A Refinement of an Inequality for Positive Operators on Pseudo-Hilbert Spaces

Loredana Ciurdariu
Department of Mathematics, ”Politehnica” University of Timisoara
P-ta. Victoriei, No. 2, 300006-Timișoara, Romania

Copyright © 2015 Loredana Ciurdariu. This article is distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In this paper, several inequalities for positive definite operators defined on pseudo-Hilbert spaces and Hilbert spaces respectively will be presented under suitable assumptions, starting from some refinements of the Kittaneh-Manasrah inequality which improves the well-known inequality of Young. The results will improve the inequalities presented before for positive operators in Hilbert spaces.

Mathematics Subject Classification: 26D15

Keywords: Young’s inequality, selfadjoint operators, pseudo-Hilbert spaces, functional calculus

1. Introduction

In this paper, it is necessary to recall the following results which are given in the papers [4] and [5] and will be used below in the demonstration of our results. In demonstrations of the main section the same method as in the paper [3] will be utilized.

Lemma 1. ([4]) Let \(a\) and \(b\) be such that \(a, b \geq 0\) and \(0 \leq \nu \leq 1\). Then the following inequality holds:

\[\nu a^2 + (1 - \nu)b^2 \leq (a^\nu b^{1-\nu})^2 + s_0(a-b)^2, \]

where \(s_0 = \max\{\nu, 1 - \nu\} \).
Lemma 2. ([5]) For all \(x, y \) positive real numbers and \(\lambda \in (0, 1) \) we have the inequality

\[
2rE\left(x, y, \frac{1}{2}\right) \leq E(x, y, \lambda) \leq 2(1-r)E\left(x, y, \frac{1}{2}\right),
\]

where

\[
E(x, y, \lambda) = \lambda \exp x + (1-\lambda) \exp y - \exp (\lambda x + (1-\lambda)y) - \frac{\lambda(1-\lambda)}{2}(x-y)^2
\]

and \(r = \min\{\lambda, 1-\lambda\} \).

Theorem 1. ([5]) For \(a, b \geq 1, \) and \(\lambda \in (0, 1) \) we have

\[
r(\sqrt{a} - \sqrt{b})^2 + A_1(\lambda) \log^2 \left(\frac{a}{b} \right) \leq \lambda a + (1-\lambda)b - a^{\lambda}b^{1-\lambda} \leq (1-r)(\sqrt{a} - \sqrt{b})^2 + B_1(\lambda) \log^2 \left(\frac{a}{b} \right)
\]

where \(r = \min\{\lambda, 1-\lambda\} \), \(A_1(\lambda) = \frac{\lambda(1-\lambda)}{2} - \frac{r}{4} \) and \(B_1(\lambda) = \frac{\lambda(1-\lambda)}{2} - \frac{1-r}{4} \).

First, it is necessary to recall that for selfadjoint operators \(A, B \in B(H) \) we write \(A \leq B \) (or \(B \geq A \)) if \(\langle Ax, x \rangle \leq \langle Bx, x \rangle \) for every vector \(x \in H \). We will consider for beginning \(A \) as being a selfadjoint linear operator on a complex Hilbert space \(\langle H; \langle, \rangle \rangle \) as in [3] and the references therein. The Gelfand map establishes a \(*\)-isometrically isomorphism \(\Phi \) between the set \(C(Sp(A)) \) of all \textit{continuous functions} defined on the spectrum of \(A \), denoted \(Sp(A) \), and the \(C^*\)- algebra \(C^*(A) \) generated by \(A \) and the identity operator \(1_H \) on \(H \) as follows: For any \(f, f \in C(Sp(A)) \) and for any \(\alpha, \beta \in \mathbb{C} \) we have

(i) \(\Phi(\alpha f + \beta g) = \alpha \Phi(f) + \beta \Phi(g) \);
(ii) \(\Phi(fg) = \Phi(f)\Phi(g) \) and \(\Phi(f) = \Phi(f^*) \);
(iii) \(\|\Phi(f)\| = \|f\| := \sup_{t \in Sp(A)} |f(t)| \);
(iv) \(\Phi(f_0) = 1_H \) and \(\Phi(f_1) = A \), where \(f_0(t) = 1 \) and \(f_1(t) = t \) for \(t \in Sp(A) \).

