Separation Axioms by Δ^*-Closed Sets
in Topological Spaces

K. Meena

Department of Mathematics
Kumaraguru College of Technology
Coimbatore-641049, TamilNadu, India

K. Sivakamasundari

Department of Mathematics
Avinashilingam Institute for Home Science and
Higher Education for Women University
Coimbatore-641043, TamilNadu, India

Abstract

In this paper the separation axioms by Δ^*-closed sets namely $\Delta^{*T\delta}$-space, $\Delta^{*T\delta^*}$-space, $g\delta^{T\Delta^*}$-space and $\delta g^{#T\Delta^*}$-space are introduced and their properties are discussed.

Mathematics Subject Classification: 54C10, 54D10

Keywords: δg^*-closed sets, $g\delta$-closed sets, $\delta g^#$-closed sets and Δ^*-closed sets

1 Introduction

Julian Dontchev [1] offered a class of generalized closed sets called \(\delta g \)-closed sets in 1996. R.Sudha and K.Sivakamasundari [10] established \(\delta g \)-\(* \)-closed sets in 2012. A new class of generalised closed sets called \(\Delta ^* \)-closed sets in topological spaces using \(\delta g \)-closed sets was introduced in 2014 by K.Meena and K.Sivakamasundari [7]. The objective of this paper is to contribute the separation axioms by \(\Delta ^* \)-closed sets. Also we study their basic properties. Throughout this paper \((X, \tau)\) represents a non empty topological space on which no separation axioms are mentioned unless otherwise specified.

In the previous paper [7] of K.Meena and K.Sivakamasundari, \(\Delta ^* \)-closed sets were denoted by \(\delta (\delta g)^* \)-closed sets.

2 Preliminaries

Definition 2.1 A subset \(A \) of a topological space \((X, \tau)\) is called \(\Delta ^* \)-closed set [7] if \(\delta cl (A) \subseteq U \) whenever \(A \subseteq U \), \(U \) is \(\delta g \)-open in \((X, \tau)\). The class of all \(\Delta ^* \)-closed sets of \((X, \tau)\) is denoted by \(\Delta ^* C(X, \tau) \).

Definition 2.2 The closure operator of \(\Delta ^* \)-closed set is defined as \(\Delta ^* cl (A) = \cap \{ F \subseteq X : A \subseteq F \text{ and } F \text{ is } \Delta ^* \text{-closed in } (X, \tau) \}\).[8]

Definition 2.3 For any subset \(U \) of \((X, \tau)\), a new class of sets denoted by \(\Delta ^* \tau ^# \) is defined using \(\Delta ^* \) closure operator as \(\Delta ^* \tau ^# = \{ U : \Delta ^* cl (X - U) = X - U \} \).[8]

