On Continuity of Algebraic Operations in the Gelfand Topologies Generated by Algebras of Analytic Functions on Banach Spaces

Olena Taras, Andriy Zagorodnyuk
Vasyl Stefanyk Precarpathian National University,
57 Shevchenka Str., Ivano-Frankivsk 76000, Ukraine

Abstract
The paper is devoted to study of continuity of the operation of sum (resp. multiplication) on Banach spaces (resp. algebras) in the Gelfand topology generated by some algebras of analytic functions.

Mathematics Subject Classification: 46G20, 46E25

Keywords: algebra of analytic functions on Banach spaces, the Gelfand topology, separating polynomials

1 Introduction
Let X be a real Banach space and X_C be its complexification (see e.g. [3]). A polynomial $P : X \to \mathbb{R}$ is said to be separating if

$$\inf_{||x||=1} |P(x) - P(0)| > 0.$$

An entire (analytic) function $f : X \to \mathbb{R}$ is r-uniformly analytic, $r > 0$, if for every $x \in X$ it is bounded at the open ball $B_r(x)$ centered at x of radius r. Finally, an entire function $f : Y \to \mathbb{R}$ is called separating if for some $\alpha > 0$,

$$\emptyset \notin \{x \in X : f(x) < \alpha\} \subset B_1(0).$$
Separating polynomials were introduced in [5] and investigated in [6]. Separating analytic functions were proposed by Boiso and Hajek in [3]. For a given complex Banach spaces Z we denote by $H_b(Z)$ the Fréchet algebra of all entire functions of bounded type (i.e. bounded on bounded subsets) and by $H_u^r(Z)$ the algebra of all r-uniformly analytic functions on Z. Clearly $H_b(Z) \subset H_u^r(Z)$ and $H_u^r(Z)$ is a topological algebra. By H_b-topology (H_u^r-topology respectively) we mean the Gelfand topology of $H_b(Z)$ ($H_u^r(Z)$ respectively) restricted to Z.

Algebras $H_b(Z)$ and their spectra for various spaces Z were investigated by many authors (see e.g. [1], [2], [9], [7]). In particular in [1] it is shown that the operation of sum in ℓ_2 is discontinuous in $H_b(\ell_2)$-topology. In this paper we investigate conditions of continuity of sum and multiplication in $H_b(Z)$- and $H_u^r(Z)$-topologies. Also we consider the continuity of multiplications in ℓ_{2n} and c_0 in the same topologies. Note that some related results in the case when Z is a Banach algebra was obtained in [8].

2 Main Results

Theorem 2.1 If X admits a separating polynomial P and $\dim X = \infty$, then the operation of sum is discontinuous on X_C in H_b-topology.

Proof. Let (x_{α}) be a net in X_C such that $\|x_{\alpha}\| = 1$ and (x_{α}) is H_b-convergent to 0. Such a net must exist according to [4]. Let P_C be the complexification of P and $\overline{x_{\alpha}}$ is the complex conjugated to x_{α}. Then $\overline{x_{\alpha}}$ is H_b convergent to 0 too and $x_{\alpha} + \overline{x_{\alpha}} \in X$ and $\frac{1}{i}(x_{\alpha} - \overline{x_{\alpha}}) \in X$. Let

$$\text{Re}(x_{\alpha}) = \frac{x_{\alpha} + \overline{x_{\alpha}}}{2} \quad \text{and} \quad \text{Im}(x_{\alpha}) = \frac{x_{\alpha} - \overline{x_{\alpha}}}{2i}.$$

If $\|\text{Re}(x_{\alpha_{\beta}})\| \rightarrow 0$ on a subnet $(x_{\alpha_{\beta}})$, then

$$P_C(x_{\alpha_{\beta}}) \rightarrow P_C(\text{Im}(x_{\alpha_{\beta}})) = P(\text{Im}(x_{\alpha_{\beta}})).$$

