A-Differential of Graphs

Cris L. Armada and Sergio R. Canoy, Jr.

Department of Mathematics and Statistics
Mindanao State University-Iligan Institute of Technology
A. Bonifacio Ave., Tibanga, Iligan City 9200, Philippines

Copyright © 2015 Cris L. Armada and Sergio R. Canoy, Jr. This article is distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Let $G = (V(G), E(G))$ be an arbitrary graph and let $X \subseteq V(G)$. The set $A(X) = X \cap N(X)$ consists of the non-isolates in X, where $N(X) = \{y \in V(G) : xy \in E(G) \text{ for some } x \in X\}$. Let $B(X)$ denote the set of vertices in $V(G) \setminus X$ that has a neighbor in X. The A-differential of X is given by $\partial_A(X) = |B(X)| - |A(X)|$. The A-differential of G, denoted by $\partial_A(G)$, is equal to $\max\{\partial_A(X) : X \text{ is a subset of } V(G)\}$.

This paper gives the A-differential of graphs resulting from some binary operations such as join and composition.

Mathematics Subject Classification: 05C69

Keywords: A-differential, domination, join, composition

1 Introduction

Let $G = (V(G), E(G))$ be an arbitrary graph of order n. The neighborhood of a vertex v of G is the set $N_G(v) = \{u \in V(G) : uv \in E(G)\}$. For a set $X \subseteq V(G)$, the neighborhood of X is the set $N_G(X) = \bigcup_{v \in X} N_G(v)$.

The closed neighborhood of X is the set $N_G[X] = N_G(X) \cup X$. The set $A(X) = A_G(X) = X \cap N_G(X)$ consists of the non-isolates in X and the boundary of X, denoted by $B(X) = B_G(X)$, is the set $(V(G) \setminus X) \cap N_G(X)$.

Research is funded by the DOST-ASTHRDP-NSC-SRSF, Philippines.
The A-differential of X is given by \(\partial_A(X) = |B_G(X)| - |A_G(X)| \) and the A-differential of a graph G is given by \(\partial_A(G) = \max \{ \partial_A(X) : X \subseteq V(G) \} \). Any subset X of \(V(G) \) with \(\partial_A(X) = \partial_A(G) \) is called the \(\partial_A \)-set of G. The sets \(B(X) \) are considered by Slater in [4]. The parameter \(\partial_A(G) \) is considered by Haynes et.al. in [2] and by Pushpam and Yukesh in [3].

A set \(S \subseteq V(G) \) is a dominating set of G if \(N[S] = V(G) \). The domination number \(\gamma(G) \) of G is the minimum cardinality of a dominating set. If \(S \) is a dominating set with \(|S| = \gamma(G) \), then we call \(S \) a minimum dominating set of G or a \(\gamma \)-set in G. If \(N(S) = V(G) \), then we say that \(S \) is a total dominating set of G. The total domination number \(\gamma_t(G) \) of G is the minimum cardinality of a total dominating set. If \(S \) is a total dominating set with \(|S| = \gamma_t(G) \), then we call \(S \) a minimum total dominating set of G or a \(\gamma_t \)-set in G. Obviously, every total dominating set is a dominating set; hence, \(\gamma(G) \leq \gamma_t(G) \).

A subset \(S \) of \(V(G) \) is an independent set if every pair of distinct elements of \(S \) are non-adjacent. \(S \) is an independent dominating set of G if \(S \) is both independent and dominating set. The independent domination number \(\gamma_i(G) \) of G is the minimum cardinality of an independent dominating set. If \(S \) is an independent dominating set with \(|S| = \gamma_i(G) \), then we call \(S \) a minimum independent dominating set of G or a \(\gamma_i \)-set in G.

Domination and other variants of domination can be found in [1].

2 Results

Lemma 2.1 Let G be any graph of order \(n \geq 2 \). Then \(0 \leq \partial_A(G) \leq n - 1 \).

Proof: Let \(X = \emptyset \) be subset of \(V(G) \). Then \(B(X) = \emptyset \) and \(A(X) = \emptyset \). Hence, \(\partial_A(X) = 0 \leq \partial_A(G) \).

