of G if for every $v \in V(G) \setminus S$, there exists $u \in S$ such that $uv \in E(G)$, that is, $N_G[S] = V(G)$. It is a connected dominating set of G if it is a dominating set and the subgraph $\langle S \rangle$ induced by S is connected. It is a total dominating set of G if $N_G(S) = V(G)$. That is, every vertex in $V(G)$ is adjacent to some vertex in S. It is a double dominating set of G if for each $x \in V(G)$, $|N_G[x] \cap S| \geq 2$. A total dominating set X in G is a 1-movable total dominating set in G if for every $v \in X$, either $X \setminus \{v\}$ is a total dominating set, or there exists a vertex $u \in (V(G) \setminus X) \cap N(v)$ such that $(X \setminus \{v\}) \cup \{u\}$ is a total dominating set. A connected dominating set C in G is a 1-movable connected dominating set of G if for every $v \in C$, either $C \setminus \{v\}$ is a connected dominating set, or there exists a vertex $u \in (V(G) \setminus C) \cap N(v)$ such that $(C \setminus \{v\}) \cup \{u\}$ is a connected dominating set of G. A double dominating set D in a connected nontrivial graph G is a 1-movable double dominating set of G if for every $v \in D$, either $D \setminus \{v\}$ is a double dominating set, or there exists a vertex $u \in (V(G) \setminus D) \cap N(v)$ such that $(D \setminus \{v\}) \cup \{u\}$ is a double dominating set of G. Furthermore, the domination number $\gamma(G)$ (resp. connected domination number $\gamma_c(G)$, total domination number $\gamma_t(G)$, double domination number $\gamma_{\times 2}(G)$, 1-movable total domination number $\gamma_{\times 2}^1(G)$, 1-movable connected domination number $\gamma_{\times 2}^1(G)$, 1-movable double domination number $\gamma_{\times 2}^1(G)$) of G equals the minimum cardinality of a dominating (resp. connected dominating, total dominating, double dominating, 1-movable total dominating, 1-movable connected dominating, and 1-movable double dominating) set of G. Moreover, domination in the composition of graphs was studied in [3] and 1-movable domination, 1-movable independent domination, 1-movable total domination, and 1-movable connected domination in graphs are introduced and investigated in [4], [5], and [6], respectively.

2 1-movable Total Domination in the Composition of Graphs

The composition $G[H]$ of two graphs G and H is the graph with $V(G[H]) = V(G) \times V(H)$ and $(u, u')(v, v') \in E(G[H])$ if and only if either $uv \in E(G)$ or $u = v$ and $u'v' \in E(H)$. Observe that any nonempty subset C of $V(G[H]) = \ldots$
V(G) × V(H) can be expressed as \(C = \bigcup_{x \in S} (\{x\} \times T_x) \), where \(S \subseteq V(G) \) and \(T_x \subseteq V(H) \) for each \(x \in S \). And so we shall use this form for a subset \(C \) of \(V(G[H]) = V(G) \times V(H) \).

To illustrate the above definition, consider \(G = P_3 \) and \(H = P_4 \). The graph \(G[H] = P_3[P_4] \) is the graph shown below.

![Graph](image)

Figure 1: The composition \(P_3[P_4] \)

Theorem 2.1 [3] Let \(G \) and \(H \) be connected graphs. Then \(C = \bigcup_{x \in S} (\{x\} \times T_x) \subseteq V(G[H]) \), where \(S \subseteq V(G) \) and \(T_x \subseteq V(H) \) for each \(x \in S \), is a total dominating set in \(G[H] \) if and only if

(i) \(S \) is a total dominating set in \(G \) or

(ii) \(S \) is a dominating set in \(G \) and \(T_x \) is a total dominating set in \(H \) for every \(x \in S \setminus N_G(S) \)

Remark 2.2 [3] Let \(G \) and \(H \) be nontrivial connected graphs. Then \(\gamma_t(G[H]) = \gamma_t(G) \).

Theorem 2.3 Let \(G \) and \(H \) be connected nontrivial graphs. A subset \(C = \bigcup_{x \in S} (\{x\} \times T_x) \) of \(V(G[H]) \) is a 1-movable total dominating set of \(G[H] \) if and only if it is a total dominating set of \(G[H] \).

