Certain Generalized Integral Formulas
Involving Chebyshev Hermite Polynomials, Generalized M-Series and Aleph-Function, and Their Application in Heat Conduction

Dinesh Kumar
Department of Mathematics and Statistics
Jai Narain Vyas University
Jodhpur-342005, India

Jeta Ram
Department of Mathematics and Statistics
Jai Narain Vyas University
Jodhpur-342005, India

Junesang Choi*
Department of Mathematics, Dongguk University
Gyeongju 780-714, Republic of Korea
* Corresponding author

Copyright © 2015 Dinesh Kumar, Jeta Ram and Junesang Choi. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract
We present two generalized integral formulas whose integrands are M-series, Aleph-function and Chebyshev Hermite polynomials. We also apply those integrals to give a generalized solution of a partial differential equation arising from heat conduction, whose solution is seen to be specialized to yield some known solutions.
Mathematics Subject Classification: Primary 33C20, 33C45; Secondary 33E12

Keywords: Aleph-function; I-function; H-function; M-series; Mittag-Leffler function; Generalized hypergeometric function; Chebyshev Hermite polynomials; Boundary value problem; Heat conduction

1 Introduction and Preliminaries

Throughout this paper, let \mathbb{C}, \mathbb{R}, \mathbb{Z}_0^+ and \mathbb{N} be sets of complex numbers, real numbers, nonpositive and positive integers, respectively, $\mathbb{N}_0 := \mathbb{N} \cup \{0\}$. The Aleph-function is defined by means of Mellin-Barnes type integral in the following manner (see, e.g., [6]):

\[
\mathbb{N}[z] = \mathbb{N}_{p_k,q_k,\tau_k;r}^{m,n} \left[z^{(a_j,A_j)_{1,n}, \left[\tau_j (a_{jk},A_{jk}) \right]_{n+1,p_k;r}} \right] = \frac{1}{2\pi i} \int_{L}^{m,n} \Omega_{p_k,q_k,\tau_k;r}^{m,n} (s) z^{-s} ds,
\]

where $z \in \mathbb{C} \setminus \{0\}$, $i = \sqrt{-1}$, and

\[
\Omega_{p_k,q_k,\tau_k;r}^{m,n} (s) = \prod_{j=1}^{m} \frac{\Gamma (b_j + B_j s) \cdot \prod_{j=1}^{n} \Gamma (1 - a_j - A_j s)}{\sum_{k=1}^{r} \tau_k \prod_{j=m+1}^{p_k} \Gamma (1 - b_{jk} - B_{jk} s) \cdot \prod_{j=n+1}^{q_k} \Gamma (a_{jk} + A_{jk} s)}.
\]

Here Γ denotes the familiar Gamma function (see, e.g., [9, Section 1.1]); The integration path $L = L+i\gamma_\infty$ ($\gamma \in \mathbb{R}$) extends from $\gamma - i\infty$ to $\gamma + i\infty$; The poles of the Gamma functions $\Gamma (1 - a_j - A_j s)$ ($n \in \mathbb{N}$; $1 \leq j \leq n$) do not coincide with those of $\Gamma (b_j + B_j s)$ ($n \in \mathbb{N}$; $1 \leq j \leq m$); The parameters $p_k, q_k \in \mathbb{N}_0$ satisfy the conditions $0 \leq n \leq p_k$, $1 \leq m \leq q_k$, $\tau_k > 0$ ($1 \leq k \leq r$); The parameters $A_j, B_j, A_{jk}, B_{jk} > 0$ and $a_j, b_j, a_{jk}, b_{jk} \in \mathbb{C}$; The empty product in (2) is (as usual) understood to be unity.

For the details of the Aleph-function in (1) such as its existence conditions, the interested reader may be referred (for example) to the earlier work [5].

Remark 1.1. The special case of (1) when $\tau_k = 1$ ($k \in \overline{1,r} := \{1, 2, \ldots, r\}$) is seen to yield the I-function, due to Saxena [7], defined by the following manner:

\[
J_{p_k,q_k,\tau_k;r}^{m,n} [z] = \mathbb{N}_{p_k,q_k,\tau_k;r}^{m,n} \left[z^{(a_j,A_j)_{1,n}, \left[1 (a_j,A_j) \right]_{n+1,p_k}} \right] = \frac{1}{2\pi i} \int_{L}^{m,n} \Omega_{p_k,q_k,\tau_k;r}^{m,n} (s) z^{-s} ds,
\]