Next, let \(Y \) be a subset of \(V(G) \) with \(\partial_A(G) = \partial_A(Y) \). If \(Y = \emptyset \), then \(\partial_A(Y) = 0 \leq n - 1 \). If \(Y \neq \emptyset \), then \(|B(Y)| \leq |V(G)\{Y\}| \leq n - 1 \) and \(|A(Y)| \geq 0 \). Therefore, \(\partial_A(G) = \partial_A(Y) = |B(Y)| - |Y| \leq (n - 1) - 0 = n - 1 \). Accordingly, \(0 \leq \partial_A(G) \leq n - 1 \). \(\square \)

The degree of vertex \(v \) of a graph G is given by \(\text{deg}_G(v) = |N(v)| \). The maximum degree of G, denoted by \(\Delta(G) \), is \(\max \{ \text{deg}_G(v) : v \in V(G) \} \). If \(v \) is a vertex of G with \(\text{deg}_G(v) = \Delta(G) \), then we call \(v \) a vertex of maximum degree in G.

The following result is due to Haynes, et.al. in [2].

Theorem 2.2. For any graph G, \(\Delta(G) \leq \partial_A(G) \).

Theorem 2.3. Let G be a graph of order \(n \). Then \(\partial_A(G) = 0 \) if and only if every component of G is trivial.
Proof: Suppose $\partial_A(G) = 0$. Then $\Delta(G) = 0$ by Theorem 2.2. This implies that every component of G is isomorphic to K_1.

The converse is clear. \qed

Theorem 2.4 Let G be any graph of order $n \geq 2$. Then $\partial_A(G) = n - 1$ if and only if $\Delta(G) = n - 1$.

Proof: Suppose that $\partial_A(G) = n - 1$ and let $X \subseteq V(G)$ such that $\partial_A(G) = \partial_A(X)$. If $|X| \geq 2$, then $|V(G)\setminus X| \leq n - 2$. Hence, $\partial_A(G) = \partial_A(X) = |B(X)| - |A(X)| \leq |B(X)| \leq n - 2$, contrary to the assumption that $\partial_A(G) = n - 1$. This implies that $|X| = 1$, say $X = \{v\}$; hence $B(X) = V(G)\setminus \{v\}$. Therefore, $v \in N(x)$ for all $x \in V(G)\setminus \{v\}$. Accordingly, $\Delta(G) = \deg_G(v) = n - 1$.

For the converse, assume that there exists a vertex v of G such that $v \in N(x)$ for all $x \in V(G)\setminus \{v\}$. Set $X = \{v\}$. Then $B(X) = V(G)\setminus \{v\}$ and $A(X) = \emptyset$. Thus, $\partial_A(G) \geq n - 1$. By Lemma 2.1, $\partial_A(G) = n - 1$. \qed

The following result is a direct consequence of Theorem 2.4.

Corollary 2.5 $\partial_A(K_n) = n - 1$ for any positive integer n.

The join $G + H$ of two graphs G and H is the graph with vertex set $V(G + H) = V(G) \cup V(H)$ and edge set

$$E(G + H) = E(G) \cup E(H) \cup \{uv : u \in V(G) \text{ and } v \in V(H)\}.$$

We now give the A-differential of the join of two graphs.

Theorem 2.6 Let G and H be graphs of orders n and m, respectively.

(i) If either G or H is complete, then $\partial_A(G + H) = n + m - 1$.

(ii) If G and H are non-complete, then

$$\partial_A(G + H) = \max\{n + m - 4, \partial_A(G) + m, \partial_A(H) + n\}.$$

Proof: (i) Assume that $H = K_m$ and pick $a \in V(H)$. By the adjacency of $G + H$, it follows that $v \in N(a)$ for all $v \in V(G)\setminus \{a\}$. Hence, by Theorem 2.4, $\partial_A(G + H) = n + m - 1$.

(ii) Let $k = \max\{n + m - 4, \partial_A(G) + m, \partial_A(H) + n\}$. Consider the following cases:

Case 1. Assume that $k = n + m - 4$. Pick $a \in V(G)$ and $b \in V(H)$. Set $X = \{a, b\}$. Then $B_{G+H}(X) = V(G + H)\setminus X$ and $A_{G+H}(X) = \{a, b\}$. This implies that $\partial_A(X) = n + m - 4 \leq \partial_A(G + H)$.

