Results On Almost γ-Continuity

Young Key Kim
Department of Mathematics
MyongJi University
Yongin 449-728, Korea

Won Keun Min
Department of Mathematics
Kangwon National University
Chuncheon, 200-701, Korea
(Corresponding author)

Copyright © 2014 Young Key Kim and Won Keun Min. This article is distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In this paper, we introduce the concept of almost γ-continuity. And we study characterizations of such functions and relationships between almost γ-continuity and weakly γ-continuity.

Mathematics Subject Classification: 54A05, 54B10, 54C10, 54D30

Keywords: almost γ-continuous, γ-compact, γ-T_2-space, strongly γ-closed graph

1. INTRODUCTION

Let X and Y be topological spaces on which no separation axioms are assumed unless explicit stated. Let S be a subset of X. The closure (resp. interior) of S will be denoted by $cl(S)$ (resp. $int(S)$). A subset S of X is called semi-open set [4] (resp. α-set, β-open set [8], preopen set [5]) if $S \subseteq cl(int(S))$
(resp. $S \subseteq \text{int}(\text{cl}(\text{int}(S)))$, $S \subseteq \text{cl}(\text{int}(\text{cl}(S)))$, $S \subseteq \text{int}(\text{cl}(S)))$. The complement of a semi-open set (resp. α-set, β-open set, preopen set) is called semi-closed set (resp. α-closed set, β-closed set, preclosed set).

A subset $M(x)$ of a space X is called a semi-neighborhood of a point $x \in X$ if there exists a semi-open set S such that $x \in S \subseteq M(x)$. In [1], Latif introduced the notion of semi-convergence of filters. And he investigated some characterizations related to semi-open continuous functions. Now we recall the concept of semi-convergence of filters. Let $S(x) = \{A \in SO(X) : x \in A\}$ and let $S_x = \{A \subseteq X : \text{there exists } \mu \subseteq S(x) \text{ such that } \mu \text{ is finite and } \cap \mu \subseteq A\}$. Then S_x is called the semi-neighborhood filter at x. For any filter F on X, we say that F semi-converges to x if and only if F is finer than the semi-neighborhood filter at x. A subset U of X is called a γ-set [6] in X if whenever a filter F semi-converges to x and $x \in U$, then $U \in F$. The class of all γ-sets in X will be denoted by $\gamma(X)$.

The γ-interior [6] of a set A in X, denoted by $I_\gamma(A)$, is the union of all γ-sets contained in A.

The γ-closure [6] of a set A in X, denoted by $\text{Cl}_\gamma(A)$, $\text{Cl}_\gamma(A) = \{x \in X : A \cap U \neq \emptyset \text{ for all } U \in S_x\}$.

Theorem 1.1 ([6]). Let (X, τ) be a topological space and $A \subseteq X$.
(a) $I_\gamma(A) = \{x \in A : A \in S_x\}$.
(b) A is γ-set if and only if $A = I_\gamma(A)$.
(c) A set A is γ-closed if and only if whenever F semi-converges to x and $A \in F$, then $x \in A$.

Theorem 1.2 ([6]). Let (X, τ) be a topological space and A be a subset of X.
(1) $A \subseteq \text{Cl}_\gamma(A)$.
(2) A is γ-closed if and only if $A = \text{Cl}_\gamma A$.
(3) $I_\gamma(A) = X - \text{Cl}_\gamma(X - A)$.
(4) $\text{Cl}_\gamma(A) = X - I_\gamma(X - A)$.

Definition 1.3. Let $f : (X, \tau) \to (Y, \mu)$ be a function on two topological spaces. Then
(1) f is said to be weakly γ-continuous [7] if for $x \in X$ and each open subset V containing $f(x)$, there is a γ-set U containing x such that $f(U) \subseteq \text{cl}(V)$.
(2) f is said to be γ-continuous [6] if the inverse image of each open set of Y is a γ-set in X.

