A New Class of k-Equitable Trees

G. Sethuraman

Department of Mathematics, Anna University
Chennai - 600 025, India

N. Shanmugapriya

Department of Mathematics, Valliammai Engineering College
Chennai - 603 203, India

Copyright © 2014 G. Sethuraman and N. Shanmugapriya. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Cahit introduced k-equitable labeling as a generalization of graceful labeling. For any graph $G(V,E)$ and any positive integer k, a function f defined from the vertex set of G to $\{0,1,2,\ldots,k-1\}$ is called k-equitable if every edge uv is assigned the label $|f(u) - f(v)|$, then the number of vertices labeled i and the number of vertices labeled j differ by at most 1 and the number of edges labeled i and the number of edges labeled j differ by at most 1, for $0 \leq i < j \leq k-1$. In this paper we show that a class of bamboo trees are k-equitable.

Mathematics Subject Classification: 05C78

Keywords: k-equitable labeling, k-equitable trees, Bamboo trees

1 Introduction

At the Smolenice Symposium in 1963, Ringel [6] conjectured that K_{2m+1}, the complete graph on $2m+1$ vertices can be decomposed into $2m+1$ isomorphic copies of a given tree with m edges. In an attempt to solve Ringel’s conjecture,
in 1967 Rosa [7] introduced an hierarchical series of labelings called ρ, σ, β and α-valuations and used these valuations for a cyclic decomposition of K_{2m+1} into trees with m edges. Later Golomb [4] called β-valuation as graceful.

A function f is called a graceful labeling of G with m edges, if f is an injection from the vertices of G to the set $\{0, 1, 2, \ldots, m\}$ such that when each edge uv is assigned the label $|f(u) - f(v)|$ then the resulting edge labels are distinct.

In 1990, Cahit [3] proposed the idea of distributing the vertex and edge labels among $\{0, 1, 2, \ldots, k-1\}$ as evenly as possible to obtain a generalization of graceful labeling as follows.

A vertex labeling of a graph $G = (V, E)$ is a function $f : V(G) \rightarrow \{0, 1, 2, \ldots, k-1\}$ and the value of $f(u)$ is called the label of the vertex u. For the vertex labeling function $f : V(G) \rightarrow \{0, 1, 2, \ldots, k-1\}$, the induced edge function $f^* : E(G) \rightarrow \{0, 1, 2, \ldots, k-1\}$ is defined as $f^*(e = uv) = |f(u) - f(v)|$. Such a labeling f is called k-equitable labeling of G if $|v_f(i) - v_f(j)| \leq 1$ and $|e_f(i) - e_f(j)| \leq 1$, $0 \leq i < j \leq k-1$, where $v_f(i)$ and $e_f(i)$ denote the number of vertices and the number of edges having label i under f and f^* respectively. A graph which admits k-equitable labeling is called k-equitable graph. Cahit [1] proved that every tree is 2-equitable. Speyer and Szaniszlo [9] proved that every tree is 3-equitable. Szaniszlo [8] proved that every path is k-equitable and every star is k-equitable. For an exhaustive survey on k-equitable graph refer the excellent dynamic survey by Gallian [5].

In 1990, Cahit [2] conjectured that every tree is k-equitable for any $k \geq 2$. This conjecture is equivalent to the celebrated graceful tree conjecture when k is the number of vertices of the tree. One possible approach to prove the popular graceful tree conjecture is to prove the more general k-equitable tree conjecture. Inspired by this general approach, in this paper we show that a new class of trees called bamboo trees are k-equitable for $k \geq 3$, where the bamboo tree is defined below.

A tree is called bamboo tree if it is obtained from r stars $S_{n_1}, S_{n_2}, \ldots, S_{n_r}$, where the size n_i of each star S_{n_i}, $1 \leq i \leq r$ is an arbitrary positive integer, by joining the center of each of the stars S_{n_i} to a new vertex v called the root, by a path P_i of length ℓ_i (where the length ℓ_i may vary for each path P_i), $1 \leq i \leq r$ and it is denoted by $B(n_1, n_2, \ldots, n_r, \ell_1, \ell_2, \ldots, \ell_r)$.

