Abstract

This paper is concerned with the standard finite element approximation of Hamilton-Jacobi-Bellman Equations (HJB) with nonlinear source terms. Under a realistic condition on the nonlinearity, we characterize the discrete solution as a fixed point of a contraction. As a result of this, we also derive a sharp L^∞- error estimate of the approximation.

Mathematics Subject Classification: Primary 35F21; Secondary 35A35, 47N40, 60N30, 65N15

Keywords: HJB equations, Quasi-variational inequalities, Contraction, Fixed point, Finite elements, L^∞ Error Estimates

1. INTRODUCTION

In this paper, we are interested in the finite element approximation of the Hamilton-Jacobi-Bellman equation (HJB) equation with Neuman boundary conditions:

\[
\begin{cases}
\max_{1 \leq i \leq M} (A^i u) = f(u) & \text{in } \Omega \\
\frac{\partial u}{\partial n} = 0 & \text{on } \Gamma
\end{cases}
\]

(1.1)

where Ω is a convex bounded domain of \mathbb{R}^N, with smooth boundary Γ, the A^is are second order uniformly elliptic operators, and f is a Lipschitz nonlinearity.
HJB equations arise in many applications: stochastic control, management and economy, mechanics and optics, etc. They have been the object of intensive study during the last three decades - for a general review of their theory and applications we refer to [1],[2],[3],[4],[5],[6],[7] and the reference therein. On the numerical analysis side, and more specifically error estimates of continuous finite element approximation of HJB equations with source term independent of the solution \(u \), only few significant progresses have been made in the last fifteen years [12],[13].

Existence of a unique solution for (1.1) was discussed in [11]. In this paper we propose to study the conforming finite element approximation of this problem. For that purpose, we introduce an approach based on quasi-variational inequalities and the Banach’s fixed point Theorem. More precisely, under a realistic assumption on the nonlinearity, we characterize the solution of the corresponding discrete HJB equation as a fixed point of a contraction and, as result of this, we derive a sharp \(L^\infty \) error estimate of the approximation.

2. Assumptions and notations

We are given the second order operators

\[
\mathcal{A}^i = \sum_{1 \leq j, k \leq N} a_{jk}^i(x) \frac{\partial^2}{\partial x_j \partial x_k} + \sum_{k=1}^{N} b^i_k(x) \frac{\partial}{\partial x_k} + a_0^i(x)
\]

such that

\[
a_{jk}^i(x), b_k^i(x), a_0^i(x) \in C^2(\bar{\Omega}), \ x \in \bar{\Omega}, \ \forall i = 1, 2, ..., M \quad (2.1)
\]

\[
a_{jk}^i = a_{kj}^i, \ x \in \bar{\Omega}, \ \forall i = 1, 2, ..., M
\]

\[
\sum_{1 \leq j, k \leq N} a_{jk}^i(x)\xi_j \xi_k \geq \nu |\xi|^2, \nu > 0, \ \forall x \in \bar{\Omega}, \ \forall \xi \in \mathbb{R}^N, \ \forall i = 1, 2, ..., M
\]

and

\[
a_0^i(x) \geq \beta > 0, \ \forall i = 1, 2, ..., M \quad (2.2)
\]

where \(\beta \) is a positive constant. Let \((.,.)\) denote the inner product in \(L^2(\Omega)\), and

\[
a^i(u, v) = \int_{\Omega} \left(\sum_{1 \leq j, k \leq N} a_{jk}^i(x) \frac{\partial u}{\partial x_j} \frac{\partial v}{\partial x_k} + \sum_{k=1}^{N} b^i_k(x) \frac{\partial u}{\partial x_k} v + \tilde{a}_0^i(x)uv \right) dx
\]

be the bilinear forms associated with operators \(\mathcal{A}^i \), where

\[
\tilde{a}_0^i(x) = b_k^i(x) + \sum_{k=1}^{N} \frac{\partial a_{jk}^i}{\partial x_k}
\]

We assume that the bilinear forms \(a^i(.,.) \) are coercive, i.e,

\[
a^i(v, v) \geq \delta \|v\|^2_{H^1(\Omega)}, \ \delta > 0
\]
and the nonlinearity $f(.)$ is Lipschitz continuous with Lipschitz constant c satisfying
\[\frac{c}{\beta} < 1, \text{[} \beta \text{ is defined in (2.2) } \] (2.3)

3. THE DISCRETE HJB EQUATION

We assume that Ω is polygonal. Let τ_h be a regular and quasi-uniform triangulation of Ω, and denote by $h > 0$ the mesh size. Let V_h denote the finite element space consisting of piecewise linear functions, $\{ \varphi_l \}; l = 1, ..., m(h)$ be the basis functions of V_h, and A^i be the matrices with generic coefficients
\[(A^i)_{ls} = a^i(\varphi_l, \varphi_s), \ l, s = 1, ..., m(h); \ 1 \leq i \leq M \] (3.1)

