Some Identities of Symmetry for Generalized Carlitz-type q-Euler Polynomials under the Symmetric Group of Degree Four

Dae San Kim
Department of Mathematics, Sogang University
Seoul 121-742, Republic of Korea

Dmitry V. Dolgy
School of Natural Sciences
Far Eastern Federal University, Vladivostok, Russia

Taekyun Kim
Department of Mathematics, Kwangwoon University
Seoul 139-701, Republic of Korea

Copyright © 2015 Dae San Kim, Dmitry V. Dolgy and Taekyun Kim. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In this paper, we give some identities of symmetry for the generalized Carlitz-type q-Euler polynomials under symmetric group of degree four which are derived from the fermionic p-adic q-integrals on \mathbb{Z}_p.

Mathematics Subject Classification: 11B68, 11S80, 05A19, 05A30

Keywords: identities of symmetry, generalized Carlitz-type q-Euler polynomial, fermionic p-adic integral, symmetric group of degree four
1. Introduction

Let \(p \) be a fixed prime number. Throughout this paper, \(\mathbb{Z}_p, \mathbb{Q}_p \) and \(\mathbb{C}_p \) will denote the ring of \(p \)-adic integers, the field of \(p \)-adic numbers and the completion of algebraic closure of \(\mathbb{Q}_p \). Let \(|\cdot|_p \) be the normalized \(p \)-adic absolute value with \(|p|_p = \frac{1}{p} \), and let \(q \) be an indeterminate in \(\mathbb{C}_p \) such that \(|1 - q|_p < \frac{1}{p - 1} \). The \(q \)-number of \(x \) is defined as

\[
[x]_q = \frac{1 - q^x}{1 - q}.
\]

Note that \(\lim_{q \to 1} [x]_q = x \).

Let \(\mathbb{C}((\mathbb{Z}_p)) \) be the space of continuous functions on \(\mathbb{Z}_p \). For \(f \in \mathbb{C}((\mathbb{Z}_p)) \), the fermionic \(p \)-adic \(q \)-integral on \(\mathbb{Z}_p \) is defined by Kim to be

\[
I_{-q}(f) = \int_{\mathbb{Z}_p} f(x) \, d\mu_{-q}(x)
\]

\[
= \lim_{N \to \infty} \frac{1}{p^N} \sum_{x=0}^{p^N-1} f(x) (-q)^x
\]

\[
= \lim_{N \to \infty} \frac{1 + q}{1 + q p^N} \sum_{x=0}^{p^N-1} f(x) (-q)^x,
\]

(see \[3, 4, 6, 7\]).

For \(d \in \mathbb{N} \) with \((d,p) = 1 \) and \(d \equiv 1 \pmod{2} \), we set

\[
X = \lim_{N \to \infty} \mathbb{Z}/dp^N \mathbb{Z}, \quad X^* = \bigcup_{0 < a < dp, (a,p)=1} (a + dp \mathbb{Z}_p),
\]

and

\[
a + dp^N \mathbb{Z}_p = \{ x \in X | x \equiv a \pmod{dp} \}, \quad a \in \mathbb{Z}
\]

where \(0 \leq a < dp \).

For \(d \in \mathbb{N} \) with \(d \equiv 1 \pmod{2} \), let \(\chi \) be a Dirichlet character with conductor \(d \). It is well known that the generalized Euler polynomial attached to \(\chi \) are defined by the generating function to be

\[
\sum_{n=0}^{\infty} E_{n,\chi} (x) \frac{t^n}{n!} = \frac{2}{e^{at} + 1} \sum_{a=0}^{d-1} \chi(a) (-1)^a e^{at} e^{xt}, \quad (\text{see } [1-7]).
\]

(1.2)

When \(x = 0 \), \(E_{n,\chi} = E_{n,\chi}(0) \) are called the Euler numbers attached to \(\chi \). If \(\chi = \chi^0 \) is the trivial character, then \(E_n(x) = E_{n,\chi^0}(x) \) are called the Euler polynomials.

In \[8\], the generalized Carlitz-type \(q \)-Euler polynomials attached to \(\chi \) are defined as

\[
E_{n,\chi,q}(x) = \int_X \chi(y) [x + y]^n_q \, d\mu_{-q}(y), \quad (n \geq 0).
\]

(1.3)

Note that

\[
\lim_{q \to 1} E_{n,\chi,q}(x) = \lim_{q \to 1} \int_X \chi(y) [x + y]^n_q \, d\mu_{-q}(y)
\]
= \int_X \chi(y) (x + y)^n d\mu_{-1}(y) = E_{n,x}(x).

When \(x = 0 \), \(E_{n,x,q} = E_{n,x,q}(0) \) are called the generalized Carlitz-type \(q \)-Euler numbers attached to \(\chi \).

The purpose of this paper is to investigate symmetric properties and identities for the generalized Carlitz-type \(q \)-Euler polynomials attached to \(\chi \) under the symmetric group of degree four arising from fermionic \(p \)-adic \(q \)-integrals on \(\mathbb{Z}_{p} \).