In [2], Latif showed that f is γ-continuous if and only if for $x \in X$ and each open subset V containing $f(x)$, there is a γ-set U containing x such that $f(U) \subseteq V$.

2. Almost γ-Continuous Functions

Definition 2.1. Let (X, τ) and (Y, μ) be two topological spaces. Then $f : X \to Y$ is said to be almost γ-continuous at $x \in X$ if for each open subset V containing $f(x)$, there is a γ-set U containing x such that $f(U) \subseteq \text{int}(\text{cl}(V))$. A function $f : (X, \tau) \to (Y, \mu)$ is said to be almost γ-continuous if it has the property at each point of X.

We get the following implications but the converses are not true:

$$\text{continuous} \Rightarrow \gamma\text{-continuous} \Rightarrow \text{almost } \gamma\text{-continuous} \Rightarrow \text{weakly } \gamma\text{-continuous}$$

Example 2.2. Let $X = \{a, b, c, d\}$.

(1) Consider a topology $\tau = \{\emptyset, \{a, b\}, \{a, b, d\}, X\}$ on X and a function $f : (X, \tau) \to (X, \tau)$ defined as follows: $f(a) = f(c) = f(d) = d$ and $f(b) = b$. Then f is almost γ-continuous but not γ-continuous.

(2) Consider a topology $\tau = \{\emptyset, \{d\}, \{a, b\}, \{a, b, d\}, X\}$ on X and a function $f : (X, \tau) \to (X, \tau)$ defined as follows: $f(a) = f(c) = c$ and $f(b) = f(d) = d$. Then f is weakly γ-continuous. But f is not almost γ-continuous at b because of $\text{int}(\text{cl}(\{d\})) = \{d\}$. Hence f is not almost γ-continuous.

Theorem 2.3. Let $f : (X, \tau) \to (Y, \mu)$ be a function on topological spaces (X, τ) and (Y, μ). Then the following statements are equivalent:

(1) f is almost γ-continuous at $x \in X$.

(2) $x \in I_\gamma(f^{-1}(\text{int}(\text{cl}(V))))$ for every open set V containing $f(x)$.

(3) $x \in I_\gamma(f^{-1}(\text{sCl}(V)))$ for every open set V containing $f(x)$.

(4) $x \in I_\gamma(f^{-1}(\text{cl}(V)))$ for every regular open set V containing $f(x)$.

(5) For every regular open set V containing $f(x)$, there exists a γ-set U containing x such that $f(U) \subseteq V$.

Proof. (1) \Rightarrow (2) Let V be an open set of Y containing $f(x)$. There exists a γ-set U of X containing x such that $f(U) \subseteq \text{int}(\text{cl}(V))$. Since $x \in U \subseteq f^{-1}(\text{int}(\text{cl}(V)))$, by definition of γ-interior, it is $x \in I_\gamma(f^{-1}(\text{int}(\text{cl}(V))))$. (2) \Rightarrow (3) From $\text{int}(\text{cl}(V)) \subseteq \text{sCl}(V)$ and (2), it follows $x \in I_\gamma(f^{-1}(\text{sCl}(V)))$.

(3) \Rightarrow (4) Let V be any regular open set of Y containing $f(x)$. Since $V = \text{int}(\text{cl}(V)) = \text{sCl}(V)$, by (3), we have $x \in I_\gamma(f^{-1}(V))$.

(4) \Rightarrow (5) it is obvious.

(5) \Rightarrow (1) Let V be an open set of Y containing $f(x)$. Then $f(x) \in V \subseteq \text{int}(\text{cl}(V))$. Since $\text{int}(\text{cl}(V))$ is regular open, there exists a γ-set U containing x such that $f(x) \in f(U) \subseteq \text{int}(\text{cl}(V))$. Hence f is almost γ-continuous at x. \square

Theorem 2.4. Let $f : (X, \tau) \to (Y, \mu)$ be a function on topological spaces (X, τ) and (Y, μ). Then the following statements are equivalent:

(1) f is almost γ-continuous.