Next, let $Y \subseteq V(G + H)$ be such that $\partial_A(G + H) = \partial_A(Y)$. If $Y \cap V(G) \neq \emptyset$ and $Y \cap V(H) \neq \emptyset$, then $B_{G+H}(Y) = V(G + H) \setminus Y$ and $A_{G+H}(Y) = Y$. Hence, $\partial_A(G+H) = \partial_A(Y) = n + m - 2|Y| \leq n + m - 4$. Suppose now that either $Y \subseteq V(G)$ or $Y \subseteq V(H)$, say $Y \subseteq V(G)$. Then $B_{G+H}(Y) = V(H) \cup (N_G(Y) \setminus Y)$ and $A_{G+H}(Y) = A_G(Y)$. Therefore, $\partial_A(G + H) = \partial_A(Y) = m + |N_G(Y) \setminus Y| - |A_G(Y)| \leq m + \partial_A(G) \leq n + m - 4$.

Similarly, if $Y \subseteq V(H)$, then $\partial_A(G + H) = \partial_A(Y) \leq n + \partial_A(H) \leq n + m - 4$. Therefore, $\partial_A(G + H) = n + m - 4$.

Case 2. Assume that $k = \partial_A(G) + m$. Let $X \subseteq V(G)$ such that $\partial_A(G) = \partial_A(X)$. Then $B_{G+H}(X) = V(H) \cup (N_G(X) \setminus X) = V(H) \cup B_G(X)$ and $A_{G+H}(X) = A_G(X)$. Hence, $\partial_A(G + H) \geq \partial_A(X) = m + \partial_A(X) = m + \partial_A(G)$.

Next, let $Y \subseteq V(G + H)$ be such that $\partial_A(G + H) = \partial_A(Y)$. If $Y \cap V(G) \neq \emptyset$ and $Y \cap V(H) \neq \emptyset$, then $B_{G+H}(Y) = V(G + H) \setminus Y$ and $A_{G+H}(Y) = Y$. It follows that $\partial_A(G + H) = \partial_A(Y) = n + m - 2|Y| \leq n + m - 4 \leq \partial_A(G) + m$.

Suppose now that either $Y \subseteq V(G)$ or $Y \subseteq V(H)$, say $Y \subseteq V(G)$, then $B_{G+H}(Y) = V(H) \cup (N_G(Y) \setminus Y)$ and $A_{G+H}(Y) = A_G(Y)$. Thus, $\partial_A(G + H) = \partial_A(Y) = m + \partial_A(G) \leq m + \partial_A(G)$. Therefore, $\partial_A(G + H) = \partial_A(G) + m$.

Case 3. Assume that $k = \partial_A(H) + n$. Then by following the arguments of the proof of the preceding case, we have $\partial_A(G + H) = \partial_A(H) + n$. □

The following result, which is a direct consequence of Theorem 2.6(i), gives the A-differentials of the wheel, fan and star.

Corollary 2.7 Let n be a positive integer. Then

(i.) $\partial_A(W_n) = n, \forall n \geq 3$;

(ii.) $\partial_A(F_n) = n, \forall n \geq 2$;

(iii.) $\partial_A(S_n) = n, \forall n \geq 1$;

where W_n, F_n and S_n are the wheel, fan and star of order $n + 1$.

The next result, which is a direct consequence of Theorem 2.6(ii), gives the A-differential of the complete bipartite.

Corollary 2.8 Let $n \geq 2$ and $m \geq 2$ be integers. Then

$$\partial_A(K_{m,n}) = \max \{n + m - 4, m, n\}.$$
Let $S \subseteq V(G[H])$. The G-projection S_G of S and the H-projection S_H of S are defined as follows:

$$S_G = \{ u : (u, v) \in S \text{ for some } v \in V(H) \},$$

$$S_H = \{ v : (u, v) \in S \text{ for some } u \in V(G) \}.$$

Theorem 2.9 Let G be a connected graph of order n and $m \geq 2$. Then $\partial_A(G[K_m]) = nm - k$, where

