q-Extension of Tangent Numbers and Polynomials

Associated with the p-Adic q-Integral on \(\mathbb{Z}_p \)

C. S. Ryoo

Department of Mathematics
Hannam University, Daejeon 306-791, Korea

Copyright © 2015 C. S. Ryoo. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In this paper we introduce the q-extension of tangent numbers \(T_{n,q} \) and polynomials \(T_{n,q}(x) \) associated with the p-adic q-integral on \(\mathbb{Z}_p \).

Some interesting results and relationships are obtained.

Mathematics Subject Classification: 11B68, 11S40, 11S80

Keywords: Euler numbers and polynomials, tangent numbers and polynomials, q-extension of tangent numbers and polynomials.

1 Introduction

Throughout this paper, we always make use of the following notations: \(\mathbb{N} \) denotes the set of natural numbers and \(\mathbb{Z}_+ = \mathbb{N} \cup \{0\} \), \(\mathbb{C} \) denotes the set of complex numbers, \(\mathbb{Z}_p \) denotes the ring of p-adic rational integers, \(\mathbb{Q}_p \) denotes the field of p-adic rational numbers, and \(\mathbb{C}_p \) denotes the completion of algebraic closure of \(\mathbb{Q}_p \). Let \(\nu_p \) be the normalized exponential valuation of \(\mathbb{C}_p \) with \(|p|_p = p^{-\nu(p)} = p^{-1} \). When one talks of q-extension, q is considered in many ways such as an indeterminate, a complex number \(q \in \mathbb{C} \), or p-adic number \(q \in \mathbb{C}_p \). If \(q \in \mathbb{C} \) one normally assume that \(|q| < 1 \). If \(q \in \mathbb{C}_p \), we normally assume that \(|q - 1|_p < p^{-\frac{1}{p-1}} \) so that \(q^x = \exp(x \log q) \) for \(|x|_p \leq 1 \). Throughout this paper we use the notation:

\[
[x]_q = \frac{1 - q^x}{1 - q}.
\]
Hence, \(\lim_{q \to 1} [x] = x \) for any \(x \) with \(|x|_p \leq 1 \) in the present \(p \)-adic case. Let \(UD(Z_p) \) be the space of uniformly differentiable function on \(Z_p \). For \(g \in UD(Z_p) \) the fermionic \(p \)-adic invariant \(q \)-integral on \(Z_p \) is defined by Kim as follows:

\[
I_{-q}(g) = \int_{Z_p} g(x) d\mu_{-q}(x) = \lim_{N \to \infty} \frac{1}{[p^N]_q} \sum_{x=0}^{p^N-1} g(x)(-q)^x, \text{ see [1] . (1.1)}
\]

If we take \(g_n(x) = g(x + n) \) in (1.1), then we see that

\[
q^n I_q(g_n) + (-1)^{n-1} I_q(g) = [2]_q \sum_{l=0}^{n-1} (-1)^{n-1-l} q^l g(l). \quad (1.2)
\]

Let us define the tangent numbers \(T_n \) and polynomials \(T_n(x) \) as follows:

\[
\sum_{n=0}^{\infty} T_n \frac{t^n}{n!} = \frac{2}{e^{2t} + 1}, \quad \sum_{n=0}^{\infty} T_n(x) \frac{t^n}{n!} = \left(\frac{2}{e^{2t} + 1} \right) e^{xt} (\text{see [2, 3]}). \quad (1.3)
\]

Numerous properties of tangent number are known. More studies and results in this subject we may see references [2], [3], [4], [5], [6]. About extensions for the tangent numbers can be found in [4, 5, 6]. Our aim in this paper is to define \(q \)-extension of tangent polynomials \(T_{n,q}(x) \) associated with the \(p \)-adic \(q \)-integral on \(Z_p \). We investigate some properties which are related to \(q \)-extension of tangent numbers \(T_{n,q} \) and polynomials \(T_{n,q}(x) \). We also derive the existence of a specific interpolation function which interpolate \(q \)-extension of tangent numbers \(T_{n,q} \) and polynomials \(T_{n,q}(x) \) at negative integers.

2 \(q \)-extension of tangent polynomials

Our primary goal of this section is to define \(q \)-extension of tangent numbers \(T_{n,q} \) and polynomials \(T_{n,q}(x) \). We also find generating functions of \(q \)-extension of tangent numbers \(T_{n,q} \) and polynomials \(T_{n,q}(x) \) and investigate their properties. For \(q \in C_p \) with \(|1 - q|_p \leq 1 \), if we take \(g(x) = e^{2xt} \) in (1.2), then we easily see that

\[
I_{-q}(e^{2xt}) = \int_{Z_p} e^{2xt} d\mu_{-q}(x) = \frac{[2]_q}{qe^{2t} + 1}.
\]

