Spectral Inclusions for C_0-Semigroups

Abdelaziz Tajmouati and Hamid Boua

Sidi Mohamed Ben Abdellah University
Faculty of Sciences Dhar El Mahraz, Fez, Morocco

Abstract

In this work we show that the spectral inclusion of semigroups hold for descend, ascent, essential descend, essential ascent, Drazin, Kato, and essential Kato.

Keywords: Banach algebra, Operator, C_0-semigroup, descend, ascent, Drazin spectrum, essential Kato spectrum

1 Introduction and preliminaries

Throughout this work, X denotes a complex Banach space and $\mathcal{B}(X)$ denotes the Banach algebra of all bounded linear operators on X. Let T a closed operator with domain $D(A)$, we denote by T^\ast, $R(T)$, $N(T)$, $R^\infty(T) = \bigcap_{n \geq 0} R(T^n)$, $\rho(T)$, $\sigma(T)$, $\sigma_p(T)$, $\sigma_r(T)$, $\sigma_k(T)$, $\sigma_{es}(T)$ respectively the adjoint, the range, the kernel, the hyper-range, the resolvent set, the spectrum, the point spectrum, the residual spectrum, the Kato spectrum and the essential kato spectrum of T.

The ascent of T is defined by $a(T) = \min\{p : N(T^p) = N(T^{p+1})\}$; if such p does not exist, we let $a(T) = \infty$. Similarly, the descent of T is $d(T) = \min\{q : R(T^q) = R(T^{q+1})\}$, if such q does not exist we let $d(T) = \infty$ [6] and [7]. It is well known that if both $a(T)$ and $d(T)$ are finite then $a(T) = d(T)$ and therefore we have the decomposition $X = R(T^p) \oplus N(T^p)$ where $p = a(T) = d(T)$.

The descend and ascent spectrum defined by:

$$\sigma_{\text{desc}}(T) = \{\lambda \in \mathbb{C} : d(\lambda - T) = \infty\}$$
\[
\sigma_{asc}(T) = \{ \lambda \in \mathbb{C} : a(\lambda - T) = \infty \}
\]
The essential ascent and descend of \(T\) are defined respectively by:

\[
d_e(T) = \min \{ n \in \mathbb{N} : \dim R(T^n)/R(T^{n+1}) < \infty \}
\]
\[
a_e(T) = \min \{ n \in \mathbb{N} : \dim N(T^{n+1})/N(T^n) < \infty \}
\]
The essential ascent and descend spectrum are defined respectively by:

\[
\sigma_{asc}^e(T) = \{ \lambda \in \mathbb{C} : a_e(\lambda - T) = \infty \}
\]
\[
\sigma_{des}^e(T) = \{ \lambda \in \mathbb{C} : d_e(\lambda - T) = \infty \}
\]

Recall that \(T\) is a Drazin invertible if \(d(T) < \infty\) and \(a(T) < \infty\). The Drazin spectrum is \(\sigma_D(T) = \{ \lambda \in \mathbb{C} : d(\lambda - T) = \infty\ \text{and} \ a(\lambda - T) = \infty \}\).

Recall that \(T\) is said to be Kato operator or semi-regular if \(R(T)\) is closed and \(N(T) \subseteq R^\infty(T)\). The set \(\rho_\gamma(T) = \{ \lambda \in \mathbb{C} : T - \lambda I \text{ is Kato} \}\) denotes the Kato resolvent and \(\sigma_\gamma(T) = \mathbb{C} \setminus \rho_\gamma(T)\) the Kato spectrum of \(T\). It is well known that \(\rho_\gamma(T)\) is an open subset of \(\mathbb{C}\).

\(T\) is essential Kato if \(R(T)\) is closed and there exists a subspace \(L\) in \(X\) with \(\dim L < \infty\) such that \(N(T) \subseteq R^\infty(T) + L\). The essential Kato spectrum of \(T\) is defined by \(\sigma_{\text{ess}}^e(T) = \{ \lambda \in \mathbb{C} : \lambda - T \text{ is not a essential Kato operator} \}\).