2. Symmetry identities of the generalized Carlitz-type \(q \)-Euler polynomials attached to \(\chi \) under \(S_4 \)

Let \(w_1, w_2, w_3, w_4 \in \mathbb{N} \) with \(w_1 \equiv 1 \) (mod 2), \(w_2 \equiv 1 \) (mod 2), \(w_3 \equiv 1 \) (mod 2), \(w_4 \equiv 1 \) (mod 2). For \(d \in \mathbb{N} \) with \(d \equiv 1 \) (mod 2), let \(\chi \) be a Dirichlet character with conductor \(d \). From (1.1) and (1.3),

\[
\int_X \chi(y) e^{[w_1 w_2 w_3 y + w_1 w_2 w_3 w_4 x + w_4 w_3 w_2 y + w_4 w_2 w_3 y + w_3 x i + w_1 w_3 j + w_4 w_1 w_2 k]q^t} d\mu_{-q^{w_1 w_2 w_3}}(y) \tag{2.1}
\]

By (2.1), we get

\[
\frac{1}{[2]q^{w_1 w_2 w_3}} \sum_{i=0}^{d w_2 - 1} \sum_{j=0}^{d w_3 - 1} \sum_{k=0}^{d w_3 - 1} (-1)^{i+j+k} q^{w_3 w_2 w_3 i + w_4 w_1 w_3 j + w_4 w_2 w_3 k} \chi(i) \chi(j) \chi(k) \tag{2.2}
\]

\[
\times \int_X \chi(y) e^{[w_1 w_2 w_3 y + w_1 w_2 w_3 w_4 x + w_4 w_2 w_3 y + w_4 w_3 w_2 x + w_3 x i + w_2 x j + w_4 w_1 w_2 k]q^t} d\mu_{-q^{w_1 w_2 w_3}}(y)
\]

\[
= \lim_{N \to \infty} \frac{1}{1 + q^{d w_1 w_2 w_3 w_4}} \sum_{i=0}^{d w_2 - 1} \sum_{j=0}^{d w_3 - 1} \sum_{k=0}^{d w_4 - 1} (-1)^{i+j+k+l} q^{w_4 w_2 w_3 i + w_4 w_1 w_3 j + w_4 w_3 w_2 k + w_1 w_2 w_3 l} \chi(ijk)
\]

\[
\times \sum_{y=0}^{p^N-1} (-q) d^{w_1 w_2 w_3 w_4} \chi(y) e^{[w_1 w_2 w_3 (l + w_4 y) + w_1 w_2 w_3 w_4 x + w_4 w_2 w_3 y + w_4 w_3 w_2 x + w_3 x i + w_2 x j + w_4 w_1 w_2 k]q^t}.
\]

Note that the equation (2.2) is invariant for any permutation \(\sigma \in S_4 \). Thus, we have the following theorem.
Theorem 2.1. Let $w_1, w_2, w_3, w_4 \in \mathbb{N}$, with $w_1 \equiv 1 \pmod{2}$, $w_2 \equiv 1 \pmod{2}$, $w_3 \equiv 1 \pmod{2}$, $w_4 \equiv 1 \pmod{2}$. For $d \in \mathbb{N}$ with $d \equiv 1 \pmod{2}$, let χ be a Dirichlet character with conductor d. Then, the following expressions

\[\frac{1}{[2]_q^{w_{\sigma(1)}w_{\sigma(2)}w_{\sigma(3)}}} \sum_{i=0}^{d-1} \sum_{j=0}^{d-1} \sum_{k=0}^{d-1} (-1)^{i+j+k} \]

\[\times q^{w_{\sigma(4)}w_{\sigma(2)}w_{\sigma(3)}j+w_{\sigma(4)}w_{\sigma(3)}j+w_{\sigma(4)}w_{\sigma(1)}w_{\sigma(2)}k} \chi(i) \chi(j) \chi(k) \]

\[\times \int_X \chi(y) e^{[w_1 w_2 w_3 y + w_1 w_2 w_3 x + w_4 w_2 w_3 i + w_4 w_1 w_3 j + w_4 w_1 w_2 k]t} \, d\mu_{-q^{w_1 w_2 w_3}}(y) \]

(2.3)

are the same for any $\sigma \in S_4$.

It is not difficult to show that

\[\int_X \chi(y) [w_1 w_2 w_3 y + w_4 w_2 w_3 x + w_4 w_1 w_3 j + w_4 w_1 w_2 k]^n \, d\mu_{-q^{w_1 w_2 w_3}}(y) \]

(2.4)

Thus, by (2.3), we get

\[\int_X \chi(y) [w_1 w_2 w_3 y + w_4 w_2 w_3 x + w_4 w_1 w_3 j + w_4 w_1 w_2 k]^n \, d\mu_{-q^{w_1 w_2 w_3}}(y) \]

(2.4)

are the same for any $\sigma \in S_4$.