Using this notation, as in [3] for example, we define

\[
f(A) := \Phi(f) \quad \text{for all} \quad f \in C(Sp(A))
\]

and we call it the \textit{continuous functional calculus} for a selfadjoint operator \(A \). It is known that if \(A \) is a selfadjoint operator and \(f \) is a real valued continuous function on \(Sp(A) \), then \(f(t) \geq 0 \) for any \(t \in Sp(A) \) implies that \(f(A) \geq 0 \), i.e. \(f(A) \) is a \textit{positive operator} on \(H \). In addition, if and \(f \) and \(g \) are real valued functions on \(Sp(A) \) then the following property holds:

(1) \(f(t) \geq g(t) \) for any \(t \in Sp(A) \) implies that \(f(A) \geq g(A) \)
in the operator order of \(B(H) \).
We recall the definitions of pseudo-Hilbert spaces (so called Lonyes Z-spaces) and of the admissible spaces in the Lonyes sense and then as in [2] we use the functional calculus with functions of the class C_1 in results which will be proved below.

A locally convex space Z is called admissible in the Lonyes sense if the following conditions are satisfied:

(A.1) Z is complete;
(A.2) there is a closed convex cone in Z, denoted Z_+, defines an order relation on Z (that is $z_1 \leq z_2$ if $z_2 - z_1 \in Z_+$);
(A.3) there is an involution in Z, $z \mapsto z^*$ (that is $z^{**} = z$, $(\alpha z)^* = \overline{\alpha} z^*$, $(z_1 + z_2)^* = z_1^* + z_2^*$) such that $z \in Z_+$ implies $z^* = z$;
(A.4) the topology of Z is compatible with the order (that is there exists a basis of convex solid neighbourhoods of the origin);
(A.6) any monotonously decreasing sequence in Z_+ is convergent.

Let Z be an admissible space in the Lonyes sense. A topological linear space \mathcal{H} is called pre-Lonyes Z-space if it satisfies the following properties:

(L1) \mathcal{H} is endowed with an Z-valued inner product (gramian), i.e. there exists an application $(h, k) \in \mathcal{H} \times \mathcal{H} \to [h, k] \in Z$ having the properties:

(G.1) $[h, h] \geq 0$; $[h, h] = 0$ implies $h = 0$;
(G.2) $[h_1 + h_2, h] = [h_1, h] + [h_2, h]$;
(G.3) $[\lambda h, k] = \lambda [h, k]$;
(G.4) $[h, k]^* = [k, h]$;

for all $h, k, h_1, h_2 \in \mathcal{H}$ and $\lambda \in \mathbb{C}$.

(L.2) The topology of \mathcal{H} is the weakest locally convex topology on \mathcal{H} for which the application $h \in \mathcal{H} \to [h, h] \in Z$ is continous.

Moreover, if \mathcal{H} is a complete spaces with this topology, then \mathcal{H} is called Lonyes Z-space (pseudo-Hilbert space).

Let $A \in \mathcal{B}_h^*(\mathcal{H})$, where \mathcal{H} is now a pseudo-Hilbert space (so called Lonyes Z-spaces) and

$$m_A := \sup \{ \mu : \mu [h, h] \leq [Ah, h], h \in \mathcal{H} \},$$

$$M_A := \inf \{ \nu : [Ah, h] \leq \nu [h, h], h \in \mathcal{H} \}.$$

We say that the function f is in the class C_1 and we denote $f \in C_1 [m_A, M_A]$ if f is positive and superior semicontinuous on $[m_A, M_A]$.

We will denote by $\overline{A(A)}^t$ the strong closing of $A(A)$ in $\mathcal{B}^* (\mathcal{H})$.

