Common Local Spectral Properties of Bounded Linear Operators AT and SA

such that $BSA = ATB$

1Abdelaziz Tajmouati, 2Abdeslam El Bakkali
and 3Mohamed Baba Mohamed Ahmed

1,3 Sidi Mohamed Ben Abdellah University
Faculty of Sciences Dhar El Marhaz
Fez, Morocco

2 Chouaib Dokkali University
Faculty of Sciences
El Jadida, Morocco

Copyright © 2014 Abdelaziz Tajmouati et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Let $L(X,Y)$ the Banach space of linear continuous operators between Banach spaces X and Y. The main goal of this paper is to study some common local spectral properties of the linear operators AT and SA such that $T,S \in L(Y,X)$ and $A,B \in L(X,Y)$ satisfying the operator equation $BSA = ATB$. We prove some local spectral inclusions. Again some results concerning the commutator $C(S,T)$ at $A \in L(X,Y)$ are given.

Keywords: local spectral theory, SVEP Property, Bishop’s Property (β), Operator equation, Commutator
1 Introduction

Let X and Y the Banach spaces, $L(X,Y)$ denotes the set of linear continuous operators from X to Y. If $X = Y$ write $L(X) = L(X,X)$ the Banach algebra of all bounded linear operators on X. The dual space of X is denoted by X^*. For $T \in L(X)$ we denote by $\sigma(T)$, $\mathcal{R}(T)$, $\mathcal{N}(T)$ and T^* respectively the spectrum, the range, the kernel and the adjoint of T.

Recall that several authors has investigated to study the common spectral properties of two given operators $T \in L(X)$ and $S \in L(Y)$ and linked in some way by an operator $A \in L(X,Y)$ for example $SA = AT$. It is known that TA and SA share many common local spectral properties such as SVEP property, property of Bishop (β), property (δ), Decomposability property, property (β_ϵ), Property of Dunford (C). See [2], [3], [7], [10], and [11].

Recently [12] [13], Q.P. Zeng and H.J. Zhong showed that under the condition $ASA = ATA$ the operators AT and SA share many common various regularities in the sense of Kordula and Müller [9].

In this paper, we propose to study the relation between local spectral properties of the operators AT and SA under the general asymptotic equation $BSA = ATB$, noting that B may be different from A.

Firstly we fix some concept in local spectral theory. An operator $T \in L(X)$ has the single valued extension property (SVEP, for short) at $\lambda \in \mathbb{C}$ if and only if for every neighborhood U_{λ} of λ the only analytic function $f : U_{\lambda} \to X$ satisfying $(T - \mu)f(\mu) = 0 \ \forall \mu \in U_{\lambda}$ is the null function $f \equiv 0$. We say that T has SVEP if T has SVEP for all $\lambda \in \mathbb{C}$, see [8].

For $T \in L(X)$, the set of local resolvent $\rho_T(x)$ of T at point $x \in X$ is defined as the set of every $\lambda \in \mathbb{C}$ such that there exists a neighborhood U_{λ} of λ and $f : U_{\lambda} \to X$ such that $(T - \mu)f(\mu) = x \ \forall \mu \in U_{\lambda}$. The local spectrum $\sigma_T(x)$ of T at x is defined as $\sigma_T(x) = \mathbb{C}\setminus \rho_T(x)$. We observe that the local analytical solution of the equation given in the definition of the local resolvent will be unique if and only if T has SVEP.

For all subset F of \mathbb{C}, the local spectral space of T associated to F is defined by

$$X_T(F) = \{x \in X; \sigma_T(x) \subset F\}.$$

Obviously that $X_T(F)$ is a hyperinvariant subspace of T, but not necessarily
closed.
An operator $T \in L(X)$ has the property of Dunford (C) if $X_T(F)$ is closed for every closed set F of \mathbb{C}.
We denote by $D(\lambda, r)$ the disk centered at $\lambda \in \mathbb{C}$ and has a radius $r > 0$.
We denote by $\mathcal{O}(U, X)$ the Fréchet algebra of all X-valued analytic functions on the open subset $U \subset \mathbb{C}$ endowed with uniform convergence on compact subsets of U.
An operator $T \in L(X)$ satisfies the Bishop property (β) if there exists $r > 0$ such that for any open subset $U \subset D(0, r)$ and for any sequence $(f_n)_{n=1}^{\infty} \subset \mathcal{O}(U, X)$ such that $\lim_{n \to \infty} (T - \mu)f_n(\mu) = 0$ in $\mathcal{O}(U, X)$, then $\lim_{n \to \infty} f_n(\mu) = 0$ in $\mathcal{O}(U, X)$. We denote by $\sigma_\beta(T)$ the set of λ such that T does not satisfy the property (β).