$$k = \min \{|T| + |A_G(T)| : T \text{ is a dominating set in } G\}.$$

Proof: Let S be a subset of $V(G[K_m])$ with $\partial_A(G[K_m]) = \partial_A(S)$. Suppose S_G is not a dominating set of G. Then there exists a vertex $x \in V(G) \setminus N[S_G]$. This implies that $x \notin S_G$ and $x \notin N(v)$ for all $v \in S_G$. Pick $a \in V(K_m)$ and consider the set $S^* = S \cup \{ (x, a) \}$. Let $K = \{ (x, u) : u \in V(K_m) \setminus \{ a \} \}$. Then $|K| \geq 1$ and $K \cap B_{G[K_m]}(S) = \emptyset$. Also, $B_{G[K_m]}(S^*) = B_{G[K_m]}(S) \cup K$ and $A_{G[K_m]}(S^*) = A_{G[K_m]}(S)$. Thus

$$\partial_A(S^*) = |B_{G[K_m]}(S)| + |K| - |A_{G[K_m]}(S)| = \partial_A(S) + |K| > \partial_A(G[K_m]).$$

This contradicts the property of S. Therefore, S_G is a dominating set of G. Consequently, $B_{G[K_m]}(S) = V(G[K_m]) \setminus S$ and

$$\partial_A(G[K_m]) = \partial_A(S) = |B_{G[K_m]}(S)| - |A_{G[K_m]}(S)| = nm - |S| - |A_{G[K_m]}(S)|.$$

Next, let $y \in V(K_m)$ and consider $S_1 = S_G \times \{ y \}$. Then $B_{G[K_m]}(S_1) = V(G[K_m]) \setminus S_1$ and

$$\partial_A(S_1) = nm - |S_1| - |A_{G[K_m]}(S_1)|.$$

Now $(x, y) \in A_{G[K_m]}(S_1)$ if and only if there exist $(x', y) \in S_1$ such that $(x, y)(x', y) \in E(G[K_m])$. That is, there exists $x' \in S_G$ such that $xx' \in E(G)$. Thus, $(x, y) \in A_{G[K_m]}(S_1)$ if and only if $x \in A_G(S_G)$. This implies that $|A_{G[K_m]}(S_1)| = |A_G(S_G)|$. Since $|S_1| = |S_G|$, it follows that

$$\partial_A(S_1) = nm - |S_G| - |A_G(S_G)|.$$

Let $x \in A_G(S_G)$. Then $x \in S_G$ and there exists $x' \in S_G$ such that $xx' \in E(G)$. Let $a, b \in V(K_m)$ such that $(x, a), (x', b) \in S$. Then $(x, a), (x', b) \in E_G(G[K_m])$. This implies that $(x, a) \in A_{G[K_m]}(S)$, i.e., $x \in (A_{G[K_m]}(S))_G$ (the G-projection of $A_{G[K_m]}(S)$). Therefore, $|A_G(S_G)| \leq \sum_{x \in (A_{G[K_m]}(S))_G} |A_{G[K_m]}(S)| \leq |A_{G[K_m]}(S)|$. Hence,

$$\partial_A(S_1) = nm - |S_G| - |A_G(S_G)| \geq nm - |S| - |A_{G[K_m]}(S)| = \partial_A(G[K_m]).$$
This forces \(|S| + |A_G[K_m]| \leq |S| + |A_G(S_G)|\).

Finally, let \(k = \min \{|T| + |A_G(T)| : T \text{ is a dominating set in } G\}\). If \(T^*\) is a dominating set in \(G\) such that \(k = |T^*| + |A_G(T^*)|\), then \(k \leq |S| + |A_G(S_G)|\).

Consider \(C = T^* \times \{z\}\) for some \(z \in V(K_m)\). Then \(B_{G[K_m]}(C) = V(G[K_m])\) and

\[
\partial_A(C) = nm - |T^*| - |A_G(T^*)| \geq nm - |S| - |A_G(S_G)| = \partial_A(G[K_m]).
\]

Therefore, \(\partial_A(G[K_m]) = nm - k\). \(\square\)

Corollary 2.10 Let \(G\) be a connected graph of order \(n\) and \(m \geq 2\). If \(G\) has a minimum independent dominating set, then \(\partial_A(G[K_m]) = nm - \gamma(G)\).