The mapping

$$f : C_1 [m_A, M_A] \to \overline{A(A)}^t, \quad f \to f(A)$$

by which to a function $f \in C_1 [m_A, M_A]$ we associate the gramian self-adjoint operator denoted by $f(A)$ and defined by $f(A) = \lim_{n \to \infty} p_n(A)$ where p_n is a decreasing sequence of polynomials p_n with $p(\lambda) = \lim_{n \to \infty} p_n(\lambda)$ for any $\lambda \in [m_A, M_A]$, is called functionals calculus with functions in class C_1.

Theorem 2. (Lemma 2.1.1[2]) The functional calculus with functions of the class C_1 has the following immediate properties:

(i) the mapping $f \to f(A)$ is monotone;
(ii) \(f \to f(A) \) is function of positive type and positively homogeneous;
(iii) \(f \to f(A) \) is additive and multiplicative (all these three properties being inherited by passing to the limit from the functional calculus with polynomials defined at the beginning);
(iv) In addition, the functional calculus with functions of the class \(C_1 \) extends the functional calculus with continuous and positive functions on \(\sigma(A) \) defined in Corollary 1.5.6,
\[
f : C_+(\sigma(A)) \to \mathcal{A}(A), \quad f \to f(A)
\]
if \(A \in \mathcal{B}_h^\ast(\mathcal{H}) \).

Using the definition from [3], we say that the functions \(f, g : [a, b] \to \mathbb{R} \) are synchronous (asynchronous) on the interval \([a, b] \) if they satisfy the following condition:
\[
(f(t) - f(s))(g(t) - g(s)) \geq (\leq) 0
\]
for each \(t, s \in [a, b] \).

2. Main results

The following results present several inequalities for functions of positive operators when we have a classic inner product which takes its values in \(\mathbb{C} \) and the second inner product (gramian) takes its values in an admissible space \(Z \).

Proposition 1. Let \(A \) be a positive definite operator on the Hilbert space \(H \), \(A \in \mathcal{B}(H) \) and \(B \) a positive operator on the pseudo-Hilbert space \(K \), \(B \in \mathcal{B}_h^\ast(K) \). Then we have
\[
\nu < A^2x, x > [y, y] + (1 - \nu) < x, x > [B^2y, y] \leq
\]
\[
< A^{2\nu}x, x > [B^{2(1-\nu)}y, y] + s_0 (< A^2x, x > [y, y] - 2 < Ax, x > [By, y] + < x, x > [B^2y, y])
\]
for each \(x \in H \) and \(y \in K \), where \(0 \leq \nu \leq 1 \) and \(s_0 = \max\{\nu, 1 - \nu\} \).

Proof. We consider the continue function \(f(a) = (a^\nu b^{1-\nu})^2 + s_0(a - b)^2 - (\nu a^2 + (1 - \nu)b^2) \), which is positive for \(a \geq 0 \) and we fix \(b \geq 0 \) and then by the property (1) for each \(x \in H \) we have that
\[
< (\nu A^2 + (1 - \nu)b^2I)x, x > \leq < [A^{2\nu}b^{2(1-\nu)} + s_0(A^2 - 2Ab + b^2I)]x, x >
\]
which is equivalent with
\[
\nu < A^2x, x > +(1 - \nu)b^2 < x, x > \leq
\]
\[
b^{2(1-\nu)} < A^{2\nu}x, x > + s_0<[A^2x, x] > -2b < Ax, x > + b^2 < x, x >
\]
for each \(b > 0 \).