We say that T satisfies the property (β) if $\sigma_\beta(T) = \emptyset$. We say that $T \in L(X)$ has the Decomposition property (δ) if T^* satisfies the property (β).
$T \in L(X)$ is decomposable in the sense of Foias [5] if and only if T satisfies both (β) and (δ). The same way we define the property (β_ϵ). We denote by $\xi(U, X)$ the Fréchet algebra of all X-valued infinitely continuously differentiable on the open subset $U \subset \mathbb{C}$ endowed with the topology of uniform convergence on compact subsets of U of all derivatives.
An operator $T \in L(X)$ satisfies the property (β_ϵ) at $\lambda \in \mathbb{C}$ if there exists neighborhood U_λ of λ such that for all open subsets $U \subset U_\lambda$ and for any sequence $(f_n)_{n=1}^{\infty} \subset \xi(U, X)$ such as $\lim_{n \to \infty} (T - \mu)f_n(\mu) = 0$ in $\xi(U, X)$, implies $\lim_{n \to \infty} f_n(\mu) = 0$ in $\xi(U, X)$.
we denote by $\sigma_{\beta_\epsilon}(T)$ the set of λ such that T does not satisfy the property (β_ϵ).

We say that T satisfies the property (β_ϵ) if $\sigma_{\beta_\epsilon}(T) = \emptyset$. We know that T has the property (β_ϵ) if T is a subscalar. For further definitions and more details, we refer the reader to [1] and [6].
We can prove the following implications (see [5] and [6]) :

Subscalar \Rightarrow property of Bishop(β) \Rightarrow property of Dunford (C) \Rightarrow SVEP.

For every closed set F of \mathbb{C}, the global spectral subspace $\mathcal{X}_T(F)$ is defined as the set of all point $x \in X$ such that there exists an analytic function $f : \mathbb{C} \setminus F \to X$ such that $(T - \lambda)f(\lambda) = x$ for all $\lambda \in \mathbb{C} \setminus F$.
Clearly $\mathcal{X}_T(F)$ is a hyperinvariant subspace of T and $\mathcal{X}_T(F) \subset X_T(F)$. Plus we will get the equality $\mathcal{X}_T(F) = X_T(F)$ on any closed set F of \mathbb{C} when T has
SVEP, see [6, proposition 3.3.2]

Let \(T \in L(X) \) and \(S \in L(Y) \), the commutator \(C(S, T) \in L(L(X), L(Y)) \)
introducing by Colojoara and Foias in [5] is the mapping defined by
\[
C(S, T)(A) = SA - AT \quad \text{for all } A \in L(X, Y).
\]

A naturel link between the operators \(T \in L(X) \) and \(S \in L(Y) \) is provided by
the intertwining condition \(SA = AT \) for some non-zero operator \(A \in L(X, Y) \).
The iterates \(C(S, T)^n \) of the commutator are defined, in the usual fashion, for
all \(A \in L(X, Y) \) and any \(n \in \mathbb{N} \) by
\[
C(S, T)^0(A) = A \quad \text{and} \quad C(S, T)^n = C(S, T)(C(S, T)^{n-1}(A)).
\]

By induction we can be show that
\[
C(S, T)^n(A) = \sum_{k=0}^{n} C_n^k(-1)^k S^{n-k} A T^k
\]

If \(X = Y \) and \(S, T \) and \(A \) commute by pairs with each other it can be deduced that
\[
C(S, T)^n(A) = (S - T)^n A.
\]

The commutators play an important role in the theory of local spectral inclusions, see [1], [5] and [6].

