Approximation to the Dissipative Klein-Gordon Equation

Edilber Almanza-Vasquez

Faculty of Exact and Natural Sciences, University of Cartagena
Campus Piedra de Bolivar, Avenue of Consulado
Cartagena de Indias, Bolivar, Colombia

Ana-Magnolia Marin-Ramirez

Faculty of Exact and Natural Sciences, University of Cartagena
Campus San Pablo, Avenue of Consulado
Cartagena de Indias, Bolivar, Colombia

Ruben-Dario Ortiz-Ortiz

Faculty of Exact and Natural Sciences, University of Cartagena
Campus San Pablo, Avenue of Consulado
Cartagena de Indias, Bolivar, Colombia

Copyright © 2015 Edilber Almanza-Vasquez, Ana-Magnolia Marin-Ramirez and Ruben-Dario Ortiz-Ortiz. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In this paper we show that there exists a solution of the cubic nonlinear Klein-Gordon equation for a small parameter. We construct a traveling wave equation and we show that the corresponding system does not have periodic orbits for some real constants.

Mathematics Subject Classification: 34A34

Keywords: Klein-Gordon equation, Dynamical systems
1 Introduction

It was made some applications to the nonlinear Klein-Gordon equation [1]. It was found an antibound state for the Klein-Gordon equation [2]. In [3] was used a method with Green functions for constructing asymptotics of eigenvalues for the linear Klein-Gordon equation. In [4] was studied the Klein-Gordon equation. In [5] was given an explicit formula for the eigenvalue below the essential spectrum of discrete Klein-Gordon operator. We show there exists a solution for a small parameter and construct a traveling wave equation and a system without periodic orbits.

2 Preliminary Notes

The Klein-Gordon equation

\[u_{tt} - \Delta u + \alpha u_t + \beta u + \gamma u^3 = 0 \] (1)

where \(\alpha, \beta, \gamma \) are real constants.

3 Main Results

These are the main results of the paper.

Theorem 3.1. The solution of (1) is (5) for a small parameter \(\gamma \).

Proof. Taking Fourier transform we have

\[\hat{u}_{tt}(p,t) + (p^2 + \beta) \hat{u}(p,t) + \alpha \hat{u}_t + \gamma \hat{u}^2 * \hat{u} = 0 \] (2)

with solution

\[
\hat{u}(p,t) = e^{\frac{1}{2}t\sqrt{\alpha^2 - 4\beta - 4p^2}} \int_0^t \frac{\gamma f(p,\zeta) e^{\frac{1}{2}t(\sqrt{\alpha^2 - 4\beta - 4p^2} + \alpha \zeta)}}{\sqrt{\alpha^2 - 4\beta - 4p^2}} d\zeta + \\
+ k_1(p) e^{\frac{1}{2}t(-\sqrt{\alpha^2 - 4\beta - 4p^2} - \alpha)} + k_2(p) e^{\frac{1}{2}t(\sqrt{\alpha^2 - 4\beta - 4p^2})} (3)
\]

where \(f = \hat{u}^2 * \hat{u} \). Rewriting this equation we have

\[\hat{u}(p,t) = \gamma T \hat{u}(p,t) + k_1(p) e^{\frac{1}{2}t(-\sqrt{\alpha^2 - 4\beta - 4p^2} - \alpha)} + k_2(p) e^{\frac{1}{2}t(\sqrt{\alpha^2 - 4\beta - 4p^2})} (4)\]
where
\[
\hat{u}(p, t) = e^{\frac{1}{2}t(\sqrt{\alpha^2 - 4\beta - 4p^2} - \alpha)} \int_0^t - \frac{f(p, \zeta)e^{\frac{1}{2}\zeta(\sqrt{\alpha^2 - 4\beta - 4p^2} - \alpha)}}{\sqrt{\alpha^2 - 4\beta - 4p^2}} d\zeta +
\]
\[
e^{\frac{1}{2}t(-\sqrt{\alpha^2 - 4\beta - 4p^2} - \alpha)} \int_0^t f(p, \zeta)e^{\frac{1}{2}\zeta(\sqrt{\alpha^2 - 4\beta - 4p^2} + \alpha)} \sqrt{\alpha^2 - 4\beta - 4p^2} d\zeta +
\]
\[
e^{\frac{1}{2}t(\sqrt{\alpha^2 - 4\beta - 4p^2} - \alpha)} \int_0^t - \frac{f(p, \zeta)e^{\frac{1}{2}\zeta(\sqrt{\alpha^2 - 4\beta - 4p^2} + \alpha)}}{\sqrt{\alpha^2 - 4\beta - 4p^2}} d\zeta +
\]
\[
e^{\frac{1}{2}t(-\sqrt{\alpha^2 - 4\beta - 4p^2} + \alpha)} \int_0^t f(p, \zeta)e^{\frac{1}{2}\zeta(\sqrt{\alpha^2 - 4\beta - 4p^2} - \alpha)} \sqrt{\alpha^2 - 4\beta - 4p^2} d\zeta.
\]