2 Main Result

In this section we prove our main result in Theorem 2.1.

Theorem 2.1. For $k \geq 3$, the bamboo tree $B(n_1, n_2, \ldots, n_r, \ell_1, \ell_2, \ldots, \ell_r)$ with $\ell_i = m_i k$, for i, $1 \leq i \leq r$, such that either all the m_i’s are even positive
A new class of k-equitable trees

Integers or all the m_i's are odd positive integers is k-equitable.

Proof. Consider the bamboo tree $B(n_1, n_2, \ldots, n_r, \ell_1, \ell_2, \ldots, \ell_r)$ with $\ell_i = m_i k$ such that either all the m_i's are even positive integers or all the m_i's are odd positive integers, for i, $1 \leq i \leq r$.

By the definition, $B(n_1, n_2, \ldots, n_r, \ell_1, \ell_2, \ldots, \ell_r)$ is obtained from r stars $S_{n_1}, S_{n_2}, \ldots, S_{n_r}$, where n_i, the size of the star S_{n_i}, is an arbitrary positive integer, for i, $1 \leq i \leq r$ and the center of each star S_{n_i} is joined to the root v by a path P_i of length $\ell_i = m_i k$. Thus $B(n_1, n_2, \ldots, n_r, \ell_1, \ell_2, \ldots, \ell_r)$ has r branches at the root vertex v and each i^{th} branch is of depth $\ell_i + 1 = m_i k + 1$ having $n_i \geq 1$ leaves for $1 \leq i \leq r$.

To label the vertices of $B(n_1, n_2, \ldots, n_r, \ell_1, \ell_2, \ldots, \ell_r)$ first we label the vertices of the path P_i in the i^{th} branch for each i, $1 \leq i \leq r$. Then we label all the leaves of $B(n_1, n_2, \ldots, n_r, \ell_1, \ell_2, \ldots, \ell_r)$.

The i^{th} branch of $B(n_1, n_2, \ldots, n_r, \ell_1, \ell_2, \ldots, \ell_r)$ is shown in Figure 1.

![Figure 1: i^{th} branch of B(n_1, n_2, ..., n_r, \ell_1, \ell_2, ..., \ell_r)](image)

Step 1. Labeling of the vertices of the path P_i of the i^{th} branch, for i, $1 \leq i \leq r$.

We label the vertices of the path P_i in two cases depending on all the m_i's are even positive integers or all the m_i's are odd positive integers, where $m_i k$ is the length of the path P_i, for i, $1 \leq i \leq r$.

Case 1. All the m_i's are even positive integers, for i, $1 \leq i \leq r$, where $m_i k$ is the length of the path P_i.
Assign \((k-1)\) to the root of \(B(n_1, n_2, \ldots, n_r, \ell_1, \ell_2, \ldots, \ell_r)\). For \(i, 1 \leq i \leq r\), consider the path \(P_i - v\) of the \(i^{th}\) branch of \(B(n_1, n_2, \ldots, n_r, \ell_1, \ell_2, \ldots, \ell_r)\). Observe that the path \(P_i - v\) has \(\ell_i = m_ik\) vertices. Since \(m_i\) is even we can write \(\ell_i = \left(\frac{m_i}{2}\right)2k\). Thus, we consider the path \(P_i - v\) as union of \(\frac{m_i}{2}\) subpaths \(P_{is}\) and each subpath \(P_{is}\) has \(2k\) vertices, for \(s, 1 \leq s \leq \frac{m_i}{2}\) as shown in Figure 2.

Figure 2: The subpath decomposition \(P_{is}\), for \(s, 1 \leq s \leq \frac{m_i}{2}\), of the path \(P_i\) of length \(\ell_i = m_i k\) in the \(i^{th}\) branch when \(m_i\) is even.