If we apply now Theorem 2 for last inequality taking into account that
\[
\nu < A^2x, x > +(1 - \nu)b^2 < x, x > \geq 0,
\]
then for any \(y \in K \) we get
\[
[(\nu < A^2x, x > +(1 - \nu) < x, x > B^2)y, y] \leq
\]
\[
< (B^{2(1-\nu)} < A^{2\nu}x, x > + s_0(< A^2x, x > I_K - 2B < Ax, x > + B^2 < x, x >))y, y >
\]
and this inequality is equivalent with
\[\nu < A^2 x, x > [y, y] + (1 - \nu) < x, x > [B^2 y, y] \leq \]
\[\leq < A^{2\nu} x, x > [B^{2(1-\nu)} y, y] + s_0 (< A^2 x, x > [y, y] - 2 < A x, x > [B y, y] + < x, x > [B^2 y, y]) \]
for each \(x \in H \) and \(y \in \mathcal{K} \).

\[\square \]

Theorem 3. Let \(A \) be a positive definite operator on the Hilbert space \(H \), \(A \in B(H) \) and \(B \) a positive operator on the pseudo-Hilbert space \(\mathcal{K} \), \(B \in B^*_1(\mathcal{K}) \). Then the following inequality holds:

\[
\begin{align*}
& r \{ < \exp(A) x, x > [y, y] + < x, x > [\exp(B) y, y] - 2 < \exp\left(\frac{A}{2}\right) x, x > [\exp\left(\frac{B}{2}\right) y, y] - \frac{1}{4} (< A^2 x, x > [y, y] - 2 < A x, x > [B y, y] + < x, x > [B^2 y, y]) \} \leq \\
& \leq \lambda < \exp(A) x, x > [y, y] + (1 - \lambda) < x, x > [\exp(B) y, y] - < \exp(\lambda A) x, x > \\
& \cdot [\exp((1-\lambda)B) y, y] - \frac{\lambda(1-\lambda)}{2} (< A^2 x, x > [y, y] - 2 < A x, x > [B y, y] + < x, x > [B^2 y, y]) \leq \\
& \leq (1 - r) \{ < \exp(A) x, x > [y, y] + < x, x > [\exp(B) y, y] - 2 < \exp\left(\frac{A}{2}\right) x, x > [\exp\left(\frac{B}{2}\right) y, y] - \\
& - \frac{1}{4} (< A^2 x, x > [y, y] - 2 < A x, x > [B y, y] + < x, x > [B^2 y, y]) \}. \\
\end{align*}
\]

for each \(x \in H \) and \(y \in \mathcal{K} \), where \(r = \min\{\lambda, 1 - \lambda\} \).

Proof. We write and then use the inequality from Lemma 2 with \(x \) replaced by \(a \) and \(y \) replaced by \(b \) obtaining:

\[
r \left[\exp(a) + \exp(b) - 2 \exp\left(\frac{a+b}{2}\right) - \frac{1}{4}(a-b)^2 \right] \leq \\
\leq \lambda \exp(a) + (1 - \lambda) \exp(b) - \exp(\lambda a + (1 - \lambda) b) - \frac{\lambda(1-\lambda)}{2} (a-b)^2 \leq \\
\leq (1 - r) \left[\exp(a) + \exp(b) - 2 \exp\left(\frac{a+b}{2}\right) - \frac{1}{4}(a-b)^2 \right].
\]

We fix \(b > 0 \) and apply the property (1) for previous inequality obtaining:

\[
\begin{align*}
& < r [\exp(A) + \exp(b) 1_H - 2 \exp\left(\frac{b}{2}\right) \exp\left(\frac{A}{2}\right) - \frac{1}{4}(A^2 - 2bA + b^2 1_H)] x, x > \leq \\
& \leq [\lambda \exp(A) + (1 - \lambda) \exp(b) 1_H - \exp(\lambda A) \exp((1-\lambda) b) - \frac{\lambda(1-\lambda)}{2} (A^2 - 2bA + b^2 1_H)] x, x > \\
& \leq (1 - r) [\exp(A) + \exp(b) 1_H - 2 \exp\left(\frac{b}{2}\right) \exp\left(\frac{A}{2}\right) - \frac{1}{4}(A^2 - 2bA + b^2 1_H)] x, x >
\end{align*}
\]