If $P(\text{Im}(x_{\alpha_{\beta}})) \rightarrow 0$ then $\|\text{Im}(x_{\alpha_{\beta}})\| \rightarrow 0$ since P is separating. So $\|x_{\alpha_{\beta}}\| \rightarrow 0$ that contradicts our assumption. So there is a subnet $(x_{\alpha_{\beta}})$ such that $\inf_{x_{\alpha_{\beta}}} \|\text{Re}(x_{\alpha_{\beta}})\| > 0$ or $\inf_{x_{\alpha_{\beta}}} \|\text{Im}(x_{\alpha_{\beta}})\| > 0$. Let us suppose that $\inf_{x_{\alpha_{\beta}}} \|\text{Re}(x_{\alpha_{\beta}})\| > 0$. Then

$$P\left(\frac{x_{\alpha_{\beta}} + \overline{x_{\alpha_{\beta}}}}{2}\right) = P(\text{Re}(x_{\alpha_{\beta}})) \not\rightarrow 0$$

while $(x_{\alpha_{\beta}})$ and $(\overline{x_{\alpha_{\beta}}})$ are both H_b-convergent to 0. So the operation of sum is discontinuous. The same work is in the case if $\inf_{x_{\alpha_{\beta}}} \|\text{Im}(x_{\alpha_{\beta}})\| > 0$.

On continuity of algebraic operations

Note that real ℓ_{2n} and L_{2n} admit separating polynomials for all positive integer n, namely $P(x) = ||x||^{2n}$, while c_0 does not admit separating polynomials (see e.g. [3]).

In the case when $X = c_0$ we know that H_b-topology coincides with the weak topology on bounded sets on c_0. So the sum is H_b-topology continuous on c_0.

Let us consider the following analytic function

$$d(x) = \sum_{n=1}^{\infty} x_n^{2(2n-1)}$$

which belongs to $H_u^1(c_0)$ (cf. [3]). Denote by A_0 the minimal Fréchet algebra which contains $H_b(c_0)$ and $d(x)$. Clearly $H_b(c_0) \subset A_0 \subset H_u^1(c_0)$. Let $x_n = e_{2n-1} + ie_{2n}$, where $\{e_n\}$ is the standard basis in c_0. Then $\{x_n\}$ weakly converges to 0 and $d(x_n) = 0$ so $\{x_n\}$ converges to zero in the Gelfand topology of A_0. On the other hand $d(x_n + \overline{x}_n) = d(2e_{2n-1}) = 2^{4(2n-1)-2} \not\to 0$. Hence, we have proven the following theorem.

Theorem 2.2 The operation of sum is discontinuous on c_0 in A_0-topology.

Open question: Does the operation of sum continuous on c_0 in H_u^1-topology?

Let us consider ℓ_{2n} as a Banach algebra with the pointwise multiplication:

$$\sum_{k=1}^{\infty} x_k e_k \sum_{k=1}^{\infty} y_k e_k = \sum_{k=1}^{\infty} x_k y_k e_k,$$

where $\{e_k\}$ is the standard basis in ℓ_{2n}, $n \in \mathbb{N}$.

Theorem 2.3 The operation of multiplication in complex Banach algebra ℓ_{2nc} is discontinuous in H_b-topology.

Proof. Let (x_α) be a net in ℓ_{2nc} such that $||x_\alpha|| = 1$ and $x_\alpha \to 0$ in H_b-topology. Let $P_\mathbb{C}$ be a polynomial on ℓ_{2nc} of the form

$$P_\mathbb{C}(x) = \sum_{k=1}^{\infty} x_k^n.$$

Then

$$P_\mathbb{C}(x_\alpha \overline{x}_\alpha) = \sum_{k=1}^{\infty} (x_{\alpha k} \overline{x}_{\alpha k})^n = \sum_{k=1}^{\infty} |x_{\alpha k}|^{2n} = ||x_\alpha||^{2n} = 1 \not\to 0.$$

By the same way we can prove a similar result on algebra c_0. Let function $d(x)$, sequence $\{x_n\}$ and algebra A_0 be as above. Then

$$d(x_n \overline{x}_n) = d(e_{2n-1}) + d(e_{2n}) = 2 \not\to 0.$$

So we proven the following theorem.

Theorem 2.4 The operation of product is discontinuous on c_0 in A_0-topology.
References

Received: February 17, 2015; Published: March 27, 2015