Weighted Composition Followed by Differentiation between Weighted Bergman Space and H^∞ on the Unit Ball

Chao Zhang
Dept. of Math., Guangdong University of Education
Guangzhou, 510310, P.R. China

Sui Huang
College of Mathematics, Chongqing Normal University
Chongqing 401331, P.R. China

Copyright © 2014 Chao Zhang and Sui Huang. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

We define differentiation operator on $H(\mathbb{B})$ by radial derivative, then we study the boundedness and compactness of products of multiplication operator, composition operator and differentiation operator acting between weighted Bergman spaces and H^∞ on the unit ball.

Mathematics Subject Classification: 47B33, 30H05

Keywords: Composition operator; Multiplication operator; Differentiation operator; Weighted Bergman space

1Supported by the Chongqing Education Commission (NO. KJ130623), Chongqing Normal University (NO.13XLZ02) and Guangdong University of Education (2014ARF04).
1. Introduction

Let \mathbb{D} be the open unit disk in the complex plane. Let $\mathbb{B} = \{ z \in \mathbb{C}^n : |z| < 1 \}$ be the unit ball of \mathbb{C}^n, and $S = \partial \mathbb{B}$ its boundary. We will denote by dv the normalized Lebesgue measure on \mathbb{B}.

Recall that for $\alpha > -1$ the weighted Lebesgue measure dv_α is defined by

$$dv_\alpha(z) = c_\alpha (1 - |z|^2)^\alpha dv(z),$$

where

$$c_\alpha = \frac{\Gamma(n + 1 + \alpha)}{n! \Gamma(1 + \alpha)}$$

is a normalizing constant so that dv_α is a probability measure on \mathbb{B}.

Let $H(\mathbb{B})$ denote the space of holomorphic functions on \mathbb{B}. Take $1 \leq p < \infty$. Then $f \in H(\mathbb{B})$ is said to be in the weighted Bergman space $A^p_\alpha(\mathbb{B})$ if

$$\|f\|_{A^p_\alpha} = \int_{\mathbb{B}} |f(z)|^p dv_\alpha(z) < \infty.$$

As we all know,

$$H^\infty = \{ f \in H(\mathbb{B}) : \|f\|_\infty = \sup_{z \in \mathbb{B}} |f(z)| < \infty \}.$$

Let φ be an analytic self-mapping of \mathbb{B}, then the composition operator on $H(\mathbb{B})$ is given by

$$C_\varphi f = f \circ \varphi.$$

Recently, there have been an increasing interest in studying composition operators acting on different spaces of analytic functions, for example, see [3,5] for details about composition operators on classical spaces of analytic functions.

Let D be the differentiation operator defined by

$$Df = f', \quad f \in H(\mathbb{D}).$$

Hibschweiler and Portnoy [7] defined the linear operators DC_φ and $C_\varphi D$ and investigated the boundedness and compactness of these operators between Bergman spaces using Carleson-type measure. S. Ohno [10] discussed boundedness and compactness of $C_\varphi D$ between Hardy spaces. Recall the multiplication operator M_ψ defined by

$$M_\psi f = \psi f, \quad f \in H(\mathbb{D}).$$

A. K. Sharma defined [1] products of these operators in the following six ways:

$$(M_\psi C_\varphi Df)(z) = \psi(z)f'(\varphi(z)),$$

$$(M_\psi DC_\varphi f)(z) = \psi(z)(\varphi'(z))f'(\varphi(z)),$$

$$(C_\varphi M_\psi Df)(z) = \psi(\varphi(z))f'(\varphi(z)).$$
Then we also have six ways of products of these operators on the unit ball:

\[
(DM_\varphi C_\varphi f)(z) = \varphi'(z) f(\varphi(z)) + \psi(z) (\varphi'(z)) f'(\varphi(z)),
(C_\varphi DM_\varphi f)(z) = \varphi'(\varphi(z)) f(\varphi(z)) + \psi(\varphi(z)) f'(\varphi(z)),
(DC_\varphi M_\varphi f)(z) = \varphi'(\varphi(z)) f(\varphi(z)) \varphi'(z) + \psi(\varphi(z)) f'(\varphi(z)) \varphi'(z).
\]

for \(z \in \mathbb{D}\) and \(f \in H(\mathbb{D})\).