which is equivalent with the following

\[r [\exp(A) x, x > + \exp(b) < x, x > - 2 \exp\left(\frac{b}{2}\right) < \exp\left(\frac{A}{2}\right) x, x > - \]

\[\]
\[-\frac{1}{4}(< A^2 x, x > -2b < Ax, x > +b^2 < x, x >)] \leq \\
\leq \lambda < \exp(A)x, x > + (1 - \lambda) \exp(b) < x, x > - \exp((1 - \lambda)b) < \exp(\lambda A)x, x > - \\
- \frac{\lambda(1 - \lambda)}{2} (< A^2 x, x > -2b < Ax, x > +b^2 < x, x >) \leq \\
\leq (1 - r)[< \exp(A)x, x > + \exp(b) < x, x > -2 \exp(\frac{b}{2}) < \exp(\frac{A}{2})x, x > - \\
- \frac{1}{4}(< A^2 x, x > -2b < Ax, x > +b^2 < x, x >)], \\
for any \ x \in H.

If we apply Theorem 2 for previous inequality for the variable \(b \), then we have for any \(y \in K \) that

\[
r\{ < \exp(A)x, x > [y, y] + < x, x > [\exp(B)y, y] - 2 < \exp(\frac{A}{2})x, x > [\exp(\frac{B}{2})y, y] - \\
- \frac{1}{4}(< A^2 x, x > [y, y] - 2 < Ax, x > [By, y] + < x, x > [B^2 y, y]) \leq \\
\leq \lambda < \exp(A)x, x > [y, y] + (1 - \lambda) < x, x > [\exp(B)y, y] - < \exp(\lambda A)x, x > [\exp((1 - \lambda)B)y, y] - \\
- \frac{\lambda(1 - \lambda)}{2} (< A^2 x, x > [y, y] - 2 < Ax, x > [By, y] + < x, x > [B^2 y, y]) \leq \\
\leq (1 - r)\{ < \exp(A)x, x > [y, y] + < x, x > [\exp(B)y, y] -2 < \exp(\frac{A}{2})x, x > [\exp(\frac{B}{2})y, y] - \\
- \frac{1}{4}(< A^2 x, x > [y, y] - 2 < Ax, x > [By, y] + < x, x > [B^2 y, y])\}
\]

\[\square\]

Proposition 2. Let \(A \) be a positive definite operators on the Hilbert space \(H \), \(A \in B(H) \) and \(B \) a positive operator on the pseudo-Hilbert space \(K \), \(B \in B^+_h(K) \). If \(\text{Sp}(A), \text{Sp}(B) \subseteq [1, \infty) \), and \(\lambda \in (0, 1) \) then we have

\[
r\left(< Ax, x > [y, y] + < x, x > [By, y] - 2 < A^{\frac{1}{2}}x, x > [B^{\frac{1}{2}}y, y] \right) + \\
+ A_1(\lambda) \left[< (\log^2 A)x, x > [y, y] + < x, x > [(\log^2 B)y, y] - 2 < (\log A)x, x > [(\log B)y, y] \right] \leq \\
\leq \lambda < Ax, x > [y, y] + (1 - \lambda) < x, x > [By, y] - < A^{\lambda}x, x > [B^{1-\lambda}y, y] \leq \\
\leq (1 - r)\left(< Ax, x > [y, y] + < x, x > [By, y] - 2 < A^{\frac{1}{2}}x, x > [B^{\frac{1}{2}}y, y] \right) + \\
+ B_1(\lambda) \left[< (\log^2 A)x, x > y + < x, x > [(\log^2 B)y, y] - 2 < (\log A)x, x > [(\log B)y, y] \right]
\]