Now for each \(s, 1 \leq s \leq \frac{m_i}{2}\), we label the \(2k\) vertices of the subpath \(P_{is}\) as shown in Figure 3(a) and Figure 3(b).
A new class of k-equitable trees

Figure 3: (a) Labeling of the $2k$ vertices of the subpath P_{is}, for $s, 1 \leq s \leq \frac{m}{2}$ of the path P_i of length $\ell_i = m_i k$ when k is even

Figure 3(b) Labeling of the $2k$ vertices of the subpath P_{is}, for $s, 1 \leq s \leq \frac{m}{2}$ of the path P_i of length $\ell_i = m_i k$ when k is odd.

From Figure 3(a) and Figure 3(b), we observe that each of the labels $0, 1, \ldots, k - 1$ is assigned to exactly two vertices of P_{is} and each of the labels $1, 2, \ldots, k - 1$ is obtained exactly at two edges of P_{is}, and the label zero is obtained in the middle edge of P_{is}, for $s, 1 \leq s \leq \frac{m}{2}$.

Also observe that the edge connecting the subpaths P_{is} and P_{is+1}, for $s, 1 \leq s \leq (\frac{m}{2}) - 1$ always gets the label 0.

Thus the path $P_i - v$ contains m_i sets of k vertices with labels $0, 1, 2, \ldots, k - 1$ and consequently $m_i k$ edges of the path P_i gets m_i sets of the labels $0, 1, 2, \ldots, k - 1$.

Case 2. All the m_i’s are odd positive integers, for $i, 1 \leq i \leq r$, where $m_i k$ is the length of the path P_i.
Figure 4: The subpath decomposition $P_{i,s}$, for $s, 1 ≤ s ≤ \frac{m_i+1}{2}$ of the path P_i of length $\ell_i = m_i k$ in the i^{th} branch when m_i is odd.
A new class of k-equitable trees

Figure 5: (a) For the case m_i is odd, labeling of the k vertices of the last subpath $P_{i\frac{m_i+1}{2}}$ of the path P_i of length $\ell_i = m_i k$ in the i^{th} branch when k is even

Figure 5(b) For the case m_i is odd, labeling of the k vertices of the last subpath $P_{i\frac{m_i+1}{2}}$ of the path P_i of length $\ell_i = m_i k$ in the i^{th} branch when k is odd

Assign $\left\lfloor \frac{k-1}{2} \right\rfloor$ to the root of $B(n_1, n_2, \ldots, n_r, \ell_1, \ell_2, \ldots, \ell_r)$. For $i, 1 \leq i \leq r$, consider the path $P_{i} - v$ of the i^{th} branch of $B(n_1, n_2, \ldots, n_r, \ell_1, \ell_2, \ldots, \ell_r)$. Observe that the path $P_{i} - v$ has $\ell_i = m_i k$ vertices. Since m_i is odd we can write $\ell_i = (\frac{m_i-1}{2}) 2k + k$. Thus, we consider the path $P_{i} - v$ as union of $\frac{m_i-1}{2}$ subpaths P_{i_s}, where each subpath P_{i_s} has $2k$ vertices, for $s, 1 \leq s \leq \frac{m_i-1}{2}$ and the last subpath $P_{i\frac{m_i+1}{2}}$ has k vertices as shown in Figure 4.

For $s, 1 \leq s \leq \frac{m_i-1}{2}$, we give the labels to the $2k$ vertices of the subpath P_{i_s} as labeled in Figure 3(a) and Figure 3(b). Then we label the k vertices of the last subpath $P_{i\frac{m_i+1}{2}}$ as shown in Figure 5(a) and Figure 5(b).

From Figure 5(a) and Figure 5(b) we observe that each of the labels $0, 1, 2, \ldots, k - 1$ is assigned exactly once to the vertices of the last subpath $P_{i\frac{m_i+1}{2}}$ and each of the labels $1, 2, \ldots, k - 1$ is obtained exactly once to the edges of $P_{i\frac{m_i+1}{2}}$ and the edge label 0 is obtained at the edge connecting the root and the subpath $P_{i\frac{m_i+1}{2}}$.