There are a lot of papers researching these products, see [2,4,9]. Since those results focus on \(\mathbb{D}\), naturally, we consider similar questions on \(\mathbb{B}\). Of course, the method we used is different from the case on \(\mathbb{D}\).

For \(f \in H(\mathbb{B})\), we define the differentiation operator on \(H(\mathbb{B})\) by radial derivative. Recall that for \(z \in \mathbb{B}\) and \(f \in H(\mathbb{B})\),

\[
Rf = \sum_{j=1}^{n} \frac{\partial f}{\partial z_j}(z) = \lim_{r \to 0} \frac{f(z + rz) - f(z)}{r}, \quad r \in \mathbb{R}.
\]

One can see that for \(z \neq \varphi^{-1}(0)\),

\[
R(f \circ \varphi)(z) = \frac{(Rf)(\varphi(z)) \cdot R\varphi(z)}{\varphi(z)}.
\]

Then we also have six ways of products of these operators on the unit ball:

\[
(M_\psi C_\varphi R)f(z) = \psi(z) \cdot (Rf)(\varphi(z)),
(C_\varphi M_\psi Rf)(z) = \varphi(\varphi(z)) \cdot (Rf)(\varphi(z)),
(M_\psi RC_\varphi f)(z) = \frac{\psi(z) \cdot R\varphi(z) \cdot (Rf)(\varphi(z))}{\varphi(z)},
(C_\varphi RM_\psi f)(z) = (R\psi)(\varphi(z)) \cdot f(\varphi(z)) + \psi(\varphi(z)) \cdot (Rf)(\varphi(z)),
(RM_\psi C_\varphi f)(z) = f(\varphi(z)) \cdot R\psi(z) + \frac{\psi(z) \cdot R\varphi(z) \cdot (Rf)(\varphi(z))}{\varphi(z)},
(RC_\varphi M_\psi f)(z) = \frac{(R\psi)(\varphi(z)) \cdot R\varphi(z) \cdot f(\varphi(z)) + \psi(\varphi(z)) \cdot (Rf)(\varphi(z)) \cdot R\varphi(z)}{\varphi(z)}
\]

for \(z \neq \varphi^{-1}(0)\).

In this paper, we characterize the boundedness and compactness of \(RM_\psi C_\varphi\) between weighted Bergman spaces and \(H^\infty\) on the unit ball, which extend the results of H. Li in [4].

2. Main results

The following lemma is the Theorem 20 in [8].

Lemma 2.1. Suppose \(p > 0\), \(n + 1 + \alpha > 0\), then there exist a constant \(C > 0\) (depend on \(p\) and \(\alpha\)) such that

\[
|f(z)| \leq \frac{C\|f\|_{A_p^\alpha}}{(1 - |z|^2)^{\frac{n+1+\alpha}{p}}}
\]
for all \(f \in A^p_\alpha \), \(z \in \mathbb{B} \).

Recall that for a holomorphic function \(f \) in \(\mathbb{B} \) we write
\[
\nabla f(z) = \left(\frac{\partial f}{\partial z_1}(z), \ldots, \frac{\partial f}{\partial z_n}(z) \right)
\]
and call \(\nabla f(z) \) the gradient of \(f \) at \(z \).

Then we give the following lemma.

Lemma 2.2. Let \(p > 0 \), \(\alpha > -1 \), then there exist a constant \(C > 0 \) such that
\[
|Rf(z)| \leq C|z|\|f\|_{A^2_\alpha(\mathbb{B})} \frac{1}{(1 - |z|^2)^{\frac{n+1+\alpha}{2} + 1}}
\]
for all \(f \in A^2_\alpha(\mathbb{B}) \) and \(z \in \mathbb{B} \).