for each \(x \in H \) and \(y \in K \) where \(r = \min\{\lambda, 1 - \lambda\} \), \(A_1(\lambda) = \frac{\lambda(1-\lambda)}{2} - \frac{r}{4} \) and \(B_1(\lambda) = \frac{\lambda(1-\lambda)}{2} - \frac{r}{4} \).
Proof. We consider the continue and positive functions \(f(a) = \lambda a + (1 - \lambda) b - a^{1 - \lambda} - r(a + b - 2a^{1/2}b^{1/2}) - A_1(\lambda)[\log^2 a + \log^2 b - 2 \log a \log b] \), and \(g(a) = (1 - r)(a + b - 2a^{1/2}b^{1/2}) + B_1(\lambda)[\log^2 a + \log^2 b - 2 \log a \log b] - \lambda a - (1 - \lambda)b + a^{1 - \lambda} \) which are positive for \(a \geq 1 \) and we fix \(b \geq 1 \) and then by the property (1) for each \(x \in H \) we have that

\[
r(\langle Ax, x \rangle + b < x, x > - 2b^{1/2} < A^{1/2}x, x \rangle) + \]

\[
+ A_1(\lambda) \left[\langle \log^2 A \rangle x, x \rangle + \log^2 b < x, x > - 2 \log b < (\log A)x, x \rangle \right] \leq
\]

\[
\leq \lambda < Ax, x > + (1 - \lambda) b < x, x > - b^{1 - \lambda} < A^{\lambda}x, x > \leq
\]

\[
\leq (1 - r) \left(\langle Ax, x \rangle + b < x, x > - 2b^{1/2} < A^{1/2}x, x \rangle \right) +
\]

\[
+ B_1(\lambda) \left[\langle \log^2 A \rangle x, x \rangle + \log^2 b < x, x > - 2 \log b < (\log A)x, x \rangle \right]
\]

for each \(b > 1 \).

If we apply now Theorem 2 for last inequality, then for any \(y \in K \) we get

\[
r \left(\langle Ax, x \rangle + b < y, y > + < x, x > [By, y] - 2 < A^{1/2}x, x > [B^{1/2}y, y] \right) +
\]

\[
+ A_1(\lambda) \left[\langle \log^2 A \rangle x, x \rangle + < x, x > [(\log^2 B)y, y] - 2 < \langle \log A \rangle x, x > [(\log B)y, y] \right] \leq
\]

\[
\leq \lambda < Ax, x > [y, y] + (1 - \lambda) < x, x > [By, y] - < A^{\lambda}x, x > [B^{1-\lambda}y, y] \leq
\]

\[
\leq (1 - r) \left(\langle Ax, x \rangle + y, y > + < x, x > [By, y] - 2 < A^{1/2}x, x > [B^{1/2}y, y] \right) +
\]

\[
+ B_1(\lambda) \left[\langle \log^2 A \rangle x, x \rangle + < x, x > [(\log^2 B)y, y] - 2 < \langle \log A \rangle x, x > [(\log B)y, y] \right]
\]

for each \(x \in H \) and \(y \in K \).

Next particular case of Proposition 2 may be of interest as well:

Remark 1. Under previous conditions, if we consider \(K \) as being the Hilbert space \(H, y = x \) and \(A = B \) then the above inequality becomes:

\[
2r \left[\langle Ax, x > - \left(< A^{1/2}x, x > \right)^2 \right] + 2A_1(\lambda) \left[\langle \log^2 A \rangle x, x > - \left(< \log A \rangle x, x > \right)^2 \right] \leq
\]

\[
\leq 1 - < A^{1 - \lambda}x, x >
\]

\[
2(1 - r) \left[\langle Ax, x > - \left(< A^{1/2}x, x > \right)^2 \right] + 2B_1(\lambda) \left[\langle \log^2 A \rangle x, x > - \left(< \log A \rangle x, x > \right)^2 \right]
\]

In the following, we can think to rewrite some results as Theorem 1, see [3], in the case when we have an inner product which take its values in \(C \) and the second takes values in an admissible space \(Z \).
Theorem 4. Let A be a selfadjoint operator on the Hilbert space H, $A \in B(H)$ and B a selfadjoint operator on the pseudo-Hilbert space K, $B \in B^*(K)$ with $\text{Sp}(A), \text{Sp}(B) \subseteq [m, M]$ for some real numbers $m < M$. If $f, g : [m, M] \to \mathbb{R}$ are continuous, positive and synchronous (asynchronous) on $[m, M]$, then

$$<f(A)g(A)x, x > [y, y] + <x, x > [f(B)g(B)y, y] \geq (\leq)$$

$$<f(A)x, x > [g(B)y, y] + <g(A)x, x > [f(B)y, y],$$

for any $x \in H$ and $y \in K$.

