On Convergence of the Interval Zoro Symmetric
Single Step Procedure for Polynomial Zeros

1Noraini Jamaludin, 1Mansor Monsi and 2Nasruddin Hassan*

1Department of Mathematics
Faculty of Science, Universiti Putra Malaysia
43400 UPM Serdang, Selangor DE, Malaysia

2School of Mathematical Sciences
Faculty of Science and Technology, Universiti Kebangsaan Malaysia
43600 UKM Bangi, Selangor DE, Malaysia
*Corresponding author

Abstract

This paper describes the convergence analysis of the procedure called the interval zoro symmetric single-step procedure IZSS2-5D which we have earlier proposed. The analysis performed shows that the rate of convergence of this procedure is at least eight.

Keywords: Interval iterative, interval zoro, simultaneous inclusion

1. Introduction

Iterative procedures for simultaneous inclusion of simple polynomial zeros were discussed by Monsi and Wolfe [1], Jamaludin et al. [2-6], Monsi et al. [7,8], Sham et al. [9-11] and Bakar et al. [12]. Our interest lies in the procedure proposed by Jamaludin et al. [2] as in Section 2, which was shown to be convergent numerically in terms of shorter CPU times and lesser number of iterations using five test polynomials with $w^{(i)} \leq 10^{-10}$ as the stopping criterion.
2. The interval zero symmetric single-step procedure IZSS2-5D

Consider \(p : R^1 \to R^1 \) a polynomial of degree \(n > 1 \) defined by

\[
p(x) = a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \ldots + a_0 = \prod_{j=1}^{n} (x - x_j^*)
\]

where \(a_i \in R^1 (i = 1, ..., n) \) are given. Suppose that \(x_j^* \in R (i = 1, ..., n) \), \(p \) has \(n \) distinct values and that \(X_j^{(0)} \in I(R) \) (set of real intervals) \((i = 1, ..., n) \) are such that

\[
X_j^{(0)} (i = 1, ..., n)
\]

and \(X_j^{(0)} \cap X_j^{(0)} = \emptyset, (i, j = 1, ..., n; i \neq j) \)

For \(k \geq 0 \)

\[
X_j^{(k)} (i = 1, 2, ..., n) \quad \text{(Initial intervals)} \tag{1a}
\]

\[
x_j^{(k)} = \text{midpoint} \left(X_j^{(k)} \right), (i = 1, ..., n) \tag{1b}
\]

\[
\delta_j^{(k)} = -\frac{p(x_j^{(k)})}{p(x_j^{(0)})} \quad (i = 1, ..., n) \tag{1c}
\]

\[
X_j^{(k,1)} = \left\{ x_j^{(k)} + \frac{\delta_j^{(k)}}{1 + \delta_j^{(k)} \left(\sum_{j=1}^{k} \frac{1}{x_j^{(k)} - x_j^{(k+1)}} + \sum_{j=k+1}^{n} \frac{1}{x_j^{(k)} - x_j^{(k+1)}} \sum_{i=k+1}^{n} 1 \right)} \right\} \cap X_j^{(k)} \quad (i = 1, ..., n) \tag{1d}
\]

\[
X_j^{(k,2)} = \left\{ x_j^{(k)} + \frac{\delta_j^{(k)}}{1 + \delta_j^{(k)} \left(\sum_{j=1}^{k} \frac{1}{x_j^{(k)} - x_j^{(k+1)}} + \sum_{j=k+1}^{n} \frac{1}{x_j^{(k)} - x_j^{(k+1)}} \sum_{i=k+1}^{n} 1 \right)} \right\} \cap X_j^{(k,1)} \quad (i = n, ..., 1) \tag{1e}
\]

\[
X_j^{(k,3)} = \left\{ x_j^{(k)} + \frac{\delta_j^{(k)}}{1 + \delta_j^{(k)} \left(\sum_{j=1}^{k} \frac{1}{x_j^{(k)} - x_j^{(k+1)}} + \sum_{j=k+1}^{n} \frac{1}{x_j^{(k)} - x_j^{(k+1)}} \sum_{i=k+1}^{n} 1 \right)} \right\} \cap X_j^{(k,2)} \quad (i = 1, ..., n) \tag{1f}
\]

\[
X_j^{(k,4)} = X_j^{(k,3)} \quad (i = 1, ..., n) \tag{1g}
\]
Steps (1a) – (1e) were developed by Jamaludin et al. [5], where the rate of convergence was at least six.