Proof. For a \(f \) in \(A^2_\alpha(\mathbb{B}) \), from the Exercise 3.5.9 in [3] we know that
\[
\|f\|_{A^2_\alpha(\mathbb{B})} \cong |f(0)|^2 + \int_\mathbb{B} |\nabla f(z)|^2(1 - |z|^2)^{\alpha + 2} dv(z).
\]
On the other hand,
\[
\|f\|_{A^2_\alpha(\mathbb{B})}^2 = \int_\mathbb{B} |f(z)|^2(1 - |z|^2)^\alpha dv(z).
\]
Then by Lemma 2.1,
\[
|Rf(z)| \leq \frac{C\|f\|_{A^2_\alpha(\mathbb{B})}}{(1 - |z|^2)^{\frac{n+1+\alpha}{2} + 1}}.
\]
By the proof of Lemma 2.14 in [6] we have
\[
|Rf(z)| \leq |z|\|\nabla f(z)\|,
\]
then we draw the conclusion. \(\square\)

Lemma 2.3. Suppose \(p > 0 \), \(\alpha > -1 \), \(\varphi : \mathbb{B} \to \mathbb{B} \) be analytic, \(\psi \in H(\mathbb{B}) \),
set \(T = RM_\psi C_\varphi : A^2_\alpha(\mathbb{B}) \to H^\infty \). Then \(T \) is compact if and only if \(T \) is bounded and for any bounded sequence \(\{f_k\} \) in \(A^2_\alpha(\mathbb{B}) \) which converges to zero uniformly on compact subsets of \(\mathbb{B} \), \(\|Tf_k\|_\infty \to 0 \) as \(k \to \infty \).

By standard arguments from Proposition 3.11 in [3], this lemma follows.

Theorem 2.4. Assume that \(p > 0 \), \(\alpha > -1 \), \(\varphi : \mathbb{B} \to \mathbb{B} \) be analytic , \(\psi \in H(\mathbb{B}) \). Then \(RM_\psi C_\varphi : A^2_\alpha(\mathbb{B}) \to H^\infty \) is bounded if and only if
\[
\sup_{z \in \mathbb{B}} \frac{|\psi(z)||R\varphi(z)|}{(1 - |\varphi(z)|^2)^{\frac{n+1+\alpha}{2} + 1}} < \infty, \tag{1}
\]
\[
\sup_{z \in \mathbb{B}} \frac{|R\psi(z)|}{(1 - |\varphi(z)|^2)^{\frac{n+1+\alpha}{2}}} < \infty. \tag{2}
\]
Proof. Assume that $RM\varphi C\varphi : A_\alpha^2(\mathbb{B}) \to H^\infty$ is bounded. For every $a \in \mathbb{B}$, let

$$f_a(z) = \left(\frac{a - z}{1 - \overline{a}z}\right)^2 \left(\frac{1 - |a|^2}{(1 - \overline{a}z)^2}\right) \frac{n + 1 + \alpha}{2}.$$

Then a change of variables yields that

$$\|f_a\|_{A_\alpha^2(\mathbb{B})} = \int \|f_a(z)\|^2 (1 - |z|^2)^\alpha dv(z)$$

$$= \int_\mathbb{B} \frac{|a - z|^2 (1 - |a|^2)^\alpha (1 - |z|^2)^\alpha}{1 - \overline{a}z^{2\alpha}} \left(\frac{1 - |a|^2}{(1 - \overline{a}z)^2}\right)^{n+1} dv(z)$$

$$\leq \int_\mathbb{B} 2^{2\alpha} \frac{1 - |a|^2}{(1 - \overline{a}z)^2}^{n+1} dv(z) \leq C.$$