Let us define the \(q \)-extension of tangent numbers \(T_{n,q} \) and polynomials \(T_{n,q}(x) \) as follows:

\[
\int_{Z_p} e^{2yt} d\mu_{-q}(y) = \sum_{n=0}^{\infty} T_{n,q} \frac{t^n}{n!}, \quad (2.1)
\]

\[
\int_{Z_p} e^{(x+2y)t} d\mu_{-q}(y) = \sum_{n=0}^{\infty} T_{n,q}(x) \frac{t^n}{n!}. \quad (2.2)
\]

By (2.1) and (2.2), we obtain the following Witt’s formula.
Theorem 2.1 For $n \in \mathbb{Z}_+$, we have

\[
\int_{\mathbb{Z}_p} (2x)^n d\mu_q(x) = T_{n,q} \quad \text{and} \quad \int_{\mathbb{Z}_p} (x + 2y)^n d\mu_q(y) = T_{n,q}(x).
\]

By using p-adic q-integral on \mathbb{Z}_p, we obtain,

\[
\int_{\mathbb{Z}_p} e^{2xt} d\mu_q(x) = [2]_q \sum_{m=0}^{\infty} (-1)^mq^m e^{2mt}.
\]

(2.3)

Thus q-extension of tangent numbers $T_{n,q}$ are defined by means of the generating function

\[
F_q(t) = \sum_{n=0}^{\infty} T_{n,q} \frac{t^n}{n!} = [2]_q \sum_{m=0}^{\infty} (-1)^mq^m e^{2mt}.
\]

(2.4)

Using similar method as above, by using p-adic q-integral on \mathbb{Z}_p, we have

\[
\sum_{n=0}^{\infty} T_{n,q}(x) \frac{t^n}{n!} = \left(\frac{[2]_q}{qe^{2t} + 1} \right) e^{xt}.
\]

(2.5)

By using (2.2) and (2.5), we obtain

\[
F_q(t, x) = \sum_{n=0}^{\infty} T_{n,q}(x) \frac{t^n}{n!} = [2]_q \sum_{m=0}^{\infty} (-1)^mq^m e^{(2m+x)t}.
\]

(2.6)

By Theorem 2.1, we easily obtain that

\[
T_{n,q}(x) = \int_{\mathbb{Z}_p} (x + 2y)^n d\mu_q(y)
= \sum_{k=0}^{n} \binom{n}{k} x^{n-k} T_{k,q}
= (x + T_q)^n
= [2]_q \sum_{m=0}^{\infty} (-1)^mq^m (x + 2m)^n.
\]

(2.7)

The following elementary properties of q-extension of tangent polynomials $T_{n,q}(x)$ are readily derived from (2.1) and (2.2). We, therefore, choose to omit the details involved. We note that

\[
\lim_{q \to 1} T_{n,q}(x) = T_n(x) \quad \text{and} \quad \lim_{q \to 1} T_{n,q} = T_n.
\]
Theorem 2.2 For any positive integer \(n\), we have
\[T_{n,q}^{-1}(2 - x) = (-1)^n T_{n,q}(x). \]

Theorem 2.3 For any positive integer \(m\)(=odd), we have
\[T_{n,q}(x) = \frac{[2]_q}{[2]_{q^m}} m^n \sum_{a=0}^{m-1} (-1)^a w^a q^a T_{n,q}^m \left(\frac{2a + x}{m} \right), \quad n \in \mathbb{Z}_+. \]

By (1.2), (2.1), and (2.2), we easily see that
\[[2]_q \sum_{l=0}^{n-1} (-1)^{n-1-l} q^l (2l)^m = q^n T_{m,q}(2n) + (-1)^{n-1} T_{m,q}. \]

Hence, we have the following theorem.

Theorem 2.4 Let \(m \in \mathbb{Z}_+\). If \(n \equiv 0 \pmod{2}\), then
\[q^n T_{m,q}(2n) - T_{m,q} = [2]_q \sum_{l=0}^{n-1} (-1)^{l+1} q^l (2l)^m. \]

If \(n \equiv 1 \pmod{2}\), then
\[q^n T_{m,q}(2n) + T_{m,q} = [2]_q \sum_{l=0}^{n-1} (-1)^l q^l (2l)^m. \]

From (1.1), we note that
\[[2]_q = q \int_{\mathbb{Z}_p} e^{(2x+2)t} d\mu_{-q}(x) + \int_{\mathbb{Z}_p} e^{2xt} d\mu_{-q}(x) \]
\[= \sum_{n=0}^{\infty} \left(q \int_{\mathbb{Z}_p} (2x + 2)^n d\mu_{-q}(x) + \int_{\mathbb{Z}_p} (2x)^n d\mu_{-q}(x) \right) \frac{t^n}{n!} \]
\[= \sum_{n=0}^{\infty} \left(qT_{n,q}(2) + T_{n,q} \right) \frac{t^n}{n!}. \]

Therefore, we obtain the following theorem.