Theorem 2.2. Let $n \geq 0$, $w_1, w_2, w_3, w_4, d \in \mathbb{N}$, with $w_1 \equiv 1 \pmod{2}$, $w_2 \equiv 1 \pmod{2}$, $w_3 \equiv 1 \pmod{2}$, $w_4 \equiv 1 \pmod{2}$, $d \equiv 1 \pmod{2}$, and let χ be a Dirichlet character with conductor d. Then, the following expressions

\[\left[\frac{w_{\sigma(1)}w_{\sigma(2)}w_{\sigma(3)}}{[2]_q^{w_{\sigma(1)}w_{\sigma(2)}w_{\sigma(3)}}} \right]^n \]

\[\sum_{i=0}^{d-1} \sum_{j=0}^{d-1} \sum_{k=0}^{d-1} (-1)^{i+j+k} q^{w_{\sigma(4)}w_{\sigma(2)}w_{\sigma(3)}j+w_{\sigma(4)}w_{\sigma(3)}j+w_{\sigma(4)}w_{\sigma(1)}w_{\sigma(2)}k} \]

\[\times \chi(i) \chi(j) \chi(k) E_{n, \chi, q^{w_{\sigma(1)}w_{\sigma(2)}w_{\sigma(3)}}} \left(w_{\sigma(4)}x + \frac{w_{\sigma(4)}}{w_{\sigma(1)}} i + \frac{w_{\sigma(4)}}{w_{\sigma(2)}} j + \frac{w_{\sigma(4)}}{w_{\sigma(3)}} k \right) \]

are the same for any $\sigma \in S_4$.

732
Dae San Kim, Dmitry V. Dolgy and Taekyun Kim
We observe that
\[
\begin{align*}
\left[y + w_4x + \frac{w_4}{w_1}i + \frac{w_4}{w_2}j + \frac{w_4}{w_3}k \right]^n & = \sum_{m=0}^{n} \binom{n}{m} \left(\frac{[w_4]_q}{[w_1 w_2 w_3]_q} \right)^{n-m} \left[w_2 w_3 i + w_1 w_3 j + w_1 w_2 k \right]_{q^{w_4}} \\
& \times q^{mw_2 w_3 i + w_1 w_3 j + w_1 w_2 w_3 k} \\
& \times [y + w_4x]_{q^{w_1 w_2 w_3}}.
\end{align*}
\]

Thus, by (1.3) and (2.5), we get
\[
\begin{align*}
\frac{[w_1 w_2 w_3]_q^n}{[2]_{q^{w_1 w_2 w_3}}} & \sum_{i=0}^{d_{w_1 - 1}} \sum_{j=0}^{d_{w_2 - 1}} \sum_{k=0}^{d_{w_3 - 1}} (-1)^{i+j+k} q^{w_4 w_2 w_3 i + w_4 w_1 w_3 j + w_4 w_1 w_2 k} \chi(i) \chi(j) \chi(k) \\
& \times \int_{\mathbb{F}_p} \left[y + w_4 x + \frac{w_4}{w_1}i + \frac{w_4}{w_2}j + \frac{w_4}{w_3}k \right]^n \chi(y) d\mu_{-w_1 w_2 w_3}(y) \\
& = \sum_{m=0}^{n} \binom{n}{m} \frac{[w_1 w_2 w_3]_q^m}{[2]_{q^{w_1 w_2 w_3}}} [w_4]_q^{n-m} E_{m,\chi,q}^{w_1 w_2 w_3} (w_4 x) \hat{T}_{w_1,\chi,q}^{w_4} (w_1, w_2, w_3 | m),
\end{align*}
\]

where
\[
\hat{T}_{n,\chi,q} (w_1, w_2, w_3 | m)
\]
\[
= \sum_{i=0}^{d_{w_1 - 1}} \sum_{j=0}^{d_{w_2 - 1}} \sum_{k=0}^{d_{w_3 - 1}} (-1)^{i+j+k} \chi(ij,k) q^{(m+1)(w_2 w_3 i + w_1 w_3 j + w_1 w_2 k)} \\
\times [w_2 w_3 i + w_1 w_3 j + w_1 w_2 k]_{q^{n-m}}.
\]

Therefore, by (2.7), we obtain the following theorem.

Theorem 2.3. Let \(n \geq 0 \), \(w_1, w_2, w_3, w_4, d \in \mathbb{N} \) with \(w_1 \equiv 1 \pmod{2} \), \(w_2 \equiv 1 \pmod{2} \), \(w_3 \equiv 1 \pmod{2} \), \(w_4 \equiv 1 \pmod{2} \), \(d \equiv 1 \pmod{2} \), and let \(\chi \) be a Dirichlet character with conductor \(d \). Then, the following expressions
\[
\sum_{m=0}^{n} \binom{n}{m} \frac{[w_4(1)w_4(2)w_4(3)]_q^m}{[2]_{q^{w_4(1)w_4(2)w_4(3)}}} [w_4(4)]_q^{n-m} E_{m,\chi,q}^{w_4(1)w_4(2)w_4(3)} (w_4 x) \hat{T}_{n,\chi,q}^{w_4(4)} (w_4(1)w_4(2)w_4(3) | m)
\]
are the same for any \(\sigma \in S_4 \).

References

Received: February 17, 2015; Published: March 14, 2015