A one-parameter family \(\{T(t)\}_{t \geq 0}\) of operators on \(X\) is called a \(C_0\)-semigroup of operators if:

i) \(T(0) = I\).
ii) \(T(t + s) = T(t)T(s), \forall t, s \geq 0\).
iii) \(\lim_{t \to 0} T(t)x = x, \forall x \in X\).

Also \(\{T(t)\}_{t \geq 0}\) has a unique infinitesimal generator \(A\) defined in domain \(D(A)\) by:

\[
D(A) = \{ x \in X : \lim_{t \to 0} \frac{T(t)x - x}{t} \text{ exists} \}
\]

\[
Ax = \lim_{t \to 0} \frac{T(t)x - x}{t}, \forall x \in D(A)
\]

Let \(\{T(t)\}_{t \geq 0}\) a \(C_0\)-semigroup and \(A\) its infinitesimal generator.

1) \(A\) is a closed operator.
2) If \(x \in D(A)\), then \(T(t)x \in D(A)\) and we have:

\[
T(t)Ax = AT(t)x, \forall t \geq 0
\]

3) The application: \(t \in [0, +\infty[\rightarrow T(t)x \in X\) is differentiable on \([0, +\infty[\) for all \(x \in D(A)\) and we have:
\[
\frac{d}{dt} T(t)x = T(t)Ax = AT(t)x, \forall t \geq 0
\]

4) For all \(t \geq 0 \) we have:

\[
\lim_{h \to 0} \frac{1}{h} \int_{t}^{t+h} T(s)x ds = T(t)x
\]

5) If \(x \in X \), then \(\int_{0}^{t} T(s)x ds \in D(A) \) and we have :

\[
A \int_{0}^{t} T(s)x ds = T(t)x - x
\]

6) There exist a \(M \geq 1 \) and \(\omega \geq 0 \) such that \(\forall t \geq 0, \|T(t)\| \leq Me^{\omega t} \).

For later use, we introduce the following operator acting on \(X \) and depending on the parameters \(\lambda \in \mathbb{C} \) and \(t \geq 0 \):

\[
B_{\lambda}(t)x = \int_{0}^{t} e^{\lambda(t-s)}T(s)x ds, x \in X
\]

It is well known (see [4] and [8]) that \(B_{\lambda}(t) \) is a bounded linear operator on \(X \).

Let \(\{T(t)\}_{t \geq 0} \) be a \(C_{0} \)-semigroup on \(X \) with infinitesimal generator \(A \):

In [1], R. Derndinger and R. Nagel showed that \(e^{t\sigma(A)} \subseteq \sigma(T(t)) \), \(e^{t\sigma_{p}(A)} \subseteq \sigma_{p}(T(t)) \) and \(e^{t\sigma_{r}(A)} \subseteq \sigma_{r}(T(t)) \). Likewise A. El Koutri and A. Taoudi in [2] showed that \(e^{t\sigma_{r}(A)} \subseteq \sigma_{r}(T(t)) \). Later on, a similar result was obtained for the essential Kato spectrum by A.El Koutri and A.Taoudi [3].

These works push to ask the following question: Does this spectral inclusion hold for the other parts of spectrum?

In this work, we show that this spectral inclusion of \(C_{0} \)-semigroups hold for ascent, essential ascent, descend, essential descend and Drazin spectrum, and we will give another proof of this inclusion for Kato and essential Kato spectrum.

2 Main results

Lemma 2.1. [3] Let \(A \) be the generator of a strongly continuous semigroup \(\{T(t)\}_{t \geq 0} \). Then, for all \(\lambda \in \mathbb{C}, t \geq 0 \), and \(n \in \mathbb{N} \),

1. \[
(e^{\lambda t} - T(t))^{n}x = (\lambda - A)^{n}B_{\lambda}(t)x, \forall x \in X
\]
2. \[
R^{\infty}(e^{\lambda t} - T(t))^{n}x \subseteq R^{\infty}(\lambda - A)^{n}x, \forall x \in D(A^{n})
\]
3. $N((\lambda - A)^n) \subseteq N(e^{\lambda t} - T(t))^n$.