Proof. Suppose that \(C \) is a 1-movable total dominating set of \(G[H] \). Then \(C \) is a total dominating set of \(G[H] \).

Conversely, suppose that \(C \) is a total dominating set of \(G[H] \). Then (i) or (ii) of Theorem 2.1 holds. Suppose first that (i) holds. Let \((x, a) \in C\). If \(|T_x| \geq 2\), then \(C \setminus \{(x, a)\} \) is a total dominating set of \(G[H] \) by Theorem 2.1 (i). Suppose that \(|T_x| = 1\), say \(T_x = \{a\} \) for some \(a \in V(H) \). Since \(H \) is a connected nontrivial graph, there exists \(b \in V(H) \setminus T_x \) such that \(ab \in E(H) \). Thus, \((x, b) \notin C\) and \(C \setminus \{(x, a)\} \cup \{(x, b)\} \) is a total dominating set in \(G[H] \) by Theorem 2.1 (i). This shows that \(C \) is a 1-movable total dominating set in \(G[H] \). Suppose now that (ii) holds. Then by Theorem 2.1, \(C \) is a total dominating set of \(G[H] \). Again, let \((x, a) \in C\). Consider the following cases:
Case 1. $x \in N(S)$

If $|T_x| \geq 2$, then $C \setminus \{(x, a)\}$ is a total dominating set of $G[H]$ by Theorem 2.1 (ii). If $T_x = \{a\}$ for some $a \in V(H)$, then there exists $(x, b) \in (V(G[H]) \setminus C) \cap N_{G[H]}((x, a))$ and $[C \setminus \{(x, a)\}] \cup \{(x, b)\}$ is a total dominating set of $G[H]$ by Theorem 2.1 (ii).

Case 2. $x \notin N(S)$

Then T_x is a total dominating set of H (hence, $|T_x| \geq 2$). Since G is a nontrivial connected graph, there exists $y \in V(G) \cap N_G(x)$. By assumption, $y \in V(G) \setminus S$. Hence, $(y, a) \notin C$ and $[C \setminus \{(x, a)\}] \cup \{(y, a)\}$ is a total dominating set of $G[H]$ by Theorem 2.1 (ii). Therefore, C is a 1-movable total dominating set of $G[H]$. □

The next result follows from Theorem 2.1, Remark 2.2, and Theorem 2.3.

Corollary 2.4 Let G and H be connected nontrivial graphs. Then $\gamma_{mt}^1(G[H]) = \gamma_t(G)$.

3 1-movable Connected Domination in the Composition of Graphs

Theorem 3.1 [3] Let G and H be connected graphs. Then $C = \bigcup_{x \in S_s} (\{x\} \times T_x) \subseteq V(G[H])$, where $S \subseteq V(G)$ and $T_x \subseteq V(H)$ for each $x \in S$, is a connected dominating set in $G[H]$ if and only if S is a connected dominating set in G, where T_x is a connected dominating set in H whenever $|S| = 1$, that is, $S = \{x\}$.

Theorem 3.2 Let G and H be connected nontrivial graphs. A subset $C = \bigcup_{x \in S_s} (\{x\} \times T_x)$ of $V(G[H])$ is a 1-movable connected dominating set of $G[H]$ if and only if it satisfies the following properties:

(i) S is a connected dominating set of G;

(ii) If $S = \{x\}$, then T_x is a connected dominating set of H; and

(iii) If $S = \{x\}$ and $|T_x| = 1$, then either S is a 1-movable connected dominating set of G or T_x is a 1-movable connected dominating set of H.

Proof. Suppose that C is a 1-movable connected dominating set of $G[H]$. Then properties (i) and (ii) hold by Theorem 3.1. Suppose that $S = \{x\}$ and $T_x = \{a\}$ for $x \in V(G)$ and $a \in V(H)$. Then $C = \{(x, a)\}$. Since C is a 1-movable connected dominating set, there exists $(y, b) \in (V(G[H]) \setminus C) \cap N_{G[H]}((x, a))$ such that $(C \setminus \{(x, a)\}) \cup \{(y, b)\} = \{(y, b)\}$ is a connected dominating set in $G[H]$. If $y = x$, then $b \in (V(H) \setminus T_x) \cap N_H(a)$. Hence, $(T_x \setminus \{a\}) \cup \{b\} = \{b\}$ is
a (connected) dominating set in H by Theorem 3.1. This implies that T_x is a 1-movable (connected) dominating set of H. If $y \neq x$, then $y \in (V(G) \setminus S) \cap N_G(x)$ and $(S \setminus \{x\}) \cup \{y\} = \{y\}$ is a (connected) dominating set of G. This implies that S is a 1-movable (connected) dominating set of G. Thus, (iii) holds.