3. The rate of convergence of IZSS2-5D

Now we have some descriptions of the Algorithm IZSS2-5D regarding the conditions, inclusion, convergent and the rate of convergence.

Theorem 1: Let \(p \) be defined by \(p(x) = \sum_{i=0}^{n} a_i x^i \), where \(a_i \neq 0 \). If (i) \(p \) has \(n \) distinct zeros \(x_i(i=1,\ldots,n) \), \(x_i \in X_i^{(0)} \) and \(X_i^{(0)} \cap X_j^{(0)} = \emptyset \), \((i, j=1,\ldots,n; i \neq j) \) hold; (ii) \(0 \not\in D_i \in I(R) \) \((D_i=[d_{ij},d_{ij}]) \) is such that \(p(x) \in D_i \) \((\forall x \in X_i^{(0)}) \), \((i=1,\ldots,n) \) and \(w(x_i^{(k+1)}) \leq \frac{1}{2} \left(1 - \frac{d_{ij}}{d_{ij}} \right) w(x_i^{(k)}), \) holds (where \(w(X_i^{(k)}) \leq \sum \left[\frac{x_i^{(k)}, x_j^{(k)}}{x_i^{(k)} - x_j^{(k)}} \right] = \alpha^{(k)} - \beta^{(k)} \)); (iii) the sequence \(\{X_i^{(k)}\} \) \((i=1,\ldots,n) \) are generated from (1) , then (iv) \(\forall k \geq 0 \) \(x_i^{*} \in X_i^{(k,e)} \subseteq X_i^{(k)} \) \((i=1,\ldots,n) \); (vi) \(X^{(0,1)} \supseteq X^{(0,2)} \supseteq \ldots \) with \(\lim_{k \to \infty} X^{(k)} = x_i, X_i^{(k)} \to x_i (k \to \infty) (i=1,\ldots,n) \), and \(\text{O}_{n}(IZSS2-5D.x_i^{*}) \geq 8 \) \((i=1,\ldots,n) \).

Proof

The proofs of (iv) and (v) are identical to the proofs in Monsi and Wolfe [1]. Now the proof of (vi) is as follows.

By (1d), (1e) and (1f), \(\exists \alpha > 0 \) such that \(\forall k \geq 0 \),

\[
 w_i^{(k,1)} \leq \beta \left(w_i^{(k,0)} \right)^2 \left\{ \sum_{j=1}^{i-1} w_j^{(k,1)} + \sum_{j=i+1}^{n} \left(w_j^{(k,0)} \right)^2 \right\} \quad (i=1,\ldots,n),
\]

and

\[
 w_i^{(k,2)} \leq \beta \left(w_i^{(k,1)} \right)^2 \left\{ \sum_{j=1}^{i-1} w_j^{(k,2)} + \sum_{j=i+1}^{n} \left(w_j^{(k,1)} \right)^2 \right\} \quad (i=2,\ldots,n),
\]

and

\[
 w_i^{(k,3)} \leq \beta \left(w_i^{(k,2)} \right)^2 \left\{ \sum_{j=1}^{i-1} w_j^{(k,3)} + \sum_{j=i+1}^{n} \left(w_j^{(k,2)} \right)^2 \right\} \quad (i=3,\ldots,n),
\]

where

\[
 w_i^{(k,s)} = (n-1) \alpha \beta w \left(X_i^{(k,x)} \right) \quad (s=0,1,2),
\]