Lemma 2.2. Let $\{T(t)\}_{t \geq 0}$ a C_0-semigroup on X with infinitesimal generator A. For $\lambda \in \mathbb{C}$ and $t \geq 0$, let $F_\lambda(t)x = \int_0^t e^{-\lambda s}B_\lambda(s)xdx$, then:

1. There exist a $M \geq 1$ and $\omega > Re(\lambda)$ such that $F_\lambda(t) \leq \frac{M}{(\omega - Re(\lambda))^2}e^{(\omega - Re(\lambda))t}$.

2. $\forall x \in X$, $F_\lambda(t)x \in D(A)$ and $(\lambda - A)F_\lambda(t) + G_\lambda(t)B_\lambda(t) = tI$ with $G_\lambda(t) = e^{-\lambda t}I$.

3. The operators $F_\lambda(t)$, $G_\lambda(t)$ and $B_\lambda(t)$ are pairwise commute and for all $x \in D(A)$:

 \[
 (\lambda - A)F_\lambda(t)x = F_\lambda(t)(\lambda - A)x \\
 (\lambda - A)G_\lambda(t)x = G_\lambda(t)(\lambda - A)x \\
 (\lambda - A)B_\lambda(t)x = B_\lambda(t)(\lambda - A)x
 \]

Proof.

1. There exist a $M \geq 1$ and $\omega > Re(\lambda)$ such that $\forall t \geq 0$, $\|T(t)\| \leq Me^{\omega t}$. For $x \in X$ we have:

 \[
 \|B_\lambda(t)x\| \leq \int_0^t e^{(t-s)Re(\lambda)}\|T(s)\||x||ds \\
 \leq \frac{M}{\omega - Re(\lambda)}e^{\omega t}\|x\|
 \]

 \[
 \|F_\lambda(t)x\| \leq \int_0^t e^{-Re(\lambda)s}\|B_\lambda(s)\||x||ds \\
 \leq \frac{M}{\omega - Re(\lambda)}\int_0^t e^{(\omega - Re(\lambda))s}ds\|x\| \\
 \leq \frac{M}{(\omega - Re(\lambda))^2}e^{(\omega - Re(\lambda))t}\|x\|
 \]

2. Let $F(t)\lambda x = \int_0^t e^{-\lambda s}B_\lambda(s)xdx$. For $x \in X$, $F(t)x \in D(A)$.

 Indeed for all $h \in [0, 1]$:

 \[
 \frac{T(h) - I}{h}F(t)\lambda x = \frac{T(h) - I}{h} \int_0^t e^{-\lambda s}B_\lambda(s)xdx \\
 = \frac{1}{h} \int_0^t \int_0^s e^{-\lambda u}T(u + h)xdu - \frac{1}{h} \int_0^t \int_0^s e^{-\lambda u}T(u)xdu \\
 = \frac{1}{h} \int_0^t (\int_0^s e^{-\lambda u}T(u + h)xdu - \int_0^s e^{-\lambda u}T(u)xdu)ds
 \]
Let:
\[
\varphi(h, s)x = \frac{1}{h} \left(\int_0^h e^{-\lambda u}T(u + h)xdu - \int_0^h e^{-\lambda u}T(u)xdu \right) = \frac{e^{\lambda h}}{h} \int_0^{h+s} e^{-\lambda u}T(u)xdu - \frac{1}{h} \int_0^s e^{-\lambda u}T(u)xdu
\]
\[
= \frac{e^{\lambda h} - 1}{h} \int_0^s e^{-\lambda u}T(u)xdu + \frac{e^{\lambda h}}{h} \int_s^{h+s} e^{-\lambda u}T(u)xdu - \frac{1}{h} \int_0^h e^{-\lambda u}T(u)xdu
\]

Therefore, \(\lim_{h \to 0} \varphi(h, s)x = \lambda e^{-\lambda s}B_\lambda(s)x + e^{-\lambda s}T(s)x - x. \)

Moreover, the function \(h \mapsto \varphi(h, s)x, \) is bounded on \([0, 1]\). Thus:
\[
\lim_{h \to 0} \frac{T(h) - I}{h}F_\lambda(t)x = \lambda \int_0^t e^{-\lambda s}B_\lambda(s)xds + e^{-\lambda t} \int_0^t e^{-\lambda s}T(s)xds - tx
\]