(2) $f^{-1}(V) \subseteq I_\gamma(f^{-1}(\text{int}(\text{cl}(V))))$ for every open subset V of Y.

(3) $\text{Cl}_\gamma(f^{-1}(\text{cl}(\text{int}(F)))) \subseteq f^{-1}(F)$ for every closed set F of Y.
(4) $\text{Cl}_\gamma(f^{-1}(\text{cl}(\text{int}(\text{cl}(B))))) \subseteq f^{-1}(\text{cl}(B))$ for every set B of Y.
(5) $f^{-1}(\text{int}(B)) \subseteq I_\gamma(f^{-1}(\text{int}(\text{cl}(B))))$ for every set B of Y.
(6) $f^{-1}(V) = I_\gamma(f^{-1}(V))$ for every regular open subset V of Y.

Proof. (1) \Rightarrow (2) Let V be an open set in Y and $x \in f^{-1}(V)$. There exists a γ-set U of X containing x such that $f(U) \subseteq \text{int}(\text{cl}(V))$. Since $x \in U \subseteq f^{-1}(\text{int}(\text{cl}(V)))$, by definition of γ-interior, $x \in I_\gamma(f^{-1}(\text{int}(\text{cl}(V))))$. Hence $f^{-1}(V) \subseteq I_\gamma(f^{-1}(\text{int}(\text{cl}(V))))$.

(2) \Rightarrow (3) Let F be a closed subset in Y. Then $Y - F$ in open in Y. By (2),
$$
\begin{align*}
 f^{-1}(Y - F) & \subseteq I_\gamma(f^{-1}(\text{int}(Y - F))) \\
 & = I_\gamma(f^{-1}(Y - \text{cl}(F))) \\
 & \subseteq X - \text{Cl}_\gamma(f^{-1}(\text{int}(\text{cl}(F)))).
\end{align*}
$$
Thus $\text{Cl}_\gamma(f^{-1}(\text{int}(F)))) \subseteq f^{-1}(F)$.

(3) \Rightarrow (4) Let B be a subset of Y. Since $\text{cl}(B)$ is closed in Y, from (3), it follows $\text{Cl}_\gamma(f^{-1}(\text{int}(\text{cl}(B)))) \subseteq f^{-1}(\text{cl}(B))$.

(4) \Rightarrow (5) Let B be a subset of Y. Then from (4), it follows
$$
\begin{align*}
 f^{-1}(\text{int}(B)) & = X - f^{-1}(\text{cl}(Y - B)) \\
 & \subseteq X - \text{Cl}_\gamma(f^{-1}(\text{int}(\text{cl}(Y - B)))) \\
 & = I_\gamma(f^{-1}(\text{int}(\text{cl}(B))))).
\end{align*}
$$
Thus we get the result.

(5) \Rightarrow (6) Let V be any regular open subset of Y. By (5), $f^{-1}(V) \subseteq I_\gamma(f^{-1}(V))$. Hence $f^{-1}(V) = I_\gamma(f^{-1}(V))$.

(6) \Rightarrow (1) Let $x \in X$ and V any regular open set in Y containing $f(x)$. By (6), it is $x \in f^{-1}(V) = I_\gamma(f^{-1}(V))$. So there exists a γ-set U containing x such that $U \subseteq f^{-1}(V)$. Hence from Theorem 2.3 (5), f is almost γ-continuous.

\[\square \]

Theorem 2.5. Let $f : (X, \tau) \to (Y, \mu)$ be a function on topological spaces (X, τ) and (Y, μ). Then the following statements are equivalent:

(1) f is almost γ-continuous.
(2) $f^{-1}(K) = \text{Cl}_\gamma(f^{-1}(K))$ for every regular closed set K of Y.
(3) $\text{Cl}_\gamma(f^{-1}(G)) \subseteq f^{-1}(\text{cl}(G))$ for every β-open set G of Y.
(4) $\text{Cl}_\gamma(f^{-1}(G)) \subseteq f^{-1}(\text{cl}(G))$ for every semiopen set G of Y.