where the kernel $\Omega_{p_k,q_k,\tau_k;r}^{m,n} (\xi)$ is from that in (2). The existence conditions for the integral in (3) are easily modified from those given in [5] with $\tau_k = 1$ ($k \in \overline{1,r}$).
Remark 1.2. The I-function in (3) when $r = 1$ is seen to be further specialized to become the familiar H-function (see [4]):

$$H^{m,n}_{p,q} \equiv \Omega^{m,n}_{pk,\omega,1;1}(z) = \mathcal{N}^{m,n}_{pk,\omega,1;1}(z) := \frac{1}{2\pi i} \int_{\mathcal{C}} \Omega^{m,n}_{pk,\omega,1;1}(\xi) z^{-\xi} d\xi,$$

where the kernel $\Omega^{m,n}_{pk,\omega,1;1}(\xi)$ can be obtained from (2).

The generalized M-series (see [8]) is defined as follows:

$$pM^{\alpha,\beta}_{q}(z) = \frac{\prod_{j=1}^{q} \Gamma(b_j)}{\prod_{j=1}^{p+1} \Gamma(a_j)} \sum_{n=0}^{\infty} \frac{(a_1)_n \cdots (a_p)_n z^n}{(b_1)_n \cdots (b_q)_n} \Gamma(\alpha n + \beta),$$

where $z, \alpha, \beta \in \mathbb{C}$, $\Re(\alpha) > 0$, $(a_k)_n$ $(k \in \mathbb{N}, p)$ and $(b_j)_n$ $(j \in \mathbb{N}, q)$ are the familiar Pochhammer symbols (see, e.g., [9, pp. 4-6]). The series (5) can be defined whenever the denominator parameters $b_j \in \mathbb{C} \setminus \mathbb{Z}$ $(j \in \mathbb{N}, q)$. If any numerator parameter a_j is a negative integer or zero, then the series (5) terminates to a polynomial in z. The series (5) is convergent for all z if $p \leq q$; If $p = q + 1$, it is convergent for $|z| < \delta = \alpha^\alpha$; If $p > q + 1$, it is divergent. When $p = q + 1$ and $|z| = \delta$, the series (5) can converge on some additional conditions depending on the parameters. Further detailed account of the M-Series can be found in [8].

The generalized M-series can be represented as special cases of the generalized Wright hypergeometric function $p \psi_q(z)$ and the Fox H-function (see [4]), respectively, as follows:

$$pM^{\alpha,\beta}_{q}(a_1, \ldots, a_p; b_1, \ldots, b_q; z) = \frac{\prod_{j=1}^{q} \Gamma(b_j)}{\prod_{j=1}^{p+1} \Gamma(a_j)} \left[\sum_{n=0}^{\infty} \frac{(a_1)_n \cdots (a_p)_n z^n}{(b_1)_n \cdots (b_q)_n} \Gamma(\alpha n + \beta) \right],$$

and

$$pM^{\alpha,\beta}_{q}(a_1, \ldots, a_p; b_1, \ldots, b_q; z) = \frac{\prod_{j=1}^{q} \Gamma(b_j)}{\prod_{j=1}^{p+1} \Gamma(a_j)} H_{p+1,q+1}^{1,1} \left[\sum_{n=0}^{\infty} \frac{(1 - \alpha_j)_n \cdots (1 - \beta_j)_n z^n}{(0, 1, \ldots, 0, 1)_{p,q}} \Gamma(\alpha n + \beta) \right].$$

Furthermore, setting $p = q = 1$, $b = 1$ and $a = \gamma \in \mathbb{C}$ in (5) gives the generalized Mittag-Leffler function:

$$E_{\alpha,\beta}^{\gamma}(z) := \sum_{n=0}^{\infty} \frac{(\gamma)_n}{\Gamma(\alpha n + \beta)} \frac{z^n}{n!} = \sum_{n=0}^{\infty} \frac{(\gamma)_n}{(1)_n} \frac{z^n}{\Gamma(\alpha n + \beta)} = _1M_{1}^{1,\beta}(\gamma; 1; z).$$
We also recall the following known integrals:
\[\int_{-\infty}^{\infty} x^{2\mu} e^{-\frac{x^2}{2}} H_{2n}(x) \, dx = \frac{2^{n+\frac{3}{2}} \Gamma \left(\mu + \frac{1}{2} \right) \Gamma (\mu + 1)}{\Gamma (\mu - n + 1)} \]
and
\[\int_{-\infty}^{\infty} x^{2\mu+1} e^{-\frac{x^2}{2}} H_{2n+1}(x) \, dx = \frac{2^{n+\frac{3}{2}} \Gamma \left(\mu + \frac{3}{2} \right) \Gamma (\mu + 1)}{\Gamma (\mu - n + 1)}, \]
where \(\mu \leq n \) (\(\mu, n \in \mathbb{N}_0 \)) and \(H_m(x) := 2^{-m/2} H_m(x/\sqrt{2}) \), \(H_m(x) \) are the Hermite polynomials and \(H_n \) Chebyshev Hermite polynomial.