Recall that the local spectral radius of the commutator \(C(S, T) \) at \(A \in L(X, Y) \) is defined as [6]
\[
\rho_{C(S, T)}(A) = \limsup_{n \to \infty} \|C(S, T)^n(A)\|^{\frac{1}{n}}.
\]

According to [6, proposition 3.4.2] we have
\[
A \mathcal{X}_T(F) \subset \mathcal{Y}_S(F + D(0, r)) \quad \text{for all closed set } F \subset \mathbb{C}.
\]

We say that the pair \((S, T) \in L(Y) \times L(X) \) is asymptotically interwined by
the operator \(A \in L(X, Y) \) if
\[
\lim_{n \to \infty} \|C(S, T)^n(A)\|^{\frac{1}{n}} = 0.
\]

Evidently, this notion is a generalization of the ordinary intertwining condition \(SA = AT \), and also of the higher order intertwining condition
\[
C(S, T)^n(A) = 0 \quad \text{for some } n \in \mathbb{N}
\]

If \(T \) has SVEP we obtain
\[
\sigma_S(Ax) \subset \sigma_T(x) + D(0, r_{C(S, T)}(A)) \quad \text{for all } x \in X.
\]

If \(r_{C(S, T)}(A) = 0 \) we obtain \(\sigma_S(Ax) \subset \sigma_T(x) \).
The properties of local spectrum between AT and SA

We begin with the following theorem which gives some relation between the local spectrum.

Theorem 2.1. Let X,Y be two Banach spaces, $S,T \in L(Y,X)$ and $A,B \in L(X,Y)$ such that

$$BSA = ATB.$$

Then we have the following inclusions

1. $\sigma_{AT}(Bx) \subset \sigma_{SA}(x)$
2. $\sigma_{TA}(TBSy) \subset \sigma_{AS}(y)$.

Proof:

1. We assume that $\lambda \notin \sigma_{SA}(x)$. Then there exists an analytic function $f : U_\lambda \to X$ defined on some neighborhood U_λ of λ such that

$$(SA - \mu)f(\mu) = x \text{ pour tout } \mu \in U_\lambda.$$

Thus, $B(SA - \mu)f(\mu) = (AT - \mu)B f(\mu) = Bx$ and $\lambda \notin \sigma_{AT}(Bx)$.

2. We know that $\sigma_{TA}(Tz) \subset \sigma_{AT}(z)$ and by using (1) we get

$$\sigma_{TA}(TBSy) \subset \sigma_{AT}(BSy) \subset \sigma_{SA}(Sy) \subset \sigma_{AS}(y).$$

If $A = B$ we obtain the theorem 2.3 in [13]

Corollary 2.1. In particular $A = B$ we get

1. $\sigma_{AT}(Ax) \subset \sigma_{SA}(x) \subset \sigma_{AT}(Ax) \cup \{0\}$
2. $\sigma_{TA}(TASy) \subset \sigma_{AS}(y) \subset \sigma_{TA}(TASy) \cup \{0\}$

Proof: Applique the theorem 2.1.

Theorem 2.2. Let X,Y be two Banach spaces, $S,T \in L(Y,X)$ and $A,B \in L(X,Y)$ such that

$$BSA = ATB.$$

Then
1. If B is injective, then
$$\sigma_\beta(SA) \subset \sigma_\beta(AT)$$
In particular if AT has the property β, then SA shares the same property.

2. If B is injective, then $\sigma_\beta(SA) \subset \sigma_\beta(AT)$. In particular if AT is subscalar, then SA is also subscalar.

3. If $A = B$ we will have the equality of these inclusions.

Proof:

1. Let $\lambda \notin \sigma_\beta(AT)$. On open set of $U \subset D(\lambda, r)$ of \mathbb{C} and a sequence $(g_n(\mu))_{n \in \mathbb{N}}$ of $O(U, X)$ such that
$$\lim (SA - \mu)g_n(\mu) = 0$$
$$\lim (BSA - \mu B)g_n(\mu) = 0$$
$$\lim (ATB - \mu B)g_n(\mu) = 0$$
$$\lim (AT - \mu)Bg_n(\mu)) = 0$$

Since
$$\lim Bg_n(\mu) = 0$$
and as B is injective, then $\lim g_n(\mu) = 0 \ \forall \mu \in U$.