For the converse, suppose that C satisfies properties (i), (ii), and (iii). Then by Theorem 3.1, $C = \bigcup \{\{x\} \times T_x\}$ is a connected dominating set of $G[H]$. Let $(x, a) \in C$. Suppose that $|S| \geq 2$. If $|T_x| \geq 2$, then $C \setminus \{(x, a)\}$ is a connected dominating set of $G[H]$ by Theorem 3.1. Suppose that $|T_x| = 1$, that is, $T_x = \{a\}$ for some $a \in V(H)$. Since H is a connected nontrivial graph, there exists $b \in V(H) \setminus T_x$ such that $ab \in E(H)$. Hence, $(x, b) \notin C$ and $[C \setminus \{(x, a)\}] \cup \{(x, b)\}$ is a connected dominating set of $G[H]$ by Theorem 3.1. Hence, in this case, C is a 1-movable connected dominating set of $G[H]$. Suppose that $|S| = 1$, say $S = \{x\}$. Suppose further that $|T_x| \geq 2$. Since G is a connected nontrivial graph, there exists $y \in V(G) \setminus S$ such that $xy \in E(G)$. Hence, $(y, a) \notin C$ and $C \setminus \{(x, a)\} \cup \{(y, a)\}$ is a connected dominating set of $G[H]$ by Theorem 3.1. Suppose that $|T_x| = 1$, say $T_x = \{a\}$. Then $C = \{(x, a)\}$. Suppose first that S is a 1-movable connected dominating set of G. Then there exists $y \in (V(G) \setminus S) \cap N_G(x)$ such that $(S \setminus \{x\}) \cup \{y\} = \{y\}$ is a connected dominating set of G. Hence, $(y, a) \notin C$ and $C \setminus \{(x, a)\} \cup \{(y, a)\} = \{(y, a)\}$ is a connected dominating set of $G[H]$ by Theorem 3.1. Suppose that S is not a 1-movable connected dominating set of G. Then, by assumption, T_x is a 1-movable connected dominating set of H. Hence, there exists $b \in (V(H) \setminus T_x) \cap N_H(a)$ such that $(T_x \setminus \{a\}) \cup \{b\} = \{b\}$ is a connected dominating set of H. Thus, $(x, b) \notin C$ and $C \setminus \{(x, a)\} \cup \{(x, b)\} = \{(x, b)\}$ is a connected dominating set of $G[H]$ by Theorem 3.1. Consequently, C is a 1-movable connected dominating set of $G[H]$. □

Corollary 3.3 Let G and H be connected nontrivial graphs. Then

$$
\gamma_{mc}^1(G[H]) = \begin{cases}
1, & \text{if } \gamma(G) = 1 = \gamma_{mc}^1(H) \text{ or } \gamma_{mc}^1(G) = 1 = \gamma(H) \\
2, & \text{if } \gamma(G) = 1 \\
\gamma_c(G), & \text{if } \gamma(G) \neq 1.
\end{cases}
$$

Proof. Consider the following cases:

Case 1. $\gamma(G) = 1$.

Suppose that $\gamma(H) = 1$. Let $S = \{x\}$ and $D = \{a\}$ be subsets of $V(G)$ and $V(H)$, respectively. If S is a γ_{mc}^1-set of G and D is a γ-set of H, then $C = \{(x, a)\}$ is a 1-movable connected dominating set of $G[H]$ by Theorem 3.2. Hence, $\gamma_{mc}^1(G[H]) = |C| = 1$. If D is a 1-movable connected dominating set of H and S is a γ-set of G, then $C = \{(x, a)\}$ is a 1-movable connected dominating set of $G[H]$ by Theorem 3.2. Hence, $\gamma_{mc}^1(G[H]) = |C| = 1$.