Here, we aim at presenting two integral formulas whose integrands are the generalized \(M \)-series and the Aleph-function in addition to those in (9) and (10). Bajpai [1] gave a solution of the partial differential equation (19), very recently, whose generalized solution was provided by Srivastava and Mishra [10]. Motivated essentially by and modifying these two works [1] and [10], we also apply those integrals in Theorem 2.1 to solve the partial differential equation (19), whose solution is seen to be specialized to give the earlier results.

2 Two generalized integrals

By adding to insert the generalized \(M \)-series and the Aleph-function to the integrands of the integral formulas (9) and (10), we can present two generalized integral formulas (11) and (12) asserted by Theorem 2.1.

Theorem 2.1. For \(\nu, \rho > 0 \), \(\mu \geq n \) (\(\mu, n \in \mathbb{N}_0 \)), \(\gamma, \eta \in \mathbb{C} \) and \(\Re (\gamma) > 0 \), the following integral formulas hold true:
\[\int_{-\infty}^{\infty} x^{2\mu} e^{-\frac{x^2}{2}} H_{2n}(x) \, dx \, M^{\gamma,\eta}_q \left[g_p; h_q; \alpha x^{2p} \right] _{p_i + 2q_i + 1, r_i; r} \left[z x^{2\nu} \right] \, dx = 2^{n+\frac{1}{2}} \]
\[\times \sum_{k=0}^{\infty} \mathcal{M}(k) \mathcal{K}_{p_i + 2q_i + 1, r_i; r}^{m,n+2} \left[\frac{1}{2} - \mu - \rho k, \nu, \alpha_1, \nu_1, \gamma, \eta \right] \]
\[\times \sum_{k=0}^{\infty} \mathcal{M}(k) \mathcal{K}_{p_i + 2q_i + 1, r_i; r}^{m,n+2} \left[2^{2\nu} \left[\frac{1}{2} - \mu - \rho k, \nu, \alpha_1, \nu_1, \gamma, \eta \right] \right], \]
and
\[\int_{-\infty}^{\infty} x^{2\mu+1} e^{-\frac{x^2}{2}} H_{2n+1}(x) \, dx \, M^{\gamma,\eta}_q \left[g_p; h_q; \alpha x^{2p} \right] _{p_i + 2q_i + 1, r_i; r} \left[z x^{2\nu} \right] \, dx = 2^{n+\frac{3}{2}} \]
\[\times \sum_{k=0}^{\infty} \mathcal{M}(k) \mathcal{K}_{p_i + 2q_i + 1, r_i; r}^{m,n+2} \left[2^{2\nu} \left[\frac{1}{2} - \mu - \rho k, \nu, \alpha_1, \nu_1, \gamma, \eta \right] \right], \]
where
\[\mathcal{M}(k) := \prod_{k=1}^{p} \frac{(g_j)_k}{(h_j)_k} \frac{2^{pk} \mathcal{C}^k}{\Gamma (\gamma k + \eta)}. \]
and whose existence conditions are given as follows:

\[\varphi_l > 0, \quad |\arg(z)| < \frac{\pi}{2} \varphi_l \quad (l \in \mathbb{I}, r); \quad (14) \]

\[\varphi_l \geq 0, \quad |\arg(z)| < \frac{\pi}{2} \varphi_l \quad \text{and} \quad \Re\{\zeta_l\} + 1 < 0, \quad (15) \]

where

\[\varphi_l = \sum_{j=1}^{n} A_j + \sum_{j=1}^{m} B_j - \tau_l \left(\sum_{j=n+1}^{p_l} A_{jl} + \sum_{j=m+1}^{q_l} B_{jl} \right) \quad (16) \]

\[\zeta_l = \sum_{j=1}^{m} b_j - \sum_{j=1}^{n} a_j + \tau_l \left(\sum_{j=m+1}^{q_l} b_{jl} - \sum_{j=n+1}^{p_l} a_{jl} \right) + \frac{1}{2} (p_l - q_l), \quad (l \in \mathbb{I}, r). \quad (17) \]