Definition 2.4 A topological space \((X, \tau)\) is said to be a

1) \(T_{1/2} \)-space if every \(g \)-closed subset of \((X, \tau)\) is closed in \((X, \tau)\).[6]
2) \(T_{3/4} \)-space if every \(\delta g \)-closed subset of \((X, \tau)\) is \(\delta \)-closed in \((X, \tau)\).[1]
3) \(T_3 \)-space if every \(g s \)-closed subset of \((X, \tau)\) is closed in \((X, \tau)\).[3]
4) \(T_c \)-space if every \(g s \)-closed subset of \((X, \tau)\) is \(g ^* \)-closed in \((X, \tau)\).[13]
5) \(T_g \)-space if every \(g s \)-closed subset of \((X, \tau)\) is \(g \)-closed in \((X, \tau)\).[3]
6) \(\alpha T_b \)-space if every \(\alpha g \)-closed subset of \((X, \tau)\) is closed in \((X, \tau)\).[4]
7) \(\alpha T_c \)-space if every \(\alpha g \)-closed subset of \((X, \tau)\) is \(g ^* \)-closed in \((X, \tau)\).[13]
8) \(* T_{1/2} \)-space if every \(g \)-closed subset of \((X, \tau)\) is \(g ^* \)-closed in \((X, \tau)\).[13]
9) \(T_{\delta } \)-space if every \(g \delta \)-closed subset of \((X, \tau)\) is \(\delta \)-closed in \((X, \tau)\).[2]
10) \(\delta g ^{T_3} \)-space if every \(\delta g ^* \)-closed subset of \((X, \tau)\) is \(\delta \)-closed in \((X, \tau)\).[11]
11) \(\delta g ^{T_{3/2} \delta ^*} \)-space if every \(\delta g \)-closed subset of \((X, \tau)\) is \(\delta g ^* \)-closed in \((X, \tau)\).[11]
12) \(g s ^{T_{3/2} \delta ^*} \)-space if every \(g s \)-closed subset of \((X, \tau)\) is \(\delta g ^* \)-closed in \((X, \tau)\).[11]
13) \(g \delta ^{T_{3/2} \delta ^*} \)-space if every \(g \delta \)-closed subset of \((X, \tau)\) is \(\delta g ^* \)-closed in \((X, \tau)\).[11]
14) \(\alpha g ^{T_{3/2} \delta ^*} \)-space if every \(\alpha g \)-closed subset of \((X, \tau)\) is \(\delta g ^* \)-closed in \((X, \tau)\).[11]
15) \(\delta g ^{T_{3/2} \delta ^*} \)-space if every \(\delta g \)-closed subset of \((X, \tau)\) is \(\delta g ^* \)-closed in \((X, \tau)\).[11]
16) \(\alpha \delta g ^{T_{3/2} \delta ^*} \)-space if every \(\alpha g \)-closed subset of \((X, \tau)\) is \(\delta g ^* \)-closed in \((X, \tau)\).[11]
3 Separation Axioms

Definition 3.1 A space \((X, \tau)\) is said to be a
1) \(\Delta^*{T_\delta}\)-space if every \(\Delta^*\)-closed subset of \((X, \tau)\) is \(\delta\)-closed in \((X, \tau)\).
2) \(\Delta^*{T_{\delta^*}}\)-space if every \(\Delta^*\)-closed subset of \((X, \tau)\) is \(\delta^*\)-closed in \((X, \tau)\).
3) \(g\delta{T_{\Delta^*}}\)-space if every \(g\delta\)-closed subset of \((X, \tau)\) is \(\Delta^*\)-closed in \((X, \tau)\).
4) \(\delta^*{g}\#T_{\Delta^*}\)-space if every \(\delta^*g\#\)-closed subset of \((X, \tau)\) is \(\Delta^*\)-closed in \((X, \tau)\).

\(\Delta^*{T_\delta}\)-space

Proposition 3.2 If \((X, \tau)\) is a \(\Delta^*{T_\delta}\)-space then \(\Delta^*cl(B) = \delta cl(B)\) for each subset \(B\) of \(X\).

Proof: Let \((X, \tau)\) be a \(\Delta^*{T_\delta}\)-space. We have already proved that every \(\delta\)-closed set is \(\Delta^*\)-closed set (By Proposition 3.2[8]). Moreover \((X, \tau)\) is a \(\Delta^*{T_\delta}\)-space. Therefore \(\Delta^*CL(X, \tau) = \delta CL(X, \tau)\). Hence by definition of \(\delta\)-closure and \(\Delta^*\)-closure, \(\Delta^*cl(B) = \delta cl(B)\) for each subset \(B\) of \(X\).

Theorem 3.3 The following statements are equivalent for a space \((X, \tau)\).

a) \((X, \tau)\) is \(\Delta^*{T_\delta}\)-space.

b) \(\tau_\delta = \Delta^*\tau^\#\)-holds.

c) Every singleton \(\{x\}\) is either \(\delta g\)-closed or \(\delta\)-open.

d) Every singleton \(\{x\}\) is either \(\delta g\)-closed or regular open.