Then for all \(x \in X, F_\lambda(t)x \in D(A) \) and we have
\[
AF_\lambda(t)x = \lambda F_\lambda(t)x + e^{-\lambda t}B_\lambda(t)x - tx
\]

Then \((\lambda - A)F_\lambda(t) + G_\lambda(t)B_\lambda(t) = tI \) with \(G_\lambda(t) = e^{-\lambda t}I. \)

3. For all \(t \geq 0, F_\lambda(t) \) and \(B_\lambda(t) \) commuting.

 Indeed, for \(t, s \geq 0 \) we have:
\[
B_\lambda(t)B_\lambda(s)x = \int_0^t e^{\lambda(t-u)}T(u)B_\lambda(s)xdu
= \int_0^t e^{\lambda(t-u)}T(u) \int_0^s e^{\lambda(s-v)}T(v)xvdvdu
= \int_0^t \int_0^s e^{\lambda(t-u)}e^{\lambda(s-v)}T(u)T(v)xvdvdu
= \int_0^s e^{\lambda(s-v)}T(v) \int_0^t e^{\lambda(t-u)}T(u)xvdvdu
= B_\lambda(s)B_\lambda(t)x
\]

Therefore:
\[
F_\lambda(t)B_\lambda(t)x = \int_0^t e^{-\lambda u}B_\lambda(u)B_\lambda(t)xdu
= \int_0^t e^{-\lambda u}B_\lambda(t)B_\lambda(u)xdu
= B_\lambda(t) \int_0^t e^{-\lambda u}B_\lambda(u)xdu
= B_\lambda(t)F_\lambda(t)x
\]
For all \(x \in D(A) \) we have:

\[
F_\lambda(t)(\lambda - A)x = \int_0^t e^{-\lambda s}B_\lambda(s)(\lambda - A)x ds \\
= \int_0^t e^{-\lambda s}(e^{\lambda s} - T(s))x ds \\
= tx - \int_0^t e^{-\lambda s}T(s)x ds \\
= tx - G_\lambda(t)B_\lambda(t)x \\
= (\lambda - A)F_\lambda(t)x
\]

For all \(x \in D(A) \) \((\lambda - A)G_\lambda(t)x = G_\lambda(t)(\lambda - A)x\) trivial
For all \(x \in D(A) \) \((\lambda - A)B_\lambda(t)x = B_\lambda(t)(\lambda - A)x\) see lemma 2.1

Proof.

1. If \(d(e^\lambda t - T(t)) < \infty \), then there exists \(n \in \mathbb{N} \) such that:

\[
R(e^\lambda t - T(t))^n = R(e^\lambda t - T(t))^{n+1}
\]

There exist two operators \(H_n(t) \) and \(L_n(t) \) such that:

\[
(\lambda - A)^n H_n(t) + L_n(t)B_\lambda^n(t) = I
\] (1)

\(H_n(t), L_n(t) \) and \(B_\lambda(t) \) commuting and for all \(x \in D(A) \) we have: \((\lambda - A)H_n(t)x = H_n(t)(\lambda - A)x \) and \((\lambda - A)L_n(t)x = L_n(t)(\lambda - A)x\).

Indeed, according to lemma 2.2 there exists tow bounded operators \(H_1(t) \)

Theorem 1. Let \(\{T(t)\}_{t \geq 0} \) a \(C_0 \)-semigroup on \(X \) with infinitesimal generator \(A \). Then for all \(t > 0 \) we have:

1. \(d(e^\lambda t - T(t)) < \infty \Rightarrow d(\lambda - A) < \infty \).
2. \(a(e^\lambda t - T(t)) < \infty \Rightarrow a(\lambda - A) < \infty \).
3. \(d_e(e^\lambda t - T(t)) < \infty \Rightarrow d_e(\lambda - A) < \infty \).
4. \(a_e(e^\lambda t - T(t)) < \infty \Rightarrow a_e(\lambda - A) < \infty \).
5. \(e^\lambda t - T(t) \) is a Drazin invertible \(\Rightarrow \lambda - A \) is a Drazin invertible.
6. \(e^\lambda t - T(t) \) is a Kato operator \(\Rightarrow \lambda - A \) is a Kato operator.
7. \(e^\lambda t - T(t) \) is a essential Kato operator \(\Rightarrow \lambda - A \) is a essential Kato operator.