Obviously, $f_a \in A_\alpha^2(\mathbb{B})$, $\sup_{a \in \mathbb{B}} \|f_a\|_{A_\alpha^2(\mathbb{B})} < C$. It is easy to see that

$$RF_a(z) = \left(\frac{a - z}{1 - \overline{a}z}\right) \frac{(n + 1 + \alpha)(1 - |a|^2)^\frac{n + 1 + \alpha}{2}}{(1 - \overline{a}z)^{n+2+\alpha}}$$

$$+ \left(\frac{1 - |a|^2}{(1 - \overline{a}z)^2}\right)^\frac{n + 1 + \alpha}{2} \frac{(a - z) - z(1 - \overline{a}z)}{(1 - \overline{a}z)^2},$$

which implies that

$$f_{\varphi(z)}(\varphi(z)) = 0,$$

$$(RF_{\varphi(z)})(\varphi(z)) = \frac{-\varphi(z)}{(1 - |\varphi(z)|^2)^\frac{n + 1 + \alpha}{2} + 1}.$$

Then we have

$$\|RM\varphi C\varphi f_{\varphi(z)}\|_\infty \geq \sup_{z \in \mathbb{B}} |f_{\varphi(z)}(\varphi(z)) \cdot R\psi(z) + \frac{\psi(z) \cdot R\varphi(z) \cdot (RF_{\varphi(z)})(\varphi(z))}{\varphi(z)}|$$

$$\geq \sup_{z \in \mathbb{B}} |\psi(z)| |R\varphi(z)| (1 - |\varphi(z)|^{n + 1 + \alpha}).$$

Then (1) can be obtained.

Next we assume

$$g_a(z) = \left(\frac{1 - |a|^2}{(1 - \overline{a}z)^2}\right)^\frac{n + 1 + \alpha}{2}.$$

Similarly as above, $g_a \in A_\alpha^2(\mathbb{B})$, $\sup_{a \in \mathbb{B}} \|g_a\|_{A_\alpha^2(\mathbb{B})} < C$. On the other hand,

$$g_{\varphi(z)}(\varphi(z)) = \frac{1}{(1 - |\varphi(z)|^2)^\frac{n + 1 + \alpha}{2}},$$

$$(Rg_{\varphi(z)})(\varphi(z)) = \frac{(n + 1 + \alpha)|\varphi(z)|^2}{(1 - |\varphi(z)|^2)^\frac{n + 1 + \alpha}{2} + 1},$$

which implies that

$$\|RM\varphi C\varphi g_{\varphi(z)}\|_\infty \geq \sup_{z \in \mathbb{B}} |g_{\varphi(z)}(\varphi(z)) \cdot R\psi(z) + \frac{\psi(z) \cdot R\varphi(z) \cdot (Rg_{\varphi(z)})(\varphi(z))}{\varphi(z)}|.$$
For all

From Theorem 2.4 we know \(\psi \)

Theorem 2.5. Assume that \(\phi \)

Since \(H \)

Proof. From Lemma 2.1 and Lemma 2.2,

\[
\| (R\psi f)(z) \| = \sup_{z \in B} \left| f(\phi(z)) \cdot R\psi(z) + \frac{\psi(z) \cdot R\psi(z) \cdot (Rf)(\phi(z))}{\phi(z)} \right|
\]

\[
\leq \sup_{z \in B} \frac{C |R\psi(z)||f|_{A_2^a(B)}}{(1 - |\phi(z)|^2)^{n+\frac{1+a}{2}}} + \sup_{z \in B} \frac{C |\phi(z)||R\psi(z)||f|_{A_2^a(B)}}{(1 - |\phi(z)|^2)^{n+\frac{1+a}{2}+1}}.
\]

From the assumption, \(R\psi f : A_2^a(B) \to H^\infty \) is bounded.

\[\square\]