Suppose that \(\gamma_{mc}^1(G) \neq 1 \) and \(\gamma_{mc}^1(H) \neq 1 \). Let \(S_1 = \{x\} \) be a \(\gamma \)-set of\(G \) and \(D_1 = \{a\} \) be a \(\gamma \)-set of \(H \) for some \(x \in V(G) \) and \(a \in V(H) \). Since \(G \) is a connected nontrivial graph, there exists \(y \in (V(G) \setminus S_1) \cap N_G(x) \).

Set \(S = S_1 \cup \{y\} = \{x, y\} \). Then \(S \) is a connected dominating set of \(G \).

Now, set \(T_x = \{a\} = T_y \). By Theorem 3.2(i), \(C = \{(x, a), (y, a)\} \) is a 1-movable connected dominating set of \(G[H] \). Hence, \(\gamma_{mc}^1(G[H]) \leq |C| = 2 \).

Case 2. Let \(u, p \in (V(G[H]) \setminus C) \cap N_{G[H]}((u, p)) \) such that \(C \setminus \{(w, q)\} \cup \{(u, p)\} = \{(u, p)\} \) is a dominating set of \(G[H] \). If \(u = w \), then \(p \in (V(H) \setminus T_u) \cap N_H(q) \).

Hence, \(T_w \setminus \{q\} \cup \{p\} = \{p\} \) is a dominating set in \(H \) by Theorem 2.1. Hence, \(T_w \) is a 1-movable (connected) dominating set of \(H \). Thus, \(\gamma_{mc}^1(H) = 1 \), contrary to our assumption. If \(u \neq w \), then \(u \in (V(G) \setminus S) \cap N_G(w) \). Thus, \(S \setminus \{w\} \cup \{u\} = \{u\} \) is a dominating set in \(G \) by Theorem 2.1. Thus, \(S \) is a 1-movable (connected) dominating set of \(G \). Hence, \(\gamma_{mc}^1(G[H]) = |S| = 1 \), contrary to our assumption. Hence, \(\gamma_{mc}^1(G[H]) = 1 \). Thus, \(\gamma_{mc}^1(G[H]) = 2 \).

Now, suppose \(\gamma(H) \neq 1 \). Let \(S_1 = \{x\} \) be a \(\gamma \)-set of \(G \) for some \(x \in V(G) \). Since \(G \) is connected nontrivial graph, there exists \(y \in V(G) \) with \(x \neq y \) such that \(xy \in E(G) \). Since \(S_1 \) is a dominating set, it follows that \(S_2 = S_1 \cup \{y\} = \{x, y\} \) is a connected dominating set of \(G \). Set \(T_x = T_y = \{p\} \), where \(p \in V(H) \).

Then by Theorem 3.2, \(C = \{(x, p), (y, p)\} \) is a 1-movable connected dominating set of \(G[H] \). Hence, \(\gamma_{mc}^1(G[H]) \leq |C| = 2 \). Next, let \(C^* = \{(z, b)\} \subseteq V(G[H]) \), where \(z \in V(G) \) and \(b \in V(H) \). Since \(\gamma(H) \neq 1 \), there exists \(c \in V(H) \) such that \(bc \notin E(H) \).

Hence, \((z, b)(z, c) \notin E(G[H]) \). Thus, \(C^* \) is not a dominating set of \(G[H] \). Since \((z, b) \) was arbitrarily chosen, it follows that \(\gamma_{mc}^1(G[H]) \neq 1 \). Therefore, \(\gamma_{mc}^1(G[H]) = 2 \).

Case 2. Now, suppose \(\gamma(G) \neq 1 \). Let \(C = \bigcup_{x \in S} \{x\} \times T_x \) be a \(\gamma_{mc}^1 \)-set of \(G[H] \). Then, by Theorem 3.2, \(S \) is a connected dominating set of \(G \). Since \(\gamma(G) \neq 1 \), \(|S| \neq 1 \). Hence, \(\gamma_{mc}^1(G[H]) = |C| \geq |S| \geq \gamma_c(G) \).

Also, let \(S_1 \) be a \(\gamma_c \)-set of \(G \). Since \(\gamma(G) \neq 1 \), \(|S_1| \neq 1 \). Now, for each \(x \in S_1 \), set \(T_x = \{a\} \), where \(a \in V(H) \). Then by Theorem 3.2, \(C^* = \bigcup_{x \in S_1} \{x\} \times T_x \) is a 1-movable connected dominating set of \(G[H] \). Hence, \(\gamma_{mc}^1(G[H]) \leq |C^*| = |S_1| = \gamma_c(G) \).