and

\[
 \beta = \frac{1}{n-1}
\]
Let
\[u_i^{(1,1)} = \begin{cases} 4 & (i = 1, \ldots, n-1) \\ 6 & (i = n) \end{cases} \quad (7) \]
\[u_i^{(1,2)} = \begin{cases} 8 & (i = 1) \\ 6 & (i = 2, \ldots, n) \end{cases} \quad (8) \]
\[u_i^{(1,3)} = \begin{cases} 8 & (i = 1, \ldots, n-1) \\ 10 & (i = n) \end{cases} \quad (9) \]

and for \((r = 1, 2)\), let
\[u_i^{(k+1,r)} = \begin{cases} 8u_i^{(k,r)} & (i = 1, \ldots, n-1) \\ 8u_i^{(k,r)} + 2 & (i = n) \end{cases}, \quad (10) \]

Then by (7) - (10), for \((\forall k \geq 0)\)

\[u_i^{(k,1)} = \begin{cases} 4(8^{(k-1)}) & (i = 1, \ldots, n-1) \\ \frac{44}{7}(8^{(k-1)}) - \frac{2}{7} & (i = n) \end{cases} \quad (11) \]

\[u_i^{(k,2)} = \begin{cases} 8(8^{(k-1)}) & (i = 1) \\ 6(8^{(k-1)}) & (i = 2, \ldots, n-1) \\ \frac{44}{7}(8^{(k-1)}) - \frac{2}{7} & (i = n) \end{cases} \quad (12) \]

\[u_i^{(k,3)} \geq \begin{cases} 8 \left(\frac{8^{(k-1)}}{2} \right) & i \neq 1 \text{ or } \ldots, \\ \frac{72}{7} (8^{(k-1)}) - \frac{2}{7} & (i = n) \end{cases} \quad (13) \]

Without any loss of generality, suppose that \(w_i^{(0,0)} \leq h < 1 \quad i \in 1, \ldots, n \quad (14)\)

Then by inductive argument it follows from (2) - (14) that for \((i = 1, \ldots, n)\) \((k \geq 0)\)

\[w_i^{(k,1)} \leq h^{w_i^{(k+1,1)}}, \quad w_i^{(k,2)} \leq h^{w_i^{(k+1,2)}}, \quad \text{and} \quad w_i^{(k,3)} \leq h^{w_i^{(k+1,3)}}, \]

whence by (11) and (14), \(w_i^{(k+1)} \leq h^{w_i^{(k)}} \quad (i \neq 1, \ldots, n) \quad (15)\)
On convergence of the interval zoro symmetric single step procedure

So, \(\forall k \geq 0\), by (5) - (15), \(w(X_i^{(k)}) \leq \left(\frac{\beta}{\alpha}\right)^{h^{k}}\) \((i = 1,\ldots,n)\), \(\alpha > 0\). \hspace{1cm} (16)

Let \(w^{(k)} = \max_{i \in I} \left\{w\left(X_i^{(k)}\right)\right\}\) \hspace{1cm} (17)

Then by (16) and (17) \(w^{(k)} \leq \left(\frac{\beta}{\alpha}\right)h^{k}\) \((\forall k \geq 0)\).

So, by definition of R-factor in Monsi and Wolfe [1], we have

\[R_s(w^{(k)}) = \limsup_{k \to \infty} \left\{ \left(\frac{\beta}{\alpha}\right)^{h^{k}} \right\} = \lim_{k \to \infty} \left\{ \left(\frac{\beta}{\alpha}\right)^{h^{k}} \right\} = h < 1. \]

Therefore, it is proven that \(O_R(\text{IZSS2-5D}, x^*) \geq 8\) \((i = 1,\ldots,n)\). ■

4. Conclusion

It has been shown analytically in Section 3 that IZSS2-5D has a faster rate of convergence of at least eight thus enhances the rate of convergence.

Acknowledgements. We are indebted to Universiti Kebangsaan Malaysia for funding this research under the grant BKBP-FST-K005560-2014.

References

Received: October 17, 2014; Published: December 2, 2014