Theorem 2.5 For \(n \in \mathbb{Z}_+\), we have
\[qT_{n,q}(2) + T_{n,q} = \begin{cases} [2]_q, & \text{if } n = 0, \\ 0, & \text{if } n \neq 0. \end{cases} \]

By (2.7) and Theorem 2.5, we have the following corollary.
Corollary 2.6 For $n \in \mathbb{Z}_+$, we have

$$q(T_q + 2)^n + T_{n,q} = \begin{cases} [2]_q, & \text{if } n = 0, \\ 0, & \text{if } n \neq 0, \end{cases}$$

with the usual convention of replacing $(T_q)^n$ by $T_{n,q}$.

Theorem 2.7 For $n \in \mathbb{Z}_+$, we have

$$T_{n,q}(x + y) = \sum_{l=0}^{n} \binom{n}{l} T_{l,q}(x)y^{n-l}.$$

By Theorem 2.1, we easily get

$$T_{n,q}(x) = \sum_{l=0}^{n} \binom{n}{l} x^{n-l} \int_{\mathbb{Z}_q} (2y)^l d\mu_{-q}(y) = \sum_{l=0}^{n} \binom{n}{l} x^{n-l}T_{l,q}.$$

Therefore, we obtain the following theorem.

Theorem 2.8 For $n \in \mathbb{Z}_+$, we have

$$T_{n,q}(x) = \sum_{l=0}^{n} \binom{n}{l} T_{l,q}x^{n-l}.$$

3 q-extension of tangent zeta function

In this section, by using q-extension of tangent numbers and polynomials, we give the definition for the q-extension of tangent zeta function and q-extension of Hurwitz-type tangent zeta functions. These functions interpolate the q-extension of tangent numbers and tangent polynomials, respectively. Let q be a complex number with $|q| < 1$. From (2.4), we note that

$$\left. \frac{d^k}{dt^k} F_q(t) \right|_{t=0} = [2]_q \sum_{m=0}^{\infty} (-1)^m q^m (2m)^k = T_{k,q}, \ (k \in \mathbb{N}).$$

(3.1)

By using the above equation, we are now ready to define q-extension of tangent zeta functions.

Definition 3.1 For $s \in \mathbb{C}$ with $\text{Re}(s) > 1$, define the q-extension of tangent zeta function by

$$\zeta_q(s) = [2]_q \sum_{n=1}^{\infty} \frac{(-1)^n q^n}{(2n)^s}. \quad (3.2)$$
Note that \(\zeta_q(s) \) is a meromorphic function on \(\mathbb{C} \). Observe that if \(q \to 1 \), then \(\zeta_q(s) = \zeta_T(s) \), where \(\zeta_T(s) \) are tangent zeta functions (see [2]). Relation between \(\zeta_q(s) \) and \(T_{k,q} \) is given by the following theorem.

Theorem 3.2 For \(k \in \mathbb{N} \), we obtain

\[
\zeta_q(-k) = T_{k,q}. \tag{3.3}
\]

Observe that \(\zeta_q(s) \) function interpolates \(T_{k,q} \) numbers at non-negative integers. By using (2.7), we note that

\[
\frac{d^k}{dt^k} F_q(t, x) \bigg|_{t=0} = [2]_q \sum_{m=0}^{\infty} (-1)^m q^m (x + 2m)^k = T_{k,q}(x), (k \in \mathbb{N}), \tag{3.4}
\]

and

\[
\left(\frac{d}{dt} \right)^k \left(\sum_{n=0}^{\infty} T_{n,q}(x) \frac{t^n}{n!} \right) \bigg|_{t=0} = T_{k,q}(x), \text{ for } k \in \mathbb{N}. \tag{3.5}
\]

By (3.2), (3.4) and (3.5), we are now ready to define the \(q \)-extension of Hurwitz-type tangent zeta functions.

Definition 3.3 For \(s \in \mathbb{C} \) with \(\text{Re}(s) > 1 \), \(q \)-extension of Hurwitz-type tangent zeta function by

\[
\zeta_q(s, x) = [2]_q \sum_{n=0}^{\infty} \frac{(-1)^n q^n}{(2n + x)^s}. \tag{3.6}
\]

Note that \(\zeta_q(s, x) \) is a meromorphic function on \(\mathbb{C} \). Observe that if \(q \to 1 \), then \(\zeta_q(s, x) = \zeta_T(s, x) \), where \(\zeta_T(s, x) \) are the Hurwitz-type tangent zeta functions (see [2]). Relation between \(\zeta_q(s, x) \) and \(T_{k,q}(x) \) is given by the following theorem.

Theorem 3.4 For \(k \in \mathbb{N} \), we obtain

\[
\zeta_q(-k, x) = T_{k,q}(x). \]

References

Received: February 1, 2015; Published: March 9, 2015