Therefore, \(\gamma_{mc}^1(G[H]) = \gamma_c(G) \). \(\square \)

4 1-movable Double Domination in the Composition of Graphs

Theorem 4.1 [2] Let \(G \) and \(H \) be any connected nontrivial graphs. A non-
empty subset $C = \bigcup_{x \in S} \{(x) \times T_x\}$ of $V(G[H])$ is a double dominating set of $G[H]$ if and only if S is a dominating set of G and satisfies each of the following:

(a) For each $x \in V(G) \setminus S$ such that $|N_G(x) \cap S| = 1$, $|T_y| \geq 2$ for $y \in N_G(x) \cap S$.

(b) T_x is a double dominating set of H for each $x \in S \setminus N(S)$.

(c) For each $z \in S$ with $|N_G(z) \cap S| = 1$, either T_z is a dominating set of H or $|T_w| \geq 2$ for $w \in N_G(z) \cap S$.

Theorem 4.2 Let G and H be nontrivial connected graphs such that $|V(H)| \geq 3$. Then $\gamma_t(G) \leq \gamma_{m \times 2}^1(G[H]) \leq 2\gamma_t(G)$.

Proof.

Let S be a γ_t-set of G. Suppose that $H = K_n$, where $n \geq 3$. Pick any $a, b \in V(H)$ and let $D = \{a, b\}$. Then $C = S \times D$ is a double dominating set by Theorem 4.1. Moreover, for any $x \in S$ and $p \in D$, there exists $(x, q) \in V(G[H]) \setminus C$, where $q \in V(H) \setminus D$, such that $(C \setminus \{(x, p)\}) \cup \{(x, q)\}$ is a double dominating set of $G[H]$. Thus, C is a 1-movable double dominating set and $\gamma_{m \times 2}^1(G[H]) \leq |C| = 2\gamma_t(G)$. If H is noncomplete, then choose $c, d \in V(H)$ such that $d_G(c, d) = 2$. Let $D_1 = \{c, d\}$. Then $C_1 = S \times D_1$ is a 1-movable double dominating set of $G[H]$. Hence, $\gamma_{m \times 2}^1(G[H]) \leq 2\gamma_t(G)$.

Next, let $C^* = \bigcup_{x \in S^*} \{(x) \times T_x\}$ be a $\gamma_{m \times 2}^1$-set of $G[H]$. Then S^* is a dominating set in G and T_x is a double dominating set in H for each $x \in S^* \setminus N(S^*)$. Thus by Remark 2.2, $\gamma_{m \times 2}^1(G[H]) = |C| \geq |S^* \cap N(S^*)| + 2|S^* \setminus N(S^*)| \geq \gamma_t(G)$. □

The strict inequality in Theorem 4.2 can be attained. However, the given bounds are tight. To see that the bounds are tight, consider the graphs $P_3[P_2]$, $P_2[K_3]$ and $P_4[C_4]$ in Figure 2. Consider first the graph, $P_3[P_2]$. It can be verified that $\gamma_{m \times 2}^1(P_3[P_2]) = 3$, $\gamma_t(P_3) = 2$ and $2\gamma_t(P_3) = 4$. Thus, $\gamma_t(P_3) < \gamma_{m \times 2}^1(P_3[P_2]) < 2\gamma_t(P_3)$. Also, if we consider the graph $P_2[K_3]$, it can be verified that $\gamma_{m \times 2}^1(P_2[K_3]) = 2$, $\gamma_t(P_2) = 2$ and $2\gamma_t(P_2) = 4$. Hence, $\gamma_{m \times 2}^1(P_2[K_3]) = \gamma_t(P_2)$. Finally, if we consider the graph $P_4[C_4]$, it can be shown that $\gamma_{m \times 2}^1(P_4[C_4]) = 4$, $\gamma_t(P_4) = 2$ and $2\gamma_t(P_4) = 4$. Hence, $\gamma_{m \times 2}^1(P_4[C_4]) = 2\gamma_t(P_4)$.
Figure 2: A graph $G[H]$ with $\gamma_t(G) \leq \gamma_{m1}(G[H]) \leq 2\gamma_t(G)$

References

Received: April 17, 2015; Published: August 12, 2015