Proof.

1. If \(d(e^\lambda t - T(t)) < \infty \), then there exists \(n \in \mathbb{N} \) such that:

\[
R(e^\lambda t - T(t))^n = R(e^\lambda t - T(t))^{n+1}
\]

There exist two operators \(H_n(t) \) and \(L_n(t) \) such that:

\[
(\lambda - A)^n H_n(t) + L_n(t)B_\lambda^n(t) = I
\] (1)

\(H_n(t), L_n(t) \) and \(B_\lambda(t) \) commuting and for all \(x \in D(A) \) we have: \((\lambda - A)H_n(t)x = H_n(t)(\lambda - A)x \) and \((\lambda - A)L_n(t)x = L_n(t)(\lambda - A)x\).

Indeed, according to lemma 2.2 there exists tow bounded operators \(H_1(t) \)
and \(L_1(t) \) such that \((\lambda - A)H_1(t) + L_1(t)B_\lambda(t) = I \).

Let \(i \in \{1, \ldots, n-1\} \) and \(x \in X \) we have:

\[
(\lambda - A)^i H_1^n(t)x = (\lambda - A)H_1(t)(\lambda - A)^{-i}H_1^n(t)x = H_1(t)(\lambda - A)(\lambda - A)^{-i}H_1^n(t)x \in D(A).
\]

hence \(\forall n \in \mathbb{N}^*, H_1^n(t)x \in D(A^n) \).

Moreover

\[
[(\lambda - A)H_1(t)]^n = [I - L_1(t)B_\lambda(t)]^n \\
(\lambda - A)^n H_1^n(t) = I - L_{1,n}(t)B_\lambda(t)
\]

with \(L_{1,n}(t) = \sum_{k=1}^{n} (-1)^{k-1} \binom{n}{k} L_1^k(t)B_{\lambda}^{k-1}(t) \).

hence \((\lambda - A)^n H_1^n(t) + L_{1,n}(t)B_\lambda(t) = I \)

Similarly

\[
L_{1,n}(t)B_\lambda^n(t) = [I - (\lambda - A)^n H_1^n(t)]^n = I - (\lambda - A)^n \sum_{k=1}^{n} (-1)^{k-1} \binom{n}{k} (\lambda - A)^{n(k-1)}H_1^{nk}(t)
\]

Let \(H_n(t) = \sum_{k=1}^{n} (-1)^{k-1} \binom{n}{k} (\lambda - A)^{n(k-1)}H_1^{nk}(t) \) and \(L_n(t) = L_{1,n}(t) \),

then \((\lambda - A)^n H_n(t) + L_n(t)B_\lambda^n(t) = I\), moreover \(H_n(t), L_n(t) \) and \(B_\lambda(t) \)

commuting and for all \(x \in D(A) \) we have:

\((\lambda - A)H_n(t)x = H_n(t)(\lambda - A)x \) and \((\lambda - A)L_n(t)x = L_n(t)(\lambda - A)x \).

Let \(y \in R(\lambda - A)^n \) and \(x \in D(A^n) \) such that \(y = (\lambda - A)^nx \). According to (1) we have:

\[
(\lambda - A)^nx = (\lambda - A)^nH_n(t)(\lambda - A)^nx + L_n(t)B_\lambda^n(t)(\lambda - A)^nx = (\lambda - A)^{n+1}H_n(t)(\lambda - A)^{n-1}x + L_n(t)(e^M - T(t))^{n+1}x
\]

Let \(z \in X \) such that \((e^M - T(t))^{n+1}x = (e^M - T(t))^{n+1}z \), then:

\[
(\lambda - A)^nx = (\lambda - A)^{n+1}[(\lambda - A)^{n-1}H_n(t)x + L_n(t)B_\lambda^{n+1}(t)z]
\]

Therefore \(R(\lambda - A)^n = R(\lambda - A)^{n+1} \), hence \(d(\lambda - A) < \infty \).