It follows from the above observation and from Case 1, the path $P_{i} - v$ contains m_i set of k vertices with labels $0, 1, 2, \ldots, k - 1$ and consequently $m_i k$ edges of the path P_i gets m_i sets of the labels $0, 1, 2, \ldots, k - 1$.

\textbf{Figure 5:} (a) For the case m_i is odd, labeling of the k vertices of the last subpath $P_{i\frac{m_i+1}{2}}$ of the path P_i of length $\ell_i = m_i k$ in the i^{th} branch when k is even

\textbf{Figure 5(b) For the case m_i is odd, labeling of the k vertices of the last subpath $P_{i\frac{m_i+1}{2}}$ of the path P_i of length $\ell_i = m_i k$ in the i^{th} branch when k is odd}
Step 2. Labeling of all the leaves of $B(n_1, n_2, \ldots, n_r, \ell_1, \ell_2, \ldots, \ell_r)$

Let A be the set of all leaves of $B(n_1, n_2, \ldots, n_r, \ell_1, \ell_2, \ldots, \ell_r)$. Then observe that $|A| = n_1 + n_2 + \cdots + n_r = t$. Let $t = ak + b$, where a and b are positive integers and $0 \leq b \leq k - 1$. For the convenience we consider the t leaves of $B(n_1, n_2, \ldots, n_r, \ell_1, \ell_2, \ldots, \ell_r)$ as an ordered set of k leaves and one more set of b leaves from left to right. For i, $1 \leq i \leq a$, let A_i denote the i^{th} set of k leaves from left to right and A_{a+1} denote the last set of b leaves. For each i, $1 \leq i \leq a$ label the k leaves of A_i as $0, 1, 2, \ldots, k - 1$.

Finally, to label the b leaves of A_{a+1} we consider two cases,

Case I. If the label of the root is $k - 1$

Then label the b leaves of A_{a+1} as $0, 1, 2, \ldots, b - 1$.

From Case I, we observe that the number of leaves labeled with i and the number of leaves labeled with j are equal if $i, j \in \{0, 1, 2, \ldots, b - 1\}$ or $i, j \in \{b, \ldots, k - 1\}$ and the number of leaves labeled with i and the number of leaves labeled with j differ by at most 1 if $i \in \{0, 1, 2, \ldots, b - 1\}$ and $j \in \{b, \ldots, k - 1\}$.

Also observe that the number of pendant edges (the edges incident with the center of the stars) labeled with i and the number of pendant edges labeled with j are equal if $i, j \in \{0, 1, 2, \ldots, b - 1\}$ or $i, j \in \{b, \ldots, k - 1\}$ and the number of pendant edges labeled with i and the number of pendant edges labeled with j differ by at most 1 if $i \in \{0, 1, 2, \ldots, b - 1\}$ and $j \in \{b, \ldots, k - 1\}$.

Case II. If the label of the root is $\lfloor \frac{k-1}{2} \rfloor$

Then we label the b leaves in A_{a+1} as $\{0, \ldots, \lfloor \frac{k-1}{2} \rfloor - 1, \lfloor \frac{k-1}{2} \rfloor + 1, \ldots, b\}$ if $\lfloor \frac{k-1}{2} \rfloor < b$ or else $\{0, 1, \ldots, b - 1\}$ if $\lfloor \frac{k-1}{2} \rfloor \geq b$.

Case IIa. When $\lfloor \frac{k-1}{2} \rfloor < b$.