Proof. (1) \Leftrightarrow (2) By Theorem 2.4 (6), it is obvious.

(2) \Rightarrow (3) Let G be any β-open set. From $\text{cl}(G) \subseteq \text{cl}(\text{int}(\text{cl}(G))) \subseteq \text{cl}(G)$, it follows $\text{cl}(G)$ is regular closed. From (2), it follows
$$
\text{Cl}_\gamma(f^{-1}(G)) \subseteq \text{Cl}_\gamma(f^{-1}(\text{cl}(G))) = f^{-1}(\text{cl}(G)).
$$
Hence $\text{Cl}_\gamma(f^{-1}(G)) \subseteq f^{-1}(\text{cl}(G))$.

(3) \Rightarrow (4) It is obvious since every semiopen set is β-open.
Theorem 2.5, it is obvious.

Thus $Cl_f(f^{-1}(V)) = f^{-1}(V)$. □

Theorem 2.6. Let $f : (X, \tau) \to (Y, \mu)$ be a function on topological spaces (X, τ) and (Y, μ). Then the following statements are equivalent:

1. f is almost γ-continuous.
2. $Cl_f(f^{-1}(G)) \subseteq f^{-1}(cl(G))$ for every preopen set G of Y.
3. $f^{-1}(G) \subseteq I_f(f^{-1}(int(cl(G))))$ for every preopen set G of Y.

Proof. (1) \Leftrightarrow (2) Let G be any preopen set in Y. Then since G is β-open, from Theorem 2.5, it is obvious.

(1) \Rightarrow (3) Let G be any preopen set of Y. Then since $int(cl(G))$ is regular open in Y, from Theorem 2.4 (6), it follows $f^{-1}(G) \subseteq f^{-1}(int(cl(G))) = I_f(f^{-1}(int(cl(G))))$. Hence $f^{-1}(G) \subseteq I_f(f^{-1}(int(cl(G))))$.

(3) \Rightarrow (1) Let G be any regular open set in Y. Then since G is preopen and (3), it follows that $f^{-1}(G) \subseteq I_f(f^{-1}(int(cl(G)))) = I_f(f^{-1}(G))$. Thus $f^{-1}(G) = I_f(f^{-1}(G))$. □

We recall that a subset A in a topological space X is said to be δ-open [12] if for each $x \in A$ there exists a regular open set G such that $x \in G \subseteq A$. A point $x \in X$ is called a δ-cluster point of A if $A \cap int(cl(V)) \neq \emptyset$ for every open set V containing x. The set of all δ-cluster points of A is called δ-closure of A [12] and is denoted by $Cl_\delta(A)$. If $A = Cl_\delta(A)$, then A is called δ-closed. The complement of a δ-closed set is said to be δ-open. It is shown in [12] that $cl(A) = Cl_\delta(A)$ for every open set A and $Cl_\delta(B)$ is closed for every subset B of X. The set $\{x \in X : x \in U \subseteq A$ for some regular open set U of $X\}$ is called the δ-interior of A and is denoted by $I_\delta(A)$.

Theorem 2.7. Let $f : (X, \tau) \to (Y, \mu)$ be a function on topological spaces (X, τ) and (Y, μ). Then the following statements are equivalent:

1. f is almost γ-continuous.
2. $Cl_f(f^{-1}(cl(int(Cl_\delta(B)))))) \subseteq f^{-1}(Cl_\delta(B))$ for every set B of Y.
3. $Cl_f(f^{-1}(cl(int(Cl_\delta(B)))))) \subseteq f^{-1}(Cl_\delta(B))$ for every set B of Y.
4. $Cl_f(f^{-1}(cl(int(Cl_\delta(G)))))) \subseteq f^{-1}(cl(G))$ for every open set G of Y.
5. $Cl_f(f^{-1}(cl(int(Cl_\delta(G)))))) \subseteq f^{-1}(cl(G))$ for every preopen set G of Y.