Since
$$\lambda \notin \sigma_\beta(SA).$$

Similarly for the other inclusion.

2. The same way as before.

3. see theorem 2.1 in [13] ■

Corollary 2.2. Let X,Y two Banach spaces, $S,T \in L(Y,X)$ and $A,B \in L(X,Y)$ such that
$$BSA = ATB.$$ If B is surjective, then
$$\sigma_\beta((AT)^*) \subset \sigma_\beta((SA)^*)$$
In particular if SA has the property (δ), then AT has it also.
Proof: Since B is surjective, then B^* is injective and apply the previous theorem 2.2 we obtained the results. □

Theorem 2.3. Let $A, B \in L(X,Y)$ and $S, T \in L(Y,X)$ such that $BSA = ATB$. Then for all $d \in \mathbb{N}$ we have

1. $BR(SA - I)^d \subset R(AT - I)^d$
2. $BN(SA - I)^d \subset N(AT - I)^d$
3. $SATR(BT - I)^d \subset R(SB - I)^d$
4. $SATN(BT - I)^d \subset N(SB - I)^d$

Proof:

1. Let $y \in R(SA - I)^d$, then there exists $x \in X$ such that $(SA - I)^d(x) = y$ Whence $B(SA - I)^d = By$ without forgetting the equality $BSA = ATB$ we obtain $(AT - I)^d(Bx) = By$ and therefore $By \in R(AT - I)^d$
 In conclusion $BR(SA - I)^d \subset R(AT - I)^d$
2. Same way as in the previous property.
3. Let $y \in R(BT - I)^d$, then there exists $x \in Y$ such that $(BT - I)^d(x) = y$ whence $SAT(BT - I)^d(x) = SATy$ with the equality $BSA = ATB$ we obtain $(SB - I)^dSAT(x) = SATy$ therefore $SATy \in R(SB - I)^d$ And consequently $SATR(BT - I)^d \subset R(SB - I)^d$
4. The same way as the previous □

Consequently we have the following result, For more details see lemma 2.3 [12]

Corollary 2.3. If $A = B$, then we will obtain for all $d \in \mathbb{N}$ we have

1. $AR(SA - I)^d \subset R(AT - I)^d$
2. $AN(SA - I)^d \subset N(AT - I)^d$
3. $SATR(AT - I)^d \subset R(SA - I)^d$
4. $SATN(AT - I)^d \subset N(SA - I)^d$

Under the injectivity of B the following theorem show that the SVEP holds for AT and SA.

Theorem 2.4. Let $S, T \in L(Y,X)$ and $A, B \in L(X,Y)$ such that

$$BSA = ATB.$$

If B is injective, then AT has SVEP, implies SA has it also.
Proof: Let $S, T \in L(Y,X)$ and $A, B \in L(X,Y)$ and $f : U \to \mathbb{C}$ is an analytic function on an neighborhood U of X such that

$$(SA - \mu)f(\mu) = 0 \text{ for all } \mu \in U$$

$$B(SA - \mu)f(\mu) = 0 \text{ for all } \mu \in U$$

$$(AT - \mu)Bf(\mu) = 0 \text{ for all } \mu \in U.$$

Therefore AT has SVEP then $Bf(\mu) = 0$ for all $\mu \in U$. Plus B is injective, hence $f \equiv 0$ on U. Finally AT has SVEP \qed

3 Commutator and permanent inclusions

In this section we establish some results concerning the commutator.

Definition 3.1. Let $A, B \in L(X,Y)$ and $S, T \in L(Y,X)$ We define the bilinear application $f_{(S,T)}$ such that

$$f_{(S,T)}(A, B) = BSA - ATB$$

We also set the linear applications g_A et g_B such that

$$g_A : B \to f_{(S,T)}(A, B)$$

$$g_B : A \to f_{(S,T)}(A, B).$$

Remark 1. If we consider the notations in [6], we can write $f_{(S,T)}$

$$f_{(S,T)}(A, B) = BSA - ATB = -[(AT)B - B(SA)] = -C_{(AT, SA)}(B)$$

$$f_{(S,T)}(A, B) = (BS)A - A(TB) = C_{(BS, TB)}(A)$$

So one can see that $g_A = -C_{(AT, SA)}$ and $g_B = C_{(BS, TB)}$.