Proof. We prove only (11). Let \(L \) be the left-hand side of (11). Then, using the series defining the generalized \(M \)-series and the Mellin-Barnes type contour integral in the Aleph-function, and interchanging the order of integration and summation, which is guaranteed by uniform convergence of the involved series, we arrive at

\[L = \frac{1}{2\pi i} \int_{-i\infty}^{i\infty} \Omega(s) \left\{ \sum_{k=0}^{\infty} \mathcal{M}(k) \left\{ \int_{-\infty}^{\infty} x^{2\mu+2\rho k+2\mu s} e^{-x^2/2} He_{2n}(x) \, dx \right\} \right\} z^s \, ds. \quad (18) \]

Evaluating the integral in (18) with the help of the integral (9), in view of (1), we obtain the desired integral formula (11). A similar argument will establish the formula (12), whose detailed account of the proof is omitted. \(\square \)

3 Application to Heat Conduction

We apply those results in Section 2 to give a generalized solution of the partial differential equation, which arises in conduction of heat in solids and have been treated in several earlier works (see, e.g., [1], [2, p. 134, Eq. (4)], [10]), given as follows:

\[\frac{\partial u}{\partial t} = \kappa \left(\frac{\partial^2 u}{\partial x^2} \right) - Hu \quad (-\infty < x < \infty), \quad (19) \]

where \(H := \frac{1}{2} \kappa (x^2/2 - 1) \), and \(u(x, t) \) tends to zero, if the value of \(t \) is maximum and when \(|x| \to \infty \), and \(u(x, 0) := u(x) \).
Theorem 3.1. The following generalized solution of the partial differential equation (19) holds true:

\[
\begin{align*}
 u_1 (x, t) &= \frac{2^\mu}{\sqrt{\pi}} \sum_{k,n=0}^{\infty} \left(\frac{2^n}{(2n)!} \right) e^{-2knt-x^2/4} M(k) \\
 \times \mathcal{N}^{m,n+2}_{p_i+2,q_i+1,\tau_i} \left[z^{2^n} \left(\frac{1}{2-k-\mu,\nu},(n-\mu-\rho,\nu),(a_j,A_j)_{1,m},[\tau_j(b_j,\nu)],n+1,p_i,r \right) \right] H_{2n} (x),
\end{align*}
\]

and

\[
\begin{align*}
 u_2 (x, t) &= \frac{2^{\mu+1}}{\sqrt{\pi}} \sum_{k,n=0}^{\infty} \left(\frac{2^n}{(2n+1)!} \right) e^{-k(2n+1)t-x^2/4} M(k) \\
 \times \mathcal{N}^{m,n+2}_{p_i+2,q_i+1,\tau_i} \left[z^{2^n} \left(\frac{1}{2-k-\mu,\nu},(n-\mu-\rho,\nu),(a_j,A_j)_{1,m},[\tau_j(b_j,\nu)],n+1,p_i,r \right) \right] H_{2n+1} (x),
\end{align*}
\]

which are valid for \(\nu, \rho > 0, \mu \geq n \) (\(\mu, n \in \mathbb{N}_0 \)), \(\gamma, \eta \in \mathbb{C}, \Re(\gamma) > 0 \) and the given conditions in (14)-(17).

Proof. We assume that a general solution of the partial differential equation (19) may be given as follows (see, e.g., [1, p. 32, Eq. (5.1) and p. 33, Eq. (5.3)]):

\[
\begin{align*}
 u_1 (x, t) &= \sum_{n=0}^{\infty} \left. C_{2n} e^{-2knt-x^2/4} H_{2n} (x) \right|, \quad (22)
\end{align*}
\]

where

\[
\begin{align*}
 C_{2n} &= \frac{1}{(2n)! \sqrt{2\pi}} \int_{-\infty}^{\infty} u_1 (x) e^{-x^2/4} H_{2n} (x) \, dx, \quad (23)
\end{align*}
\]

and

\[
\begin{align*}
 u_2 (x, t) &= \sum_{n=0}^{\infty} \left. C_{2n+1} e^{-k(2n+1)t-x^2/4} H_{2n+1} (x) \right|, \quad (24)
\end{align*}
\]

where

\[
\begin{align*}
 C_{2n+1} &= \frac{1}{(2n+1)! \sqrt{2\pi}} \int_{-\infty}^{\infty} u_2 (x) e^{-x^2/4} H_{2n+1} (x) \, dx, \quad (25)
\end{align*}
\]

and \(H_{2n} \) and \(H_{2n+1} \) are Chebyshev Hermite polynomials. Now we determine \(u_1 (x, t) \) and \(u_2 (x, t) \), where

\[
\begin{align*}
 u_1 (x, 0) := u_1 (x) &= x^{2\mu} e^{-x^2/4} p M_q^{\gamma,\eta} \left[g_p; h_q; c x^{2p} \right] \mathcal{N}^{m,n}_{p_i,q_i,\tau_i} \left[z^{2^n} \right], \quad (26)
\end{align*}
\]
Similarly, combining (25) and (27) with the integral (12) yields

\[u_2(x, 0) := u_2(x) = x^{2\mu+1}e^{-x^2/4} m_q^{\gamma,\eta} \left[g_p; h_q; cx^{2\rho} \right] \mathcal{N}_p^{m,n,r} \left[z x^{2\nu} \right] . \] (27)