Proof: Suppose \(T^*\) is a minimum independent dominating set in \(G\). Then \(A_G(T^*) = \emptyset\). Also, \(|T^*| \leq |T|\) for any dominating set \(T\) in \(G\); hence, \(|T^*| \leq |T| + |A_G(T)|\) for any dominating set \(T\) in \(G\). It follows that \(\min \{|T| + |A_G(T)| : T \text{ is a dominating set in } G\} = |T^*| + |A_G(T^*)| = |T^*| = \gamma(G)\). By Theorem 2.9, \(\partial_A(G[K_m]) = nm - \gamma(G)\). \(\square\)

Theorem 2.11 Let \(G\) and \(H\) be non-trivial connected graphs. If \(C = \bigcup_{x \in S} \{x\} \times T_x \subseteq V([G])\), where \(S \subseteq V(G)\) and \(T_x \subseteq V(H)\) for each \(x \in S\), then

\[
(i) \quad B_{G[H]}(C) = [B_G(S) \times V(H)] \cup \bigcup_{x \in S \setminus N(S)} \{x\} \times B_H(T_x) \cup \bigcup_{x \in S \cap N(S)} \{x\} \times (V(H) \setminus T_x);
\]

\(\quad (ii) \quad A_{G[H]}(C) = (\bigcup_{x \in S \setminus N(S)} \{x\} \times T_x) \cup (\bigcup_{y \in S \setminus N(S)} \{y\} \times A_H(T_y))\); and

\(\quad (iii) \quad \partial_A(C) = |B_G(S)| |V(H)| + \sum_{x \in S \setminus N(S)} \partial_A(T_x) + \sum_{x \in S \setminus N(S)} (|V(H)| - 2|T_x|)\).

Proof: (i) Let \((x, p) \in B_{G[H]}(C)\). Then \((x, p) \in N_{G[H]}(C) \setminus C\).

Consider the following cases:

Case 1. \(x \notin S\)

Since \((x, p) \in N_{G[H]}(C)\), there exists \((y, q) \in C \cap N_{G[H]}((x, p))\). This implies that \(y \in S \cap N_G(x)\). Thus, \(x \in N_G(S) \setminus S = B_G(S)\). Therefore, \((x, p) \in B_G(S) \times V(H)\).

Case 2. \(x \in S\)

Since \((x, p) \notin C\), it follows that \(p \notin T_x\). Hence, \((x, p) \in \{x\} \times (V(H) \setminus T_x)\). If \(x \in S \setminus N(S)\), then there exists \((x, a) \in C \cap N_{G[H]}((x, p))\). It follows that \(a \in T_x \cap N_H(p)\). Hence, \(p \in N_H(T_x) \setminus T_x = B_H(T_x)\). Therefore, \((x, p) \in \{x\} \times B_H(T_x)\). Thus, \(B_{G[H]}(C)\) is contained in the union of the
given sets.

Next, let \((y,t) \in B_G(S) \times V(H)\). Then \(y \in B_G(S) = N_G(S) \setminus S\). Hence, \(y \notin S\) and there exists \(z \in N_G(y) \cap S\). Pick any \(b \in T_x\). Then \((z,b) \in N_{G[H]}((y,t)) \cap C\). This implies that \((y,t) \in N_{G[H]}(C) \setminus C = B_{G[H]}(C)\).

Thus, \(B_G(S) \times V(H) \subseteq B_{G[H]}(C)\). Now, let \(x \in S \setminus N(S)\) and let \((x,q) \in \{x\} \times B_H(T_x)\). Then \(q \in N(T_x) \setminus T_x\), that is, \(q \notin T_x\) and there exists \(r \in N_H(q) \cap T_x\). Hence, \((x,r) \in C \cap N_{G[H]}((x,q))\). Thus, \((x,q) \in N_{G[H]}(C) \setminus C = B_{G[H]}(C)\). Therefore, \(\{x\} \times B_H(T_x) \subseteq B_{G[H]}(C)\) for every \(x \in S \setminus N(S)\).

Finally, let \(y \in S \cap N(S)\) and let \((y,d) \in \{y\} \times (V(H) \setminus T_y)\). Then, \((y,d) \notin C\) and there exists \(w \in S \cap N_G(y)\). Choose any \(c \in T_w\). Then \((w,c) \in C \cap N_{G[H]}((y,d))\). Thus, \((y,d) \in N_{G[H]}(C) \setminus C = B_{G[H]}(C)\). Therefore, \(\{y\} \times (V(H) \setminus T_y) \subseteq B_{G[H]}(C)\) for each \(y \in S \cap N(S)\). This establishes the desired equality.