Proof. (1) \Rightarrow (2) Let B be any subset in Y; then $Cl_\delta(B)$ is closed, by Theorem 2.4 (3), we get the result.

(2) \Rightarrow (3) It is obvious since $cl(B) \subseteq Cl_\delta(B)$ for every subset B of Y.

(3) \Rightarrow (4) It is obvious since $cl(G) = Cl_\delta(G)$ for every open subset G of Y.

(4) \Rightarrow (2) Let V be any regular closed set of Y. Since V is semiopen, by (4), $Cl_f(f^{-1}(V)) \subseteq f^{-1}(cl(V)) = f^{-1}(V)$. Thus $Cl_f(f^{-1}(V)) = f^{-1}(V)$. □
(4) \Rightarrow (5) Let G be a preopen subset of Y. Then $cl(G) = cl(int(cl(G)))$.\linebreak Set $A = int(cl(G))$ then by (4), $Cl_\gamma(f^{-1}(cl(int(cl(A)))) \subseteq f^{-1}(cl(A))$. Since $cl(A) = cl(G)$, we have $Cl_\gamma(f^{-1}(cl(int(cl(G)))) \subseteq f^{-1}(cl(G))$.

(5) \Rightarrow (1) Let A be a regular closed subset of Y. Then $int(A)$ is preopen and from (5), it follows
\[
Cl_\gamma(f^{-1}(A)) = Cl_\gamma(f^{-1}(cl(int(A))))
\]
\[
= Cl_\gamma(f^{-1}(cl(int(cl(A))))))
\]
\[
\subseteq f^{-1}(cl(int(A)))
\]
\[
= f^{-1}(A).
\]

Hence f is almost γ-continuous by Theorem 2.5 (2). \hfill \square

Theorem 2.8. Let $f : (X, \tau) \to (Y, \mu)$ be a function on topological spaces (X, τ) and (Y, μ). Then the following statements are equivalent:

1. f is almost γ-continuous.
2. $f(Cl_\gamma(B)) \subseteq Cl_\delta(f(B))$ for every set B of X.
3. $f^{-1}(F) = Cl_\gamma(f^{-1}(F))$ for every δ-closed set F of Y.
4. $f^{-1}(G) = I_\gamma(f^{-1}(G))$ for every δ-open set G of Y.
5. $f^{-1}(I_\delta(B)) \subseteq I_\gamma(f^{-1}(B))$ for every set B of Y.
6. $Cl_\gamma(f^{-1}(B)) \subseteq f^{-1}(Cl_\delta(B))$ for every set B of Y.

Proof. (1) \Rightarrow (2) Let B be any subset in Y. Let $x \in Cl_\gamma(B)$ and V any open set of Y containing $f(x)$. By almost γ-continuity, there exists a γ-set U containing x such that $f(U) \subseteq int(cl(V))$. Since $x \in Cl_\gamma(B)$, $B \cap U \neq \emptyset$ and so $\emptyset \neq f(U) \cap f(B) \subseteq int(cl(V)) \cap f(B)$. Hence $f(x) \in Cl_\delta(f(B))$.

(2) \Rightarrow (3) Let F be any Cl_δ-closed set of Y. Then from (2), it follows $f(Cl_\gamma(f^{-1}(F))) \subseteq Cl_\delta(f^{-1}(F))) \subseteq Cl_\delta(F) = F$. Hence $f^{-1}(F) = Cl_\gamma(f^{-1}(F))$.

(3) \Rightarrow (4) It is obvious.

