On the Twisted Tangent Numbers and Polynomials of Higher Order Associated with Multiple Twisted Tangent Zeta Function

C. S. Ryoo

Department of Mathematics
Hannam University, Daejeon 306-791, Korea

Abstract

In this paper, we introduce the twisted Tangent polynomials $T_{n,\omega}^{(k)}(x)$ of higher order. Finally we construct multiple twisted Tangent zeta function which interpolates the twisted Tangent numbers of higher order at negative integers.

Mathematics Subject Classification: 11B68, 11S40, 11S80

Keywords: Twisted Tangent numbers and polynomials, Twisted Tangent numbers and polynomials of higher order, Tangent zeta function, Multiple twisted Tangent zeta function

1 Introduction

Numerous properties of tangent number are known. Many mathematicians have studied in the area of the analogues of the Bernoulli numbers, Euler numbers, and Genocchi numbers (see [1-6]). In [4], we introduce the twisted Tangent numbers $T_{n,\omega}(x)$ and investigate their properties. Our aim in this paper is to define the twisted Tangent polynomials $T_{n,\omega}^{(k)}(x)$ of higher order k. We also derive the existence of a specific interpolation function which interpolate twisted Tangent polynomials $T_{n,\omega}^{(k)}(x)$ of higher order k at
negative integers. Throughout this paper, we always make use of the following notations: \mathbb{N} denotes the set of natural numbers and $\mathbb{Z}_+ = \mathbb{N} \cup \{0\}$, \mathbb{C} denotes the set of complex numbers, \mathbb{Z}_p denotes the ring of p-adic rational integers, \mathbb{Q}_p denotes the field of p-adic rational numbers, and \mathbb{C}_p denotes the completion of algebraic closure of \mathbb{Q}_p. Let ν_p be the normalized exponential valuation of \mathbb{C}_p with $|p|_p = p^{-\nu_p(p)} = p^{-1}$. When one talks of q-extension, q is considered in many ways such as an indeterminate, a complex number $q \in \mathbb{C}$, or p-adic number $q \in \mathbb{C}_p$. If $q \in \mathbb{C}$ one normally assume that $|q| < 1$. If $q \in \mathbb{C}_p$, we normally assume that $|q-1|_p < p^{-\frac{1}{p}}$ so that $q = \exp(x \log q)$ for $|x|_p \leq 1$.

2 Twisted Tangent polynomials of higher order

In this section, our goal is to define the twisted Tangent numbers and polynomials of higher order. Let $T_p = \cup_{N \geq 1} C_{p^N} = \lim_{N \to \infty} C_{p^N}$, where $C_{p^N} = \{\omega | \omega^{p^N} = 1\}$ is the cyclic group of order p^N. For $\omega \in T_p$, we denote by $\phi_\omega : \mathbb{Z}_p \to \mathbb{C}_p$ the locally constant function $x \mapsto \omega^x$ (see [4]). Now, using multiple of p-adic integral on \mathbb{Z}_p, we introduce the twisted Tangent polynomials of higher order $T_{n, \omega}^{(k)}(x)$: For $k \in \mathbb{N}$, we define

$$\sum_{n=0}^{\infty} T_{n, \omega}^{(k)}(x) \frac{t^n}{n!} = \int_{\mathbb{Z}_p} \cdots \int_{\mathbb{Z}_p} \omega^{x_1 + \cdots + x_k} e^{(x + 2x_1 + \cdots + 2x_k)t} d\mu_1(x_1) \cdots d\mu_1(x_k).$$

By using Taylor series of $e^{(x + 2x_1 + \cdots + 2x_k)t}$ in the above equation, we obtain

$$\sum_{n=0}^{\infty} \left(\int_{\mathbb{Z}_p} \cdots \int_{\mathbb{Z}_p} \omega^{x_1 + \cdots + x_k} (x + 2x_1 + \cdots + 2x_k)^n d\mu_1(x_1) \cdots d\mu_1(x_k) \right) \frac{t^n}{n!} = \sum_{n=0}^{\infty} T_{n, \omega}^{(k)}(x) \frac{t^n}{n!}.$$

By comparing coefficients of $\frac{t^n}{n!}$ in the above equation, we arrive at the following theorem.
Theorem 2.1 For positive integers \(n \) and \(k \), one has

\[
T_{n,\omega}^{(k)}(x) = \int_{\mathbb{Z}_p} \cdots \int_{\mathbb{Z}_p} \omega^{x_1 + \cdots + x_k} (x + 2x_1 + \cdots + 2x_k)^n d\mu_{-1}(x_1) \cdots d\mu_{-1}(x_k).
\]

Observe that for \(x = 0 \), the Theorem 2.1 reduces to Corollary 2.2.