Proof: (a)⇒(b): We claim that \(\Delta^*\tau^\# \subseteq \tau_\delta\). Let \(V \in \Delta^*\tau^\#\). By assumption and by proposition 3.2 \(\Delta^*cl(U) = \delta cl(U)\) for every subset \(U\) of \(X\). Therefore \(\Delta^*cl(X - V) = \delta cl(X - V) = X - V\) by definition of \(\Delta^*\tau^\#\). Hence \(V \in \tau_\delta\).

We know that for a subset \(A\) of \((X, \tau)\), \(A \subseteq \Delta^*cl(A) \subseteq \delta cl(A)\). So by the definition of \(\Delta^*cl(A)\) for any topology \(\tau\) we get \(\tau_\delta \subseteq \Delta^*\tau^\#\). Hence \(\tau_\delta = \Delta^*\tau^\#\).

(b)⇒(c): Let \(x \in X\). We know that by proposition 3.11 of [11] if \(\{x\}\) is not \(\delta g\)-closed then \(X - \{x\}\) is \(\Delta^*\)-closed. Therefore \(\Delta^*cl(X - \{x\}) = X - \{x\}\) which implies that \(\{x\} \in \Delta^*\tau^\# = \tau_\delta\) by (b). Therefore \(\{x\}\) is \(\delta\)-open.

(c)⇒(d): The proof follows from the fact that in any space a singleton is \(\delta\)-open if and only if it is regular open.

Proposition 3.4 If \((X, \tau)\) is a \(\Delta^*{T_\delta}\)-space then for every subset \(A\) of \(X\) \(\Delta^*cl(A)\) is \(\delta\)-closed in \((X, \tau)\).

Proof: Since \((X, \tau)\) is a \(\Delta^*{T_\delta}\)-space, by definition of \(\Delta^*cl(A)\), \(\Delta^*cl(A)\) is \(\delta\)-closed in \((X, \tau)\).
Proposition 3.5 Every T_δ-space is a Δ^*T_δ-space but not conversely.

Proof: Let A be Δ^*-closed in (X, τ). Since every Δ^*-closed set is $g\delta$-closed in (X, τ) and (X, τ) is a T_δ-space, A is δ-closed. Hence (X, τ) is a Δ^*T_δ-space.

Counter example 3.6 Let $X = \{a, b, c\}$, $\tau = \{\emptyset, X, \{a\}, \{b, c\}\}$. Then (X, τ) is a Δ^*T_δ-space but not T_δ-space since the subset $\{b\}$ is $g\delta$-closed but not δ-closed in (X, τ).

Remark 3.7 The spaces T_c and T_d are independent with Δ^*T_δ-space as seen from the following examples.

Example 3.8 Let $X = \{a, b, c\}$, $\tau = \{\emptyset, X, \{a\}, \{b\}\}$. Then (X, τ) is a Δ^*T_δ-space but not T_c-space and T_d-space since the subset $\{b\}$ is gs-closed but not g^*-closed and not g-closed in (X, τ).

Example 3.9 Let $X = \{a, b, c\}$, $\tau = \{\emptyset, X, \{a\}, \{a, b\}\}$. Then (X, τ) is a T_c-space and T_d-space but not Δ^*T_δ-space since the subset $\{c\}$ is Δ^*-closed but not δ-closed in (X, τ).

Remark 3.10 The Δ^*T_δ-space is independent with αT_b-space as seen from the following examples.

Example 3.11 Let $X = \{a, b, c\}$, $\tau = \{\emptyset, X, \{a\}, \{b, c\}\}$. Then (X, τ) is a αT_b-space but not Δ^*T_δ-space since the subset $\{b, c\}$ is Δ^*-closed but not δ-closed in (X, τ).

Example 3.12 Let $X = \{a, b, c\}$, $\tau = \{\emptyset, X, \{a\}, \{b, c\}\}$. Then (X, τ) is a Δ^*T_δ-space but not αT_b-space since the subset $\{a, c\}$ is αg-closed but not closed in (X, τ).