(4) \Rightarrow (5) Let B be any subset of Y. Then $I_\delta(B)$ is a δ-open set of Y. From (4), it follows $f^{-1}(I_\delta(B)) = I_\gamma(f^{-1}(I_\delta(B))) \subseteq I_\gamma(f^{-1}(B))$. Hence we have $f^{-1}(I_\delta(B)) \subseteq I_\gamma(f^{-1}(B))$.

(5) \Rightarrow (6) Let B be any subset of Y. From (5), it follows $f^{-1}(Cl_\delta(B)) = X - f^{-1}(I_\delta(Y - B)) \supseteq X - I_\gamma(f^{-1}(Y - B))) = Cl_\gamma(f^{-1}(B))$. Hence we have $Cl_\gamma(f^{-1}(B)) \subseteq f^{-1}(Cl_\delta(B))$.

(6) \Rightarrow (1) Let B be any subset of Y. Since $Cl_\delta(B)$ is closed in Y, by (6), we have
\[
Cl_\gamma(f^{-1}(cl(int(Cl_\delta(B)))))) \subseteq f^{-1}(Cl_\delta(cl(int(Cl_\delta(B))))))
\]
\[
= f^{-1}(cl(int(Cl_\delta(B))))
\]
\[
\subseteq f^{-1}(Cl_\delta(B)).
\]

Hence by Theorem 2.7 (2), f is almost γ-continuous. \hfill \square
Definition 2.9 ([7]). Let \(X \) be a topological space. Then \(X \) is said to be \(\gamma-T_2 \) if for every two distinct points \(x \) and \(y \) in \(X \), there exist two disjoint \(\gamma \)-sets \(U \) and \(V \) such that \(\text{cl}(U) \cap \text{cl}(V) = \emptyset \).

Let \(X \) be a topological space. Then \(X \) is said to be Urysohn if for every two distinct points \(x \) and \(y \) in \(X \), there exist two open sets \(U \) and \(V \) such that \(\text{cl}(U) \cap \text{cl}(V) = \emptyset \).

Theorem 2.10. Let \(f : (X, \tau) \to (Y, \mu) \) be a function on topological spaces \((X, \tau)\) and \((Y, \mu)\). If \(f \) is an almost \(\gamma \)-continuous injection and \(Y \) is Urysohn, then \(X \) is \(\gamma-T_2 \).

Proof. Let \(x_1 \) and \(x_2 \) be two distinct elements in \(X \), then \(f(x_1) \neq f(x_2) \). There exist two open sets \(U \) and \(V \) in \(Y \) containing \(f(x_1) \), \(f(x_2) \), respectively, such that \(\text{cl}(U) \cap \text{cl}(V) = \emptyset \). Since \(f \) is almost \(\gamma \)-continuous, there exist \(\gamma \)-sets \(U_1, V_2 \) containing \(x_1, x_2 \), respectively, such that \(f(U_1) \subseteq \text{int}(\text{cl}(U)), f(V_2) \subseteq \text{int}(\text{cl}(V)) \). From injectivity, it follows \(U_1 \cap V_2 = \emptyset \). Hence \(X \) is \(\gamma-T_2 \).

Definition 2.11 ([7]). Let \(f : (X, \tau) \to (Y, \mu) \) be a function on topological spaces \((X, \tau)\) and \((Y, \mu)\). We call \(f \) has a strongly \(\gamma \)-closed graph if for each \((x, y) \notin G(f)\), there exist a \(\gamma \)-set \(U \) and an open set \(V \) containing \(x \) and \(y \), respectively, such that \((U \times \text{cl}(V)) \cap G(f) = \emptyset\).

Lemma 2.12. Let \(f : (X, \tau) \to (Y, \mu) \) be a function on topological spaces \((X, \tau)\) and \((Y, \mu)\). Then \(f \) has a strongly \(\gamma \)-closed graph if for each \((x, y) \notin G(f)\), there exist a \(\gamma \)-set \(U \) containing and an open set \(V \) containing \(x \) and \(y \), respectively, such that \(f(U) \cap \text{cl}(V) = \emptyset \).