Then by Neumann series
\[
\hat{u}(p, t) = \sum_{n=0}^{\infty} \gamma^n T^n(k_1(p)e^{\frac{1}{2}t(\sqrt{\alpha^2 - 4\beta - 4p^2} - \alpha)} + k_2(p)e^{\frac{1}{2}t(\sqrt{\alpha^2 - 4\beta - 4p^2} + \alpha)})
\]
(5)

\[
\square
\]

4 Traveling wave solution

If the Klein-Gordon equation has a traveling wave solution of the form

\[
u(x, y, t) = u(\xi), \quad \xi = kx + ly - \lambda t
\]

where \(k, l, \lambda\) are real constants. Substituting (6) into (1) we obtain

\[
u_{\xi\xi} - \frac{\alpha\lambda}{\lambda^2 - k^2 - l^2} u_{\xi} + \frac{\beta}{\lambda^2 - k^2 - l^2} u + \frac{\gamma}{\lambda^2 - k^2 - l^2} u^3 = 0
\]

(7)

5 Dynamical system

Taking \(u_\xi = y\) and \(u = x\) we have the following system

\[
\begin{cases}
 x_\xi = y \\
 y_\xi = \sigma y - \mu x - \nu x^3
\end{cases}
\]

where \(\sigma = \frac{\alpha\lambda}{\lambda^2 - k^2 - l^2} < 0, \quad \mu = \frac{\beta}{\lambda^2 - k^2 - l^2} > 0, \quad \nu = \frac{\gamma}{\lambda^2 - k^2 - l^2} > 0\). The Hamiltonian system

\[
\begin{cases}
 x_\xi = -H_y \\
 y_\xi = H_x
\end{cases}
\]

(9)

has this solution \(H = -y^2 + \sigma xy - \mu \frac{x^2}{2} - \nu \frac{x^4}{4} = K\) for some constant \(K\).

For the next results we are going to use the Poincaré-Bendixson theorem and the following quasi-differential equation

\[
f_1 \frac{\partial h}{\partial x_1} + f_2 \frac{\partial h}{\partial x_2} = h \left[C(x_1, x_2) - \left(\frac{\partial f_1}{\partial x_1} + \frac{\partial f_2}{\partial x_2} \right) \right].
\]

(10)
Theorem 5.1. The dynamical system (8) can be generalized to (11) and both do not have periodic orbits for $y + \sigma > 0$ and $x \in \mathbb{R}$.

Proof. Taking $K = 0$ and $x_\xi = y$, and supposing that $\frac{\partial h}{\partial x_2} = 0$, $C(x_1, x_2) = \sigma + y > 0$. Using (10) we have $y \frac{\partial h}{\partial x_1} = h [C(x_1, x_2) - \sigma]$ and $\frac{\partial h}{\partial x_1} = h$. So $h = e^x$. If $\frac{\partial f_2}{\partial x_2} = \sigma$ then $f_2 = \sigma y + C_2(x)$. From equation (10), we get the ordinary differential equation $f_1 = \sigma + y - (\frac{\partial f_1}{\partial x_1} + \sigma)$. Then its solution is $f_1 = y + c_1(y)e^{-x}$. We obtain the generalized dynamical system

$$\begin{aligned}
&x_1 = y + c_1(y)e^{-x} \\
x_2 = \sigma y + C_2(x).
\end{aligned}$$

(11)

Taking $\nu = 1$ into (8) and using the following Poincaré transformation

$$\frac{dt}{z^2} = d\tau, \quad x_1 = \frac{1}{z}, \quad x_2 = \frac{u}{z}, \quad (z \neq 0)$$

we obtain

$$\begin{aligned}
u \tau &= -u^2z^2 - \mu z^2 - 1 + \sigma uz^2 \\
\tau &= -uz^3.
\end{aligned}$$

(12)

Theorem 5.2. The system (13) can be generalized to (14) and both do not have periodic orbits for $x_2 > 0$.

Proof. Taking $x_1 = u$, $x_2 = z$. Suppose $\frac{\partial f_1}{\partial x_1} = -2x_1x_2^2 + \sigma x_2^2$, then $f_1 = -x_1^2x_2^2 + \sigma x_2^3x_1 + C_1(x_2)$. From (10), and taking $C = \sigma x_2^3 < 0$ and $h = \frac{1}{x_2^3}$ with $x_2 > 0$. Then $\frac{\partial h}{\partial x_2} = -\frac{5}{x_2^4}$ and we have an ordinary differential equation

$$2x_1x_2^3 - x_2 \frac{\partial f_2}{\partial x_2} = -5f_2.$$

Then its solution is

$$f_2 = C_2(x_1)x_2^5 - x_1x_2^3$$

Also, it holds

$$\frac{\partial}{\partial x_1}(f_1h) + \frac{\partial}{\partial x_2}(f_2h) = \frac{\sigma}{x_2^3} > 0.$$

We have the following generalized dynamical system

$$\begin{aligned}
x_1 &= -x_1^2x_2^2 + \sigma x_2^3x_1 + C_1(x_2) \\
x_2 &= C_2(x_1)x_2^5 - x_1x_2^3.
\end{aligned}$$

(14)

Acknowledgements. The authors express their deep gratitude to Universidad de Cartagena for partial financial support.
References

Received: February 21, 2015; Published: March 27, 2015