Definition 3.2. The iterations of g_A and g_B are defined by :

$$g^n_B(A) = A, g^n_B(A) = [C_{(BS, TB)}(A)] = C_{(BS, TB)}([C_{(BS, TB)}]^{n-1})$$

$$g^n_A(B) = B, g^n_A(B) = (-1)^n[C_{(AT, SA)}(B)] = (-1)^nC_{(AT, SA)}([C_{(AT, SA)}]^{n-1}).$$

We set

$$r_{f_{(S,T)}}(A) = r_{g_B}(A) = r_{C_{(BS, TB)}}(A) = \limsup \|C_{(BS, TB)}(A)\|^\frac{1}{n} = r_B(A)$$

$$r_{f_{(S,T)}}(B) = r_{g_A}(B) = r_{C_{(AT, SA)}}(B) = \limsup \|C_{(AT, SA)}(B)\|^\frac{1}{n} = r_A(B)$$

$$r_{f_{(S,T)}}(A, B) = \max\{r_{f_{(S,T)}}(A), r_{f_{(S,T)}}(B)\} = r_f(A, B)$$
Remark 2. If $X = Y$ and A, B, S and T commute by pairs with each other then we deduce the following formulas

1. $g^n_B = AB^n(S - T)^n = A(B(S - T))^n$, in this case $g^n_B = 0$ if and only if $BS = BT + N$ with N is nilpotent of index n
2. $g^n_A = BA^n(S - T)^n = B(A(S - T))^n$, in this case $g^n_A = 0$ if and only if $AS = AT + N$ with N is nilpotent of index n
3. If in addition $B = I$, then $f_{(S,T)}(A, I) = SA - AT = C_{(S,T)}(A)$
4. If in addition $A = I$, then $f_{(S,T)}(I, B) = BS - TB = -C_{(T,S)}(B)$

Proposition 3.1. Let $A, B \in L(X, Y)$ and $S, T \in L(Y, X)$. for every closed set $F \subset \mathbb{C}$ we have

1. $AXSA(F) \subset YAT(F + D(0, r_A(B)))$.
 If in addition SA has SVEP , then $BXSA(F) \subset YAT(F + D(0, r_A(B)))$.
 Therefore $\sigma_{AT}(Bx) \subset \sigma_{SA}(x) + D(0, r_A(B))$
2. $AXTB(F) \subset YBS(F + D(0, r_B(A)))$.
 If in addition TB has SVEP , then $AXTB(F) \subset YBS(F + D(0, r_B(A)))$.
 Since $\sigma_{BS}(Ax) \subset \sigma_{TB}(x) + D(0, r_B(A))$.

Proof : See [2, proposition 3.4.2] ■

Corollary 3.1. If $r_B(A) = 0$ we obtain

$$\sigma_{BS}(Ax) \subset \sigma_{TB}(x)$$

and in addition $A = B$ we will get

$$\sigma_{AS}(Ax) \subset \sigma_{TA}(x).$$

Proposition 3.2. Let $A, B \in L(X, Y)$ and $S, T \in L(Y, X)$. Suppose that SA has the property (δ). Then for every $B \in L(X, Y)$ and every $r \geq 0$, we have the following equivalent properties :

1. $r_A(B) \leq r$
2. $BXSA(F) \subset YAT(F + D(0, r))$ for every closed set $F \subset \mathbb{C}$

Proof : See [2, theorem 3.4.3] ■

Références

http://dx.doi.org/10.1007/s00020-011-1875-2

http://dx.doi.org/10.1007/s00020-005-1375-3

http://dx.doi.org/10.1007/bf01255566

http://dx.doi.org/10.2140/pjm.1975.58.61

http://dx.doi.org/10.2298/pim0578127s

http://dx.doi.org/10.2298/pim0693109s

http://dx.doi.org/10.1007/s10114-013-1758-3

553-560.
http://dx.doi.org/10.1016/j.jmaa.2014.01.021

Received : November 17, 2014; Published : January 15, 2015