Theorem 2.13. Let \(f : (X, \tau) \to (Y, \mu) \) be a function on topological spaces \((X, \tau)\) and \((Y, \mu)\). If \(f \) is almost \(\gamma \)-continuous and \(Y \) is \(T_2 \), then \(f \) has a strongly \(\gamma \)-closed graph.

Proof. Let \((x, z) \notin G(f)\). Then \(z \neq f(x) \) and since \(Y \) is \(T_2 \), there exist two open sets \(U \) and \(V \) containing \(z \) and \(f(x) \), respectively, such that \(U \cap V = \emptyset \). Since \(f \) is almost \(\gamma \)-continuous, there exists a \(\gamma \)-set \(H \) containing \(x \) such that \(f(H) \subseteq \text{int}(\text{cl}(V)) \). It implies \(f(H) \cap \text{cl}(U) = \emptyset \). Hence by Lemma 2.12, \(f \) has a strongly \(\gamma \)-closed graph.

Theorem 2.14. Let \(f : (X, \tau) \to (Y, \mu) \) be a function on topological spaces \((X, \tau)\) and \((Y, \mu)\). If \(f \) is an almost \(\gamma \)-continuous injection with a strongly \(\gamma \)-closed graph, then \(X \) is \(\gamma-T_2 \).

Proof. Let \(x_1 \) and \(x_2 \) be two distinct elements in \(X \), then \(f(x_1) \neq f(x_2) \). This implies that \((x_1, f(x_2)) \in (X \times Y) - G(f)\). Since \(f \) has a strongly \(\gamma \)-closed graph, by Lemma 2.12, there exist a \(\gamma \)-set \(U \) and an open set \(V \) containing \(x_1 \) and \(f(x_2) \), respectively, such that \(f(U) \cap \text{cl}(V) = \emptyset \). Since \(f \) is almost \(\gamma \)-continuous, there exists a \(\gamma \)-set \(W \) containing \(x_2 \) such that \(f(W) \subseteq \text{int}(\text{cl}(V)) \). It implies \(f(W) \cap f(U) = \emptyset \). Therefore \(W \cap U = \emptyset \) and so \(X \) is a \(\gamma-T_2 \) space.
A topological space \((X, \tau)\) is said to be nearly compact [11] if every collection \(\{U_i : i \in J\}\) of open subsets of \(X\) such that \(A \subset \bigcup \{U_i : i \in J\}\), there exists a finite subset \(J_0\) of \(J\) such that \(X = \bigcup \{\text{int}(\text{cl}(U_i)) : i \in J_0\}\).

Theorem 2.15. Let \(f : (X, \tau) \to (Y, \mu)\) be a function on topological spaces \((X, \tau)\) and \((Y, \mu)\). If \(f\) is a almost \(\gamma\)-continuous surjection and \(X\) is \(\gamma\)-compact, then \(Y\) is nearly compact.

Proof. Let \(\{V_i : i \in J\}\) be an open cover of \(Y\). For each \(x \in X\), there exists \(i(x) \in J\) such that \(f(x) = y \in V_{i(x)}\). Since \(f\) is almost \(\gamma\)-continuous, there exists a \(\gamma\)-set \(U(x)\) containing \(x\) such that \(f(U(x)) \subseteq \text{int}(\text{cl}(V_{i(x)}))\). The family \(\{U(x) : x \in A\}\) is a cover of \(X\) by \(\gamma\)-sets in \(X\). Since \(X\) is \(\gamma\)-compact, there is a finite subcover \(\{U(x_1), U(x_2), \ldots, U(x_n) : x_j \in X, j = 1, 2, \ldots, n\}\) such that \(X \subseteq \bigcup U(x_j)\). Then

\[
Y \subseteq f(\bigcup U(x_j)) = \bigcup f(U(x_j)) \subseteq \bigcup \text{int}(\text{cl}(V_{i(x_j)})�,
\]

\[1 \leq j \leq n.\]

Thus \(Y\) is nearly compact. \(\square\)

Definition 2.16 ([9]). A topological space \((X, \tau)\) is said to be semi-regular if for each open set \(U\) of \(X\) and each point \(x \in U\) there exists a regular open set \(V\) of \(X\) such that \(x \in V \subseteq U\).