Corollary 2.2 For positive integers \(n \) and \(k \), one has

\[
T_{n,\omega}^{(k)} = \int_{\mathbb{Z}_p} \cdots \int_{\mathbb{Z}_p} \omega^{x_1 + \cdots + x_k} (2x_1 + \cdots + 2x_k)^n d\mu_{-1}(x_1) \cdots d\mu_{-1}(x_k).
\]

The twisted Tangent polynomials of higher order, \(T_{n,\omega}^{(k)}(x) \) are defined by means of the following generating function

\[
F_{\omega}^{(k)}(x, t) = \left(\frac{2}{\omega e^{2t} + 1} \right)^k e^{xt} = \sum_{n=0}^{\infty} T_{n,\omega}^{(k)}(x) \frac{t^n}{n!}.
\]

(2.1)

It follows from (2.1) that

\[
\lim_{\omega \to 1} F_{\omega}^{(k)}(x, t) = \left(\frac{2e^t}{e^{2t} + 1} \right)^k e^{xt}.
\]

This gives a generating function of the Tangent polynomials of higher order. Thus we have the following limit relationship:

\[
\lim_{\omega \to 1} T_{n,\omega}^{(k)}(x) = T_{n}^{(k)}(x),
\]

which yields the Tangent polynomials of higher order as a limit as \(\omega \) approaches 1 (see [2]). By using (2.1), the twisted Tangent numbers of higher order, \(T_{n,\omega}^{(k)} \) are defined by the following generating function

\[
\left(\frac{2}{\omega e^{2t} + 1} \right)^k = \sum_{n=0}^{\infty} T_{n,\omega}^{(k)} \frac{t^n}{n!}, \quad |2t + \log \omega| < \pi.
\]

(2.2)

When \(k = 1 \), above (2.1) and (2.2) will become the corresponding definitions of the twisted Tangent polynomials \(T_{n,\omega}(x) \) and the twisted Tangent numbers \(T_{n,\omega} \) (see [3]). By using binomial expansion in Theorem 2.1, we obtain

\[
T_{n,\omega}^{(k)}(x) = \sum_{l=0}^{n} \binom{n}{l} x^{n-l} \int_{\mathbb{Z}_p} \cdots \int_{\mathbb{Z}_p} \omega^{x_1 + \cdots + x_k} (2x_1 + \cdots + 2x_k)^l d\mu_{-1}(x_1) \cdots d\mu_{-1}(x_k).
\]

By Corollary 2.2, we arrive at the following theorem.
Theorem 2.3 For positive integers n, k, we have
\[T_{n, \omega}^{(k)}(x) = \sum_{l=0}^{n} \binom{n}{l} x^{n-l} T_{l, \omega}^{(k)}. \]

Next, we define distribution relation of the twisted Tangent polynomials of higher order as follows: For $m \in \mathbb{N}$ with $m \equiv 1 \pmod{2}$, we obtain
\[
\sum_{n=0}^{\infty} T_{n, \omega}^{(k)}(x) \frac{t^n}{n!} = \left(\frac{2}{\omega e^{2t} + 1} \right) \left(\frac{2}{\omega e^{2t} + 1} \right) \cdots \left(\frac{2}{\omega e^{2t} + 1} \right) e^{xt}
\]
\[
= \left(\frac{2}{\omega^{m} e^{2mt} + 1} \right)^k \sum_{a_1, \ldots, a_k = 0}^{m-1} (-\omega)^{a_1 + \cdots + a_k} e^\left(\frac{2a_1 + \cdots + 2a_k + x}{m} \right) (mt)^n.
\]

From the above, we have
\[
\sum_{n=0}^{\infty} T_{n, \omega}^{(k)}(x) \frac{t^n}{n!} = \sum_{a_1, \ldots, a_k = 0}^{m-1} (-\omega)^{a_1 + \cdots + a_k} \sum_{n=0}^{\infty} T_{n, \omega}^{(k)} \left(\frac{2a_1 + \cdots + 2a_k + x}{m} \right) (mt)^n / n!.
\]

By comparing coefficients of $\frac{t^n}{n!}$ in the above equation, we arrive at the following theorem.

Theorem 2.4 (Distribution relation of the twisted Tangent polynomials of higher order). For $m \in \mathbb{N}$ with $m \equiv 1 \pmod{2}$, one has
\[T_{n, \omega}^{(k)}(x) = m^n \sum_{a_1, \ldots, a_k = 0}^{m-1} (-\omega)^{a_1 + \cdots + a_k} T_{n, \omega}^{(k)} \left(\frac{2a_1 + \cdots + 2a_k + x}{m} \right). \]

By (2.1), we have
\[
\sum_{n=0}^{\infty} T_{n, \omega}^{(k)}(x) \frac{t^n}{n!} = 2^k \sum_{a_1, \ldots, a_k = 0}^{m-1} (-1)^{a_1 + \cdots + a_k} \omega^{a_1 + \cdots + a_k} e^{(2a_1 + \cdots + 2a_k + x)t}
\]
\[
= 2^k \sum_{m=0}^{\infty} \binom{m+k-1}{m} (-1)^m \omega^m (2m+x)^t.
\]