Then we have the number of leaves labeled with i and the number of leaves labeled with j are equal if $i, j \in \{0, \ldots, \lfloor \frac{k-1}{2} \rfloor - 1, \lfloor \frac{k-1}{2} \rfloor + 1, \ldots, b\}$ or $i, j \in \{\lfloor \frac{k-1}{2} \rfloor, b + 1, \ldots, k - 1\}$ and the number of leaves labeled with i and the number of leaves labeled with j differ by at most 1 if $i \in \{0, \ldots, \lfloor \frac{k-1}{2} \rfloor - 1, \lfloor \frac{k-1}{2} \rfloor + 1, \ldots, b\}$ and $j \in \{\lfloor \frac{k-1}{2} \rfloor, b + 1, \ldots, k - 1\}$.

The induced edge labels of the pendant edges will depend on k is odd or k is even.

When k is odd.

Then the number of pendant edges labeled with i and the number of pendant edges labeled with j are equal if $i, j \in \{k - 1, k - 2, \ldots, \frac{k+1}{2}, \frac{k-1}{2}, \ldots, \}$,
\(k - b - 1\) or \(i, j \in \{ \frac{k-1}{2}, k - b - 2, k - b - 3, \ldots, 0\}\) and the number of pendant edges labeled with \(i\) and the number of pendant edges labeled with \(j\) differ by at most 1 if \(i \in \{ k - 1, k - 2, \ldots, \frac{k+1}{2}, \frac{k-2}{2}, \ldots, k - b - 1\}\) and \(j \in \{ \frac{k-1}{2}, k - b - 2, k - b - 3, \ldots, 0\}\).

When \(k\) is even.

Then the number of pendant edges labeled with \(i\) and the number of pendant edges labeled with \(j\) are equal if \(i, j \in \{ k - 1, k - 2, \ldots, \frac{k+1}{2}, \frac{k-2}{2}, \ldots, k - b - 1\}\) or \(i, j \in \{ \frac{k}{2}, k - b - 2, k - b - 3, \ldots, 0\}\) and the number of pendant edges labeled with \(i\) and the number of pendant edges labeled with \(j\) differ by at most 1 if \(i \in \{ k - 1, k - 2, \ldots, \frac{k+2}{2}, \frac{k-2}{2}, \ldots, k - b - 1\}\) and \(j \in \{ \frac{k}{2}, k - b - 2, k - b - 3, \ldots, 0\}\).

Case IIb. When \(\left[\frac{k-1}{2} \right] \geq b\).

Then we have the number of leaves labeled with \(i\) and the number of leaves labeled with \(j\) are equal if \(i, j \in \{ 0, 1, \ldots, b - 1\}\) or \(i, j \in \{ b, \ldots, k - 1\}\) and the number of leaves labeled with \(i\) and the number of leaves labeled with \(j\) differ by at most 1 if \(i \in \{ 0, 1, \ldots, b - 1\}\) and \(j \in \{ b, \ldots, k - 1\}\).

Similarly the number of pendant edges labeled with \(i\) and the number of pendant edges labeled with \(j\) are equal if \(i, j \in \{ k - 1, k - 2, \ldots, k - b\}\) or \(i, j \in \{ k - b - 1, k - b - 2, \ldots, 0\}\) and the number of pendant edges labeled with \(i\) and the number of pendant edges labeled with \(j\) differ by at most 1 if \(i \in \{ k - 1, k - 2, \ldots, k - b\}\) and \(j \in \{ k - b - 1, k - b - 2, \ldots, 0\}\).

From Step 1 and Step 2 we observe that the number of vertices of \(B(n_1, n_2, \ldots, n_r, \ell_1, \ell_2, \ldots, \ell_r)\) labeled with \(i\) and the number of vertices labeled with \(j\) are equal or differ by at most 1. Similarly the number of edges of \(B(n_1, n_2, \ldots, n_r, \ell_1, \ell_2, \ldots, \ell_r)\) labeled with \(i\) and the number of edges labeled with \(j\) are equal or differ by at most 1.

Hence the bamboo tree \(B(n_1, n_2, \ldots, n_r, \ell_1, \ell_2, \ldots, \ell_r)\) is \(k\)-equitable. \(\square\)

References

Received: December 15, 2014; Published: March 23, 2015