Similarly the following results are true.

Remark 3.13 i) The Δ^*T_δ-space is independent with αT_c-space.
ii) The Δ^*T_δ-space is independent with $*T_{1/2}$-space.
iii) The space Δ^*T_δ-space is independent with T_b-space.

Proposition 3.14 If (X, τ) is a $\delta g T_{3g^*}$-space and Δ^*T_δ-space then it is a $T_{3/4}$-space.

Proof: Let A be δg-closed in (X, τ). Since (X, τ) is $\delta g T_{3g^*}$-space, A is δg^*-closed. Since every δg^*-closed is Δ^*-closed and (X, τ) is Δ^*T_δ-space, A is
δ-closed. Hence (X, τ) is a $T_{3/4}$-space.

Proposition 3.15 Every $g\delta T_{\delta^{g^*}}$-space is $\Delta^* T_{3}$-space but not conversely.

Proof: Let X be a T_{δ}-space. Every T_{δ}-space is $\Delta^* T_{3}$-space (Proposition 3.5). Also we know that every T_{δ}-space is $g\delta T_{\delta^{g^*}}$-space. Hence every $g\delta T_{\delta^{g^*}}$-space is $\Delta^* T_{3}$-space.

Counter example 3.16 Let $X = \{a, b, c\}, \tau = \{\phi, X, \{a\}, \{b, c\}\}$. Then (X, τ) is a $\Delta^* T_{3}$-space. The subset $\{b\}$ is $g\delta$-closed but not δg^*-closed in (X, τ). Hence (X, τ) is not a $g\delta T_{\delta^{g^*}}$-space.

$\Delta^* T_{\delta^{g^*}}$-space

Proposition 3.17 Every $\Delta^* T_{\delta}$-space is $\Delta^* T_{\delta^{g^*}}$-space but the converse is not true.

Proof: Let A be Δ^*-closed in (X, τ). Since (X, τ) is $\Delta^* T_{\delta}$-space A is δ-closed. Moreover every δ-closed is δg^*-closed in (X, τ). Hence (X, τ) is a $\Delta^* T_{\delta^{g^*}}$-space.

Counter example 3.18 Let $X = \{a, b, c\}, \tau = \{\phi, X, \{a, b\}\}$. Then (X, τ) is $\Delta^* T_{\delta^{g^*}}$-space but not $\Delta^* T_{\delta}$-space since the subset $\{c\}$ is Δ^*-closed but not δ-closed in (X, τ).

Proposition 3.19 If (X, τ) is a $\Delta^* T_{\delta}$-space and a $g s T_{\delta^{g^*}}$-space then it is a $\Delta^* T_{\delta^{g^*}}$-space.

Proof: Let A be Δ^*-closed in (X, τ). Then the proof of i)-v) follows from the fact that every δ-closed set is δg^*-closed, αg^*-closed, $g\delta$-closed, αg-closed and δg-closed in (X, τ).
Proposition 3.21 If \((X, \tau)\) is a \(\Delta^*T_{s_0^*}\)-space and \(T_{3/4}\)-space then it is a \(\delta g^*T_{\delta}\)-space.

Proof: Let \(A\) be \(\Delta^*\)-closed in \((X, \tau)\). Since \((X, \tau)\) is a \(\Delta^*T_{s_0^*}\)-space, \(A\) is \(\delta g^*\)-closed. We know that every \(\delta g^*\)-closed is \(\delta g\)-closed. Therefore \(A\) is \(\delta g\)-closed. Also \((X, \tau)\) is a \(T_{3/4}\)-space. So \(A\) is \(\delta\)-closed in \((X, \tau)\). Hence \((X, \tau)\) is a \(\delta g^*T_{\delta}\)-space.

Remark 3.22 The space \(\Delta^*T_{s_0^*}\)-space is independent with the spaces \(T_b, T_c, T_d\)-spaces as seen from the following examples.