\((ii)\) Let \((x,t) \in A_{G[H]}(C)\). Then \((x,t) \in C \cap N(C)\). This implies that \(x \in S\) and \(t \in T_x\). Thus, \((x,t) \in \{x\} \times T_x\). Suppose \(x \in S \setminus N(S)\). Since \((x,t) \in N(C)\) and \(x \notin N(S)\), there exists \((x,j) \in C \cap N_{G[H]}((x,t))\). This implies that \(j \in T_x \cap N_H(t)\). Therefore, \(t \in T_x \cap N_H(T_x) = A_H(T_x)\), that is, \((x,t) \in \{x\} \times A_H(T_x)\). This shows that \(A_{G[H]}\) is contained in the union of the given sets.

Now, suppose that \(x \in S \cap N(S)\) and \(a \in T_x\). Then \((x,a) \in C \cap N_{G[H]}((x,a))\). Thus, \((x,a) \in C \cap N_{G[H]}(C) = A_{G[H]}(C)\). Hence, \(\{x\} \times T_x \subseteq A_{G[H]}(C)\) for each \(x \in S \cap N(S)\). Next, let \(z \in S \setminus N(S)\) and let \(p \in A_H(T_x)\). Then \(p \in T_z\) and there exists \(q \in T_z \cap N_H(p)\). Then \((z,q) \in C \cap N_{G[H]}((z,p))\). It follows that \((z,p) \in C \cap N_{G[H]}(C) = A_{G[H]}(C)\). This establishes the desired equality.

\((iii)\) By definition, \((i)\) and \((ii)\),

\[
\partial_A(C) = |B_{G[H]}(C)| - |A_{G[H]}(C)| = |B_G(S)||V(H)| + \sum_{x \in S \setminus N(S)} |B_H(T_x)| + \sum_{x \in S \cap N(S)} |V(H) \setminus T_x| - \sum_{x \in S \cap N(S)} |T_x| - \sum_{x \in S \cap N(S)} |A_H(T_x)| = |B_G(S)||V(H)| + \sum_{x \in S \setminus N(S)} \partial_A(T_x) + \sum_{x \in S \cap N(S)} (|V(H)| - 2|T_x|)
\]

This completes the proof of the theorem. \(\square\)

Theorem 2.12 Let \(G\) and \(H\) be connected non-trivial graphs. If \(C = \bigcup_{x \in S} \{x\} \times T_x\) is a \(\partial_A\)-set of \(G[H]\), then \(S\) is a dominating set of \(G\), \(T_x\) is a \(\partial_A\)-set of \(H\) for each \(x \in S \setminus N(S)\) and \(|T_x| = 1\) for each \(x \in S \cap N(S)\).
Proof: Suppose S is not a dominating set of G. Then there exists $x \in V(G) \setminus N_G[S]$. Thus, $x \notin S$ and $x \notin N_G(v)$ for all $v \in S$. Choose any $a \in V(H)$ and let $C^* = C \cup \{(x, a)\}$. Let $K = \{(x, p) : p \in V(H) \setminus \{a\} \cap N_H(a)\}$. Since H is a non-trivial connected graph, $|K| \geq 1$ and $K \cap B_{G[H]}(C) = \emptyset$. Moreover, $B_{G[H]}(C^*) = B_{G[H]}(C) \cup K$ and $A_{G[H]}(C^*) = A_G[H](C)$. Thus,

$$\partial_A(C^*) = |B_{G[H]}(C)| + |K| - |A_{G[H]}(C)| = |K| + \partial_A(C),$$

contrary to our assumption that C is a ∂_A-set of $G[H]$. Therefore, S is a dominating set of G.

Next, let $x \in S \setminus N(S)$. Suppose that T_x is not a ∂_A-set of H. Then $\partial_A(T_x) < \partial_A(H)$. Let $D \subseteq V(H)$ be such that $\partial_A(H) = \partial_A(D)$. Let $C_1 = \bigcup_{y \in S} \{y\} \times T_y^*$, where $T_y^* = T_y$ if $y \neq x$ and $T_x^* = D$.