2. If \(a(e^M - T(t)) < \infty \), there exist \(n \in \mathbb{N} \) such that:

\[
N(e^M - T(t))^n = N(e^M - T(t))^{n+1}
\]
Let $x \in N(\lambda - A)^{n+1}$ then $(\lambda - A)^{n+1}x = 0$

$$(\lambda - A)^{n+1}x = 0 \implies (e^{\lambda t} - T(t))^{n+1}x = 0 \implies (e^{\lambda t} - T(t))^{n}x = 0$$

$$(\lambda - A)^{n}x = (\lambda - A)^{n}H_{n}(t)(\lambda - A)^{n}x + L_{n}(t)(e^{\lambda t} - T(t))^{n}x = 0$$

Therefore $N(\lambda - A)^{n} = N(\lambda - A)^{n+1}$, hence $a(\lambda - A) < \infty$.

3. If $d_{e}(e^{\lambda t} - T(t)) < \infty$, there exists $n \in \mathbb{N}$ such that:

$$\dim R(e^{\lambda t} - T(t))^{n}/R(e^{\lambda t} - T(t))^{n+1} < \infty$$

$$\dim R(\lambda - A)^{n}/R(\lambda - A)^{n+1} < \infty.$$

Indeed consider the application:

$$\psi : R(\lambda - A)^{n} \to R(e^{\lambda t} - T(t))^{n}/R(e^{\lambda t} - T(t))^{n+1}$$

$$(\lambda - A)^{n}x \mapsto (e^{\lambda t} - T(t))^{n}x + R(e^{\lambda t} - T(t))^{n}$$

ψ is well defined, linear, surjective. According to (1) we have:

$$N(\psi) \subseteq R(\lambda - A)^{n+1} \subseteq R(\lambda - A)^{n}$$

According to the theorem of isomorphism $R(\lambda - A)^{n}/N(\psi)$ and $R(e^{\lambda t} - T(t))^{n}/R(e^{\lambda t} - T(t))^{n+1}$ are isomorphic, then $\dim R(\lambda - A)^{n}/N(\psi) < \infty$, $R(\lambda - A)^{n+1}/N(\psi) \subseteq R(\lambda - A)^{n}/N(\psi)$, hence $\dim R(\lambda - A)^{n+1}/N(\psi) < \infty$ and $R(\lambda - A)^{n}/R(\lambda - A)^{n+1}$ and $(R(\lambda - A)^{n}/N(\psi))/(R(\lambda - A)^{n+1}/N(\psi))$ are isomorphic, therefore $\dim R(\lambda - A)^{n}/R(\lambda - A)^{n+1} < \infty$ hence $d_{e}(\lambda - A) < \infty$.

4. If $a_{e}(e^{\lambda t} - T(t)) < \infty$, there exist $n \in \mathbb{N}$ such that:

$$\dim N(e^{\lambda t} - T(t))^{n+1}/N(e^{\lambda t} - T(t))^{n} < \infty$$

We have $\dim N(\lambda - A)^{n+1}/N(\lambda - A)^{n} < \infty$.

Indeed consider the application:

$$\varphi : N(\lambda - A)^{n+1} \to N(e^{\lambda t} - T(t))^{n+1}/N(e^{\lambda t} - T(t))^{n}$$

$$x \mapsto x + N(e^{\lambda t} - T(t))^{n}$$

φ is well defined, linear, and $N(\varphi) \subseteq N(\lambda - A)^{n} \subseteq N(\lambda - A)^{n+1}$. According to the theorem of isomorphism $N(\lambda - A)^{n+1}/N(\varphi)$ and $Im(\varphi) \subseteq$
N(e^{\lambda t} - T(t))^{n+1}/N(e^{\lambda t} - T(t))^{n+1} are isomorphic, therefore \dim N(\lambda - A)^{n+1}/N(\phi) < \infty, we have N(\lambda - A)^n/N(\phi) \subseteq N(\lambda - A)^{n+1}/N(\psi), then \dim N(\lambda - A)^n/N(\phi) < \infty and N(\lambda - A)^{n+1}/N(\lambda - A)^n and (N(\lambda - A)^{n+1}/N(\phi))/(N(\lambda - A)^n/N(\phi)) are isomorphic, therefore \dim N(\lambda - A)^{n+1}/N(\lambda - A)^n < \infty therefore a_{e}(\lambda - A) < \infty.