The discrete HJB equation associated with (1.1) consists of solving the following problem: find $u_h \in V_h$ solution to
\[\max_{1 \leq i \leq M} (A^i u_h) = F(u_h) \] (3.2)

where $\quad (F(u_h))_l = (f(u_h), \varphi_l), \ l = 1, ..., m(h)$

In the sequel of the paper a discrete maximum principle (d.m.p) assumption will be needed. More precisely, we assume that the matrices A^i, $i = 1, 2, ..., M$, are M-Matrices [14]. Next, we shall characterize the solution of the discrete HJB equation (3.2) as the unique fixed point of a contraction.

3.1. A Contraction associated with HJB equation (3.2). Let us introduce the mapping
\[T_h : L^\infty(\Omega) \to V_h \] (3.3)
\[w \to T_h w = \zeta_h \]

where ζ_h is the unique solution of the following discrete HJB equation:
\[\max_{1 \leq i \leq M} (A^i \zeta_h) = F(w) \] (3.4)

or equivalently
\[\max_{1 \leq i \leq M} (A^i \zeta_h - F(w)) = 0 \] (3.5)

with
\[(F(w))_l = (f(w), \varphi_l), \ l = 1, ..., m(h). \]

As $F(w)$ is independent of ζ_h, thanks to [10], problem (3.4) can be approximated by the following system of QVIs: find $(\zeta^1_h, ..., \zeta^M_h) \in (V_h)^M$ such that
\[\begin{cases} a^i(\zeta^i_h, v - \zeta^i_h) \geq (f(w), v - \zeta^i_h) \forall v \in V_h \\ \zeta^i_h \leq k + \zeta^{i+1}_h, \ v \leq k + \zeta^{i+1}_h \\ \zeta^{M+1}_h = \zeta^1_h \end{cases} \] (3.6)
Theorem 1. [10] Let the d.m.p hold. Then, system (3.6) has a unique solution. Moreover, as $k \to 0$, each component of the solution of this system converges uniformly in $C(\bar{\Omega})$ to the solution ζ_h of (3.4).

Lemma 1. Let the d.m.p hold. Then, we have

$$\max_{1 \leq i \leq M} \| \bar{\zeta}_h - \tilde{\zeta}_i \|_{\infty} \leq \frac{c}{\beta} \| w - \bar{w} \|_{\infty}, \forall w, \bar{w} \in L^\infty(\Omega)$$

Proof. Exactly the same as that of [[11], lemma 1].

Theorem 2. Under conditions of lemma 1, the mapping T_h is a contraction with rate equal to $\rho = c/\beta$. Therefore T_h admits a unique fixed point which coincides with the solution of HJB equation (3.2).

Proof. Exactly the same as that of ([11], Theorem 2).

3.2. L^∞- Error estimate

Next, we shall derive sharp L^∞ convergence order of the approximation. Also, for the rest of the paper, we will adopt C as a constant independent of h. We begin with introducing the following auxiliary HJB equation

$$\max_{1 \leq i \leq M} (A_i \bar{\zeta}_h - F(u)) = 0 \quad (3.7)$$

where $(F(u))_l = (f(u), \varphi_l), l = 1, \ldots, m(h)$, and u is the solution of the HJB equation (1.1). So, we have the following error estimate.

Theorem 3.

$$\| \bar{\zeta}_h - u \|_{\infty} \leq C h^2 | \log h |^2 \quad (3.8)$$

Proof. The proof is immediate, as $\bar{\zeta}_h$ being the discrete counterpart of u, making use of [13], we get (3.8).

Theorem 4. Let u and u_h be the solutions of HJB equations (1.1) and (3.2), respectively. Then

$$\| u - u_h \|_{\infty} \leq C h^2 | \log h |^2$$

Proof. Sine $\bar{\zeta}_h = T_h u$, and $u_h = T_h u_h$, making use of both Theorems 2 and 3, we have

$$\| u - u_h \|_{\infty} \leq \| u - \bar{\zeta}_h \|_{\infty} + \| \bar{\zeta}_h - u_h \|_{\infty} \leq \| u - \bar{\zeta}_h \|_{\infty} + \| T_h u - T_h u_h \|_{\infty} \leq C h^2 | \log h |^2 + \rho \| u - u_h \|_{\infty}$$

Thus

$$\| u - u_h \|_{\infty} \leq \frac{C h^2 | \log h |^2}{1 - \rho}$$
HJB Equations

REFERENCES

Received: February 21, 2015; Published: April 16, 2015