Theorem 2.5. Assume that \(p > 0 \), \(\alpha > -1 \), \(\phi : B \to B \) be analytic , \(\psi \in H(B) \). Then \(R\psi f : A_2^a(B) \to H^\infty \) is compact if and only if

\[
\sup_{z \in B} |\psi(z)||R\psi(z)| < \infty,
\]

(3)

\[
\sup_{z \in B} |R\psi(z)| < \infty,
\]

(4)

\[
\sup_{|z(z)| \to 1} \frac{|\psi(z)||R\psi(z)|}{(1 - |\phi(z)|^2)^{n+\frac{1+a}{2}+1}} = 0,
\]

(5)

\[
\sup_{|z(z)| \to 1} \frac{|R\psi(z)|}{(1 - |\phi(z)|^2)^{n+\frac{1+a}{2}}} = 0.
\]

(6)

Proof. Assume that \(R\psi f : A_2^a(B) \to H^\infty \) is compact. From Lemma 2.3, we know that \(R\psi f \) is bounded and by taking \(f(z) = 1 \), it follows that \(\sup_{z \in B} |R\psi(z)| < \infty \). By taking the function \(f(z) = z \), we have that

\[
\sup_{z \in B} \left| \psi(z) \cdot R\psi(z) + R\psi(z) \cdot \phi(z) \right| < \infty.
\]

From above and \(\| \phi \|_{\infty} < 1 \), we get \(\sup_{z \in B} |\psi(z) \cdot R\psi(z)| < \infty \).

If we suppose (5) does not hold, then there exist a positive number \(\delta \in (0, 1) \) and a sequence \(\{z_n\}_{n \in \mathbb{N}} \) in \(B \), and \(|\phi(z_n)| \to 1 \) as \(n \to \infty \) such that

\[
\sup_{|z(z)| \to 1} \frac{|\psi(z_n)||R\psi(z_n)|}{(1 - |\phi(z_n)|^2)^{n+\frac{1+a}{2}+1}} \geq \delta
\]

for all \(n \in \mathbb{N} \). Next consider function

\[
f_n(z) = \frac{\phi(z_n) - z}{1 - \phi(z_n)z} \left(\frac{1 - |\phi(z_n)|^2}{(1 - \phi(z_n)z)^2} \right)^{\frac{n+1+a}{2}}, \quad z \in B.
\]

From Theorem 2.4 we know \(f_n \in A_2^a(B) \), \(f_n \to 0 \) uniformly on compact subsets of \(B \). From Lemma 3, it follows that a sequence \(\{R\psi f_n\} \) tends to 0 in \(H^\infty \).
On the other hand,

\[\| (RM_\psi C_\varphi f_n)(z_n) \|_\infty \geq |f_n(\varphi(z_n)) \cdot R\psi(z_n) + \frac{\psi(z_n) \cdot R\varphi(z_n) \cdot (RF_n)(\varphi(z_n))}{\varphi(z_n)}| \]

\[\geq \frac{C|\psi(z_n)||R\varphi(z_n)|}{(1 - |\varphi(z_n)|^2)^{\frac{n+1+\alpha}{2}}} \geq \delta.\]

Which is absurd, so (5) holds.

Now we consider the other function

\[g_k(z) = \left(1 - |\varphi(z_k)|^2\right)^{\frac{n+1+\alpha}{2}}, \quad z \in \mathbb{B}.\]

As the proof of Theorem 2.4, \(g_k \in \mathbb{A}_\alpha^2(\mathbb{B})\), \(g_k \to 0\) uniformly on compact subsets of \(\mathbb{B}\). From Lemma 2.3, we can see that the sequence \(RM_\psi C_\varphi g_k \to 0\) in \(H^\infty\).

\[\| (RM_\psi C_\varphi g_k)(z_k) \|_\infty \geq |g_k(\varphi(z_k)) \cdot R\psi(z_k) + \frac{\psi(z_k) \cdot R\varphi(z_k) \cdot (Rg_k)(\varphi(z_k))}{\varphi(z_k)}| \]

\[\geq \frac{C|\psi(z_k)||R\varphi(z_k)|}{(1 - |\varphi(z_k)|^2)^{\frac{n+1+\alpha}{2}}} - \frac{|R\psi(z_k)|}{(1 - |\varphi(z_k)|^2)^{\frac{n+1+\alpha}{2}}}.\]