5. If e^{\lambda t} - T(t) is invertible Drazin, then d(e^{\lambda t} - T(t)) < \infty and a(e^{\lambda t} - T(t)) < \infty then d(\lambda - A)) < \infty and a(\lambda - A) < \infty, hence \lambda - A is invertible Drazin.

6. Suppose that e^{\lambda t} - T(t) is a Kato operator, then for all n \in \mathbb{N} N(e^{\lambda t} - T(t)) \subseteq R(e^{\lambda t} - T(t))^n and R(e^{\lambda t} - T(t)) is closed. According to lemma 2.1 we have: N(\lambda - A) \subseteq N(e^{\lambda t} - T(t)) \subseteq R(e^{\lambda t} - T(t))^n \subseteq R(\lambda - A)^n. R(\lambda - A) is closed.

Indeed, let y_n = (\lambda - A)x_n be a convergent sequence with limit y \in X, according to (1) we have: x_n = (\lambda - A)H_1(t)x_n + L_1(t)B_\lambda(t)x_n and y_n = (\lambda - A)H_1(t)y_n + (e^{\lambda t} - T(t))L_1(t)x_n. Then:
\(\text{(e}^{\lambda t} - T(t))L_1(t)x_n = y_n - (\lambda - A)H_1(t)y_n\) tends to \(y = -(\lambda - A)H_1(t)y \in R(e^{\lambda t} - T(t))\) since \(\lambda - A)H_1(t)\) is a linear bounded operator and \(R(e^{\lambda t} - T(t))\) is closed. Then there exists \(z \in X\) such that \(y - (\lambda - A)H_1(t)y = (e^{\lambda t} - T(t))z\) then \(y = (\lambda - A)[H_1(t)y + (B_\lambda(t)z)\), hence \(y \in R(\lambda - A)\).

7. Suppose that e^{\lambda t} - T(t) is a essential Kato operator, then there exists a subspace \(L\) in \(X\) such that \(\dim L < \infty, N(e^{\lambda t} - T(t)) \subseteq R^\infty(e^{\lambda t} - T(t) + L\) and \(R(e^{\lambda t} - T(t))\) is closed. According to lemma 2.1 we have: \(N(\lambda - A) \subseteq N(e^{\lambda t} - T(t)) \subseteq R^\infty(e^{\lambda t} - T(t) + L \subseteq R^\infty(\lambda - A) + L\). We have \(R(\lambda - A)\) is closed, hence \(\lambda - A\) is a essential Kato operator.

\[\square\]

Corollary 1. Let \(T(t)\) be a \(C_0\)-semigroup on \(X\) with infinitesimal generator \(A\). Then for all \(t > 0:\)
\[
\begin{align*}
e^{t\sigma_{\text{desc}}(A)} & \subseteq \sigma_{\text{desc}}(T(t)), \quad e^{t\sigma_{\text{asc}}(A)} \subseteq \sigma_{\text{asc}}(T(t)), \quad e^{t\sigma_{\text{asc}}^e(A)} \subseteq \sigma_{\text{desc}}^e(T(t)) \\
e^{t\sigma_{\text{asc}}^e(A)} & \subseteq \sigma_{\text{asc}}^e(T(t)), \quad e^{t\sigma_{D}(A)} \subseteq \sigma_D(T(t)), \quad e^{t\sigma_{\gamma}(A)} \subseteq \sigma_{\gamma}(T(t)) \\
e^{t\sigma_{\gamma}^e(A)} & \subseteq \sigma_{\gamma}^e(T(t))
\end{align*}
\]

Proof. Immediately comes from Theorem 1 \[\square\]

References

Received: June 21, 2015; July 29, 2015