Example 3.23 Let \(X = \{a, b, c\}, \tau = \{\phi, X, \{a\}, \{a, b\}\}\). Then \((X, \tau)\) is a \(\Delta^*T_{s_0^*}\)-space but not \(T_b, T_c, T_d\)-spaces since the subset \(\{b\}\) is \(gs\)-closed but not \(\delta g\)-closed, \(g\)-closed and \(g\)-closed sets respectively for \(T_b, T_c, T_d\)-spaces.

Example 3.24 Let \(X = \{a, b, c\}, \tau = \{\phi, X, \{a\}, \{a, b\}, \{a, c\}\}\). Then \((X, \tau)\) is a \(T_b, T_c, T_d\)-spaces but not \(\Delta^*T_{s_0^*}\)-space since the subset \(\{b\}\) is \(\Delta^*\)-closed but not \(\delta g^*\)-closed set in \((X, \tau)\).

\(g\delta^T\Delta^*\)-space

Proposition 3.25 If \((X, \tau)\) is a \(g\delta^T\Delta^*\)-space and a \(\Delta^*T_{\delta}\)-space then it is a \(T_{\delta}\)-space.

Proof: Let \(A\) be \(g\delta\)-closed in \((X, \tau)\). Since \((X, \tau)\) is a \(g\delta^T\Delta^*\)-space \(A\) is \(\Delta^*\)-closed in \((X, \tau)\). Also \((X, \tau)\) is a \(\Delta^*T_{\delta}\)-space. Therefore \(A\) is \(\delta\)-closed in \((X, \tau)\). Hence \((X, \tau)\) is a \(T_{\delta}\)-space.

Proposition 3.26 If \((X, \tau)\) is a \(g\delta^T\Delta^*\)-space and a \(\Delta^*T_{s_0^*}\)-space then it is a \(g\delta T_{s_0^*}\)-space.

Proof: Let \(A\) be \(g\delta\)-closed in \((X, \tau)\). Since \((X, \tau)\) is a \(g\delta^T\Delta^*\)-space \(A\) is \(\Delta^*\)-closed in \((X, \tau)\). Also \((X, \tau)\) is a \(\Delta^*T_{s_0^*}\)-space. Therefore \(A\) is \(\delta g^*\)-closed in \((X, \tau)\). Hence \((X, \tau)\) is a \(g\delta T_{s_0^*}\)-space.

\(\delta g^\#T\Delta^*\)-space

Proposition 3.27 If \((X, \tau)\) is a \(T_{\delta}\)-space and a \(\delta g^\#T\Delta^*\)-space then it is a \(g\delta^T\Delta^*\)-space.
Proof: Let A be $g\delta$-closed in (X, τ). Since (X, τ) is a T_δ-space, A is δ-closed and hence it is $\delta g^\#$-closed. Also (X, τ) is a $\delta g^\# T_{\Delta^*}$-space. Therefore A is Δ^*-closed and hence (X, τ) is a $g\delta T_{\Delta^*}$-space.

Remark 3.28 The spaces T_b, T_c and T_d are independent with $\delta g^\# T_{\Delta^*}$-space as seen from the following examples.

Example 3.29 Let $X = \{a, b, c\}$, $\tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$. Then (X, τ) is a $\delta g^\# T_{\Delta^*}$-space but not T_b, T_c and T_d-spaces. Since the subset $\{a\}$ is gs-closed but not closed, g^*-closed and g-closed sets in (X, τ) for T_b, T_c and T_d-spaces respectively.

Example 3.30 Let $X = \{a, b, c\}$, $\tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}, \{a, c\}\}$. Then (X, τ) is a T_b, T_c and T_d-space but not $\delta g^\# T_{\Delta^*}$-space since the subset $\{a, b\}$ is $\delta g^\#$-closed but not Δ^*-closed in (X, τ).

References

Received: December 15, 2014; Published: March 23, 2015