Thus

\[\lim_{|\varphi(z_k)| \to 1} \frac{|\psi(z_k)||R\varphi(z_k)|}{(1 - |\varphi(z_k)|^2)^{\frac{n+1+\alpha}{2}}} = \lim_{|\varphi(z_k)| \to 1} \frac{|R\psi(z_k)|}{(1 - |\varphi(z_k)|^2)^{\frac{n+1+\alpha}{2}}}.\]

From the above proof, we get (6).

Conversely, for any bounded sequence \(\{f_n\} \in \mathbb{A}_\alpha^2(\mathbb{B})\) with \(\{f_n\} \to 0\) uniformly on compact subsets of \(\mathbb{B}\), by Lemma 2.3, it is enough to prove \(RM_\psi C_\varphi g_k\) tends to 0 in \(H^\infty\). From (5) and (6), given every \(\varepsilon > 0\), there exists a \(\delta \in (0, 1)\) such that when \(\delta < |\varphi(z)| < 1,\)

\[\frac{|\psi(z)||R\varphi(z)|}{(1 - |\varphi(z)|^2)^{\frac{n+1+\alpha}{2}}} < \varepsilon; \quad \frac{|R\psi(z)|}{(1 - |\varphi(z)|^2)^{\frac{n+1+\alpha}{2}}} < \varepsilon.\]

On the other hand, since \(\{f_n\} \to 0\) uniformly on compact subsets of \(\mathbb{B}\), if we set \(h_n(z) = R\frac{f_n(z)}{z}\), then Cauchy’s estimates give that \(\{h_n\} \to 0\) uniformly on compact subsets of \(\mathbb{B}\), thus there exists an \(N_0 \in \mathbb{N}\), for every \(n > N_0, \ |\varphi(z)| \leq \delta, \ |f_n(\varphi(z))| < \varepsilon\) and \(|h_n(\varphi(z))| < \varepsilon.\)

Thus, from (3) and (4) we have

\[\sup_{|\varphi(z)| \leq \delta} |f_n(\varphi(z)) \cdot R\psi(z) + \frac{\psi(z) \cdot R\varphi(z) \cdot (RF_n)(\varphi(z))}{\varphi(z)}| \]

\[\leq \varepsilon \sup_{|\varphi(z)| \leq \delta} |\psi(z) \cdot R\varphi(z)| + \sup_{|\varphi(z)| \leq \delta} |R\psi(z)| \leq C\varepsilon.\]
Thus
\[
\|RM_\psi C_\varphi f_n\|_\infty = \sup_{z \in \mathbb{B}} \left| f_n(\varphi(z)) \cdot R\psi(z) + \frac{\psi(z) \cdot R\varphi(z) \cdot (Rf_n)(\varphi(z))}{\varphi(z)} \right|
\]
\[
\leq \sup_{\delta < |\varphi(z)| < 1} \left| f_n(\varphi(z)) \cdot R\psi(z) + \frac{\psi(z) \cdot R\varphi(z) \cdot (Rf_n)(\varphi(z))}{\varphi(z)} \right|
\]
\[
+ \sup_{|\varphi(z)| \leq \delta} \left| f_n(\varphi(z)) \cdot R\psi(z) + \frac{\psi(z) \cdot R\varphi(z) \cdot (Rf_n)(\varphi(z))}{\varphi(z)} \right|
\]
\[
\leq C \varepsilon + 2 \varepsilon.
\]
So \(RM_\psi C_\varphi : A^2_\alpha(\mathbb{B}) \to H^\infty\) is compact. \(\square\)

REFERENCES

Received: November 17, 2014; Published: January 12, 2015