By Theorem 2.11(iii),

$$\partial_A(C_1) = |B_{G[H]}(C_1)| - |A_{G[H]}(C_1)|
= |B_G(S)||V(H)| + \sum_{x \in S \setminus N(S)} \partial_A(T_y^*) + \sum_{x \in S \setminus N(S)} (|V(H)| - 2|T_y^*|)
> |B_G(S)||V(H)| + \sum_{x \in S \setminus N(S)} \partial_A(T_y) + \sum_{x \in S \setminus N(S)} (|V(H)| - 2|T_y|)
= \partial_A(C),$$

This contradicts our assumption that C is a ∂_A-set of $G[H]$. Thus, T_x is a ∂_A-set of H for each $x \in S \setminus N(S)$. Finally, from Theorem 2.11(iii) and the fact that C is a ∂_A-set of $G[H]$, it follows that $|T_x| = 1$ for all $x \in S \cap N(S)$. □

Corollary 2.13 Let G and H be connected non-trivial graphs of orders m and n, respectively. Then

$$\partial_A(G[H]) = \max \Omega,$$

where $\Omega = \{n|B_G(S)| + \partial_A(H)|S \setminus N(S)| + (n - 2)|S \cap N(S)| : S$ is a dominating set of $G\}$. In particular,

$$\max \{mn - 2\gamma_t(G), mn + \partial_A(H)\gamma_t(H) - n\gamma_t(H)\} \leq \partial_A(G[H]).$$

Proof: Let S be a dominating set of G and let D be a ∂_A-set of H. Set $T_x = D$ for each $x \in S \setminus N(S)$ and $T_x = \{a\}$, where $a \in V(H)$, for each $x \in S \cap N(S)$. If $C = \bigcup_{x \in S} \{x\} \times T_x$, then by Theorem 2.11(iii),

$$\partial_A(C) = n|B_G(S)| + \partial_A(H)|S \setminus N(S)| + (n - 2)|S \cap N(S)| \leq \partial_A(G[H]).$$

On the other hand, if $C^* = \bigcup_{y \in S^*} \{y\} \times R_y$ is a ∂_A-set of $G[H]$, then S^* is a dominating set of G, R_y is a ∂_A-set of H for each $y \in S^* \setminus N(S^*)$ and $|R_y| = 1$.
for each $y \in S^* \cap N(S^*)$ by Theorem 2.12. Thus, by Theorem 2.11(iii),

$$\partial_A(G[H]) = \partial_A(C^*)$$
$$= n|B_G(S^*)| + \partial_A(H)|S^* \setminus N(S^*)| + (n - 2)|S^* \cap N(S^*)|$$
$$\leq \max \Omega$$

This proves the assertion.

Next, let S_1 and S_2 be a γ_t-set and γ_i-set of G, respectively and let D be a ∂_A-set of H. Then $N(S_1) \setminus S_1 = V(G) \setminus S_1 = B_G(S_1)$, $S_1 \cap N(S_1) = S_1$, $S_1 \setminus N(S_1) = \emptyset$, $S_2 \cap N(S_2) = \emptyset$, $S_2 \setminus N(S_2) = S_2$, and $N(S_2) \setminus S_2 = V(G) \setminus S_2 = B_G(S_2)$. Let $a \in V(H)$ and $T_x = \{a\}$ for each $x \in S_1$. Also, let $D_x = D$ for each $x \in S_2$. Consider $C_1 = \bigcup_{x \in S_1} \{ \{x\} \times T_x \}$ and $C_2 = \bigcup_{x \in S_2} \{ \{x\} \times D_x \}$. Then by Theorem 2.11(iii),

$$\partial_A(C_1) = n(m - |S_1|) + (n - 2)|S_1|$$
$$= n(m - \gamma_t(G)) + n\gamma_t(G) - 2\gamma_i(G)$$
$$= mn - 2\gamma_t(G)$$

and

$$\partial_A(C_2) = n(m - |S_2|) + |S_2|\partial_A(H)$$
$$= mn - n\gamma_i(H) + \partial_A(H)\gamma_i(H).$$

Since $\max\{\partial_A(C_1), \partial_A(C_2)\} \leq \partial_A(G[H])$, the assertion holds. \(\square\)

Remark 2.14 The lower bound in Corollary 2.13 is sharp. To see this, consider $G = H = P_4$. It can be verified that $\partial_A(G[H]) = 12 = 4(4) - 2\gamma_t(P_4) = 4(4) + |\partial_A(P_4) - 4\gamma_i(P_4)|$.

References

Received: April 24, 2015; Published: September 9, 2015