Proof. We will use the same method as in [3] and we take into account only the case of synchronous functions. Therefore, if we fix $s \in [m, M]$ and apply (1) for inequality

$$f(t)g(t) + f(s)g(s) \geq f(t)g(s) + f(s)g(t)$$

where $t, s \in [m, M]$ then we have for each $x \in H$ that

$$<f(A)g(A)x, x > + f(s)g(s) < x, x > \geq g(s) < f(A)x, x > + f(s) < g(A)x, x >$$

for each $s \in [m, M]$.

Now if we apply Theorem 2 for previous inequality

$$<f(A)g(A)x, x > I_K + f(B)g(B) < x, x > \geq g(B) < f(A)x, x > + f(B) < g(A)x, x >,$$

and then we have for any $y \in K$ that

$$[(<f(A)g(A)x, x > I_K + f(B)g(B) < x, x >)y, y] \geq$$

$$\geq [(g(B) < f(A)x, x > + f(B) < g(A)x, x >)y, y]$$

or by calculus

$$<f(A)g(A)x, x > [y, y] + <x, x > [f(B)g(B)y, y] \geq$$

$$\geq <f(A)x, x > [g(B)y, y] + <g(A)x, x > [f(B)y, y].$$

□

Remark 2. Under previous conditions, if we consider K as being the Hilbert space H, $y = x$ and $A = B$ then the above inequality becomes:

$$<x, x > < f(A)g(A)x, x > \geq (\leq) < f(A)x, x > < g(A)x, x >.$$

Remark 3. Under previous conditions, if we consider K as being the Hilbert space H, $y = x$ and $A = B$ then the above inequality becomes:

$$<f(A)g(A)x, x > \geq (\leq) < f(A)x, x > < g(A)x, x >,$$

for any $x \in H$ with $||x|| = 1$.

Theorem 5. Let A be a selfadjoint operator on the Hilbert space H, $A \in B(H)$ and B a selfadjoint operator on the pseudo-Hilbert space K, $B \in B^*(K)$ with $Sp(A), Sp(B) \subseteq [m, M]$ for some real numbers $m < M$. If $f, g : [m, M] \to \mathbb{R}_+$ are continuous, positive and synchronous on $[m, M]$, then

$$[f(B)g(B)y, y] + f(< Ax, x >)g(< Ax, x >)[y, y] \geq f(< Ax, x >)[g(B)y, y] + g(< Ax, x >)[f(B)y, y]$$

for any $x \in H$ and $y \in K$.

Proof. As in [3], using the hypothesis that f, g are synchronous and $m \leq < Ax, x > \leq M$ for any $x \in H$ with $||x|| = 1$ we have

$$(f(t) - f(< Ax, x >)) (g(t) - g(< Ax, x >)) \geq 0$$

for any $t \in [a, b]$ or by calculus

$$f(t)g(t) + f(< Ax, x >)g(< Ax, x >) \geq g(t)f(< Ax, x >) + f(t)g(< Ax, x >).$$

By functional calculus, Theorem 2 we find:

$$f(B)g(B) + f(< Ax, x >)g(< Ax, x >)I_K \geq g(B)f(< Ax, x >) + f(B)g(< Ax, x >)$$

and from here,

$$[f(B)g(B)y, y] + f(< Ax, x >)[g(B)y, y] \geq [f(< Ax, x >)[g(B)y, y] + g(< Ax, x >)[f(B)y, y],$$

for any $y \in K$.

□

References

Received: February 28, 2015; Published: May 12, 2015