Combining (23) and (26) with the aid of the integral (11) is seen to give the following expression:

\[C_{2n} = \frac{2^{\mu+n}}{(2n)!\sqrt{\pi}} \sum_{k=0}^{\infty} \mathcal{M}(k) \mathcal{N}_{p+1, q+1, 1, r} \left[z 2^\nu \left(\frac{1}{2} - \mu - \rho, \nu \right), (\nu, a_j, A_j)_{1, m}, \left[r_j(a_j, A_j) \right]_{n+1, p+1} \right] . \] (28)

Similarly, combining (25) and (27) with the integral (12) yields

\[C_{2n+1} = \frac{2^{\mu+n+1}}{(2n + 1)!\sqrt{\pi}} \sum_{k=0}^{\infty} \mathcal{M}(k) \mathcal{N}_{p+2, q+1, 1, r} \left[z 2^\nu \left(\frac{1}{2} - \mu - \rho, \nu \right), (\nu, a_j, A_j)_{1, m}, \left[r_j(b_j, B_j) \right]_{n+1, p+1} \right] . \] (29)

Finally, setting \(C_{2n} \) in (28) and \(C_{2n+1} \) in (29) into (22) and (24), respectively, is seen to yield the desired results in Theorem 3.1.

\[\square \]

4 Fourier Hermite Expansion

We obtain the following Fourier Hermite expansion by setting \(t = 0 \) in (20) and (21):

\[x^{2\mu} m_q^{\gamma,\eta} \left[g_p; h_q; cx^{2\rho} \right] \mathcal{N}_p^{m,n,r} \left[z x^{2\nu} \right] = \frac{2^\mu}{\sqrt{\pi}} \sum_{k,n=0}^{\infty} \left(\frac{2^n}{(2n)!} \right) \mathcal{M}(k) \times \mathcal{N}_{p+1, q+1, 1, r} \left[z 2^\nu \left(\frac{1}{2} - \mu - \rho, \nu \right), (\nu, a_j, A_j)_{1, m}, \left[r_j(a_j, A_j) \right]_{n+1, p+1} \right] H_{2n}(x) , \] (30)

and

\[x^{2\mu+1} m_q^{\gamma,\eta} \left[g_p; h_q; cx^{2\rho} \right] \mathcal{N}_p^{m,n,r} \left[z x^{2\nu} \right] = \frac{2^{\mu+1}}{\sqrt{\pi}} \sum_{k,n=0}^{\infty} \left(\frac{2^n}{(2n + 1)!} \right) \mathcal{M}(k) \times \mathcal{N}_{p+2, q+1, 1, r} \left[z 2^\nu \left(\frac{1}{2} - \mu - \rho, \nu \right), (\nu, a_j, A_j)_{1, m}, \left[r_j(b_j, B_j) \right]_{n+1, p+1} \right] H_{2n+1}(x) . \] (31)
5 Special Cases

Here we consider some special cases of our results.

(i) In view of Remark 1.1, setting \(\tau_i = 1 \) \((i \in 1, r)\) in the results in Theorem 2.1 yields some integral formulas whose integrands are \(I \)-function, Chebyshev Hermite polynomials and the generalized \(M \)-series. Further, setting \(\eta = 1 \) is easily seen to yield the results derived by Srivastava and Mishra [10].

(ii) If we use the relation given by (8), we get the solution of (19) in the product of Chebyshev Hermite polynomials, the generalized Mittag-Leffler function and the \(\mathbb{H} \)-function.

(iii) On taking the generalized \(M \)-series into unity and taking into account the relation (4), then we get the solution of (19) in terms of \(H \)-function, which is given by Bajpai [1].

Acknowledgments. The first-named author would like to express his deep thanks to NBHM (National Board of Higher Mathematics) for granting a Post-Doctoral Fellowship. This work was supported by Dongguk University Research Fund.

References

Received: April 24, 2015; **Published:** July 2, 2015