Theorem 2.17. Let \(f : (X, \tau) \to (Y, \mu)\) be a function on topological spaces \((X, \tau)\) and \((Y, \mu)\). If \(f\) is almost \(\gamma\)-continuous and \(Y\) is semi-regular, then \(f\) is \(\gamma\)-continuous.

Proof. Let \(x \in X\) and \(U\) be an open set in \(Y\) containing \(f(x)\). By the semi-regularity of \(Y\), there exists a regular open \(V\) of \(Y\) such that \(f(x) \in V \subseteq U\). By the almost \(\gamma\)-continuity, there exists a \(\gamma\)-set \(G\) containing \(x\) such that \(f(G) \subseteq \text{int}(\text{cl}(V)) = V \subseteq U\). Hence \(f\) is \(\gamma\)-continuous. \(\square\)

Definition 2.18. Let \(f : (X, \tau) \to (Y, \mu)\) be a function on topological spaces \((X, \tau)\) and \((Y, \mu)\). Then \(f\) is said to be almost \(\gamma\)-open if \(f(U) \subseteq \text{int}(\text{cl}(f(U)))\), for each \(\gamma\)-set \(U\) of \(X\).

Theorem 2.19. Let \(f : (X, \tau) \to (Y, \mu)\) be a function on topological spaces \((X, \tau)\) and \((Y, \mu)\). If \(f\) is weakly \(\gamma\)-continuous and almost \(\gamma\)-open, then \(f\) is almost \(\gamma\)-continuous.

Proof. Let \(x \in X\) and \(U\) an open set in \(Y\) containing \(f(x)\). By the weakly \(\gamma\)-continuity, there exists a \(\gamma\)-set \(V\) of \(Y\) such that \(f(V) \subseteq \text{cl}(U)\). Since \(f\) is almost \(\gamma\)-open, \(f(V) \subseteq \text{int}(\text{cl}(f(V))) \subseteq \text{int}(\text{cl}(U))\). Thus \(f(V) \subseteq \text{int}(\text{cl}(U))\). \(\square\)

Definition 2.20 ([10]). A topological space \((X, \tau)\) is said to be almost-regular if for each regular closed set \(F\) of \(X\) and each point \(x \in X - F\), there exist disjoint open sets \(U\) and \(V\) of \(X\) such that \(x \in U\) and \(F \subseteq V\).
Theorem 2.21. Let \(f : (X, \tau) \to (Y, \mu) \) be a function on topological spaces \((X, \tau)\) and \((Y, \mu)\). If \(f \) is weakly \(\gamma \)-continuous and \(Y \) is almost-regular, then \(f \) is almost \(\gamma \)-continuous.

Proof. Let \(x \in X \) and \(U \) be open set in \(Y \) containing \(f(x) \). By the almost-regularity of \(Y \), there exists a regular open \(G \) of \(Y \) such that \(f(x) \in G \subseteq \text{cl}(G) \subseteq \text{int}(\text{cl}(U)) \). And since \(G \) is an open set containing \(f(x) \), by the weakly \(\gamma \)-continuity, there exists a \(\gamma \)-set \(V \) containing \(x \) such that \(f(V) \subseteq \text{cl}(G) \). This implies \(f(V) \subseteq \text{int}(\text{cl}(U)) \). Hence \(f \) is almost \(\gamma \)-continuous.

\[\square \]

References

Received: December 27, 2014; Published: April 23, 2015