From the above, we have
\[
\sum_{n=0}^{\infty} T_{n, \omega}^{(k)}(x) \frac{t^n}{n!} = \sum_{n=0}^{\infty} \left(2^k \sum_{a_1, \ldots, a_k = 0}^{m-1} (-\omega)^{a_1 + \cdots + a_k} (x + 2a_1 + \cdots + 2a_k)^n \right) \frac{t^n}{n!}
\]
\[
= \sum_{n=0}^{\infty} \left(2^k \sum_{m=0}^{\infty} \binom{m+k-1}{m} (-1)^m \omega^m (2m+x)^n \right) \frac{t^n}{n!}.
\]

By comparing coefficients of $\frac{t^n}{n!}$ in the above equation, we arrive at the following theorem.
Theorem 2.5 For positive integers \(n,k \), one has

\[
T^{(k)}_{n,\omega}(x) = 2^k \sum_{a_1,\ldots,a_k=0}^{\infty} (-1)^{a_1+\cdots+a_k} \omega^{a_1+\cdots+a_k} (2a_1 + \cdots + 2a_k + x)^n \\
= 2^k \sum_{m=0}^{\infty} \binom{m+k-1}{m} (-1)^m \omega^m (2m + x)^n.
\]

(2.4)

By definition of the twisted Tangent polynomials of higher order, we have the following addition theorem.

Theorem 2.6 (Addition theorem of the twisted Tangent polynomials of higher order). For \(k \in \mathbb{N} \), one has

\[
T^{(k)}_{n,\omega}(x+y) = \sum_{l=0}^{n} \binom{n}{l} T^{(k)}_{l,\omega}(x) y^{n-l}.
\]

3 Multiple Twisted Tangent zeta function

In this section, we define multiple twisted Tangent zeta function. This function interpolates the twisted Tangent numbers of higher order at negative integers. Let \(w \) be the \(p^{N} \)-th root of unity.

We define multiple twisted Tangent zeta function. This function interpolates the twisted Tangent numbers of higher order at negative integers. By using (2.1), we have

\[
F^{(k)}_{\omega}(x,t) = 2^k \sum_{a_1,\ldots,a_k=0}^{\infty} (-\omega)^{a_1+\cdots+a_k} e^{(2a_1+\cdots+2a_k+x)t} = \sum_{n=0}^{\infty} T^{(k)}_{n,\omega}(x) \frac{t^n}{n!}.
\]

(3.1)

From these generating functions of the twisted Tangent polynomials of higher order, we construct Hurwitz’s type multiple twisted Tangent zeta function as follows:

Definition 3.1 For \(s, x \in \mathbb{C} \) with \(\Re(x) > 0 \), we define

\[
\zeta^{(k)}_{\omega}(s,x) = 2^k \sum_{a_1,\ldots,a_k=0}^{\infty} \frac{(-1)^{a_1+\cdots+a_k} \omega^{a_1+\cdots+a_k}}{(2a_1+\cdots+2a_k+x)^s}.
\]

(3.2)

By the \(l \)-th differentiation on the both side of (3.1) at \(t = 0 \), we obtain the following

\[
T^{(k)}_{n,\omega}(x) = \left(\frac{d}{dt} \right)_l F^{(k)}_{\omega}(x,t) \bigg|_{t=0} = 2^k \sum_{a_1,\ldots,a_k=0}^{\infty} (-\omega)^{a_1+\cdots+a_k} (2a_1+\cdots+2a_k+x)^l.
\]
From (3.1) and (3.2), we arrive at the following theorem.

Theorem 3.2 For positive integer \(l \), one has

\[
\zeta^{(k)}_{\omega}(-l, x) = T^{(k)}_{l, \omega}(x).
\]

By (2.2), we have

\[
\sum_{n=0}^{\infty} T^{(k)}_{n, \omega} \frac{t^n}{n!} = \left(\frac{2}{\omega e^{2t} + 1} \right)^k = 2^k \sum_{m=0}^{\infty} \binom{m+k-1}{m} (-1)^m \omega^m e^{(2m)t}.
\]

By using Taylor series of \(e^{(2m)t} \) in the above, we have

\[
\sum_{n=0}^{\infty} T^{(k)}_{n, \omega} \frac{t^n}{n!} = \sum_{n=0}^{\infty} \left(2^k \sum_{m=0}^{\infty} \binom{m+k-1}{m} (-1)^m \omega^m (2m)^n \right) \frac{t^n}{n!}.
\]

By comparing coefficients of \(\frac{t^n}{n!} \) in the above equation, we have

\[
T^{(k)}_{n, \omega} = 2^k \sum_{m=0}^{\infty} \binom{m+k-1}{m} (-1)^m \omega^m (2m)^n. \tag{3.3}
\]

By using (3.3), we define multiple twisted Tangent zeta function as follows:

Definition 3.3 For \(s \in \mathbb{C} \), we define

\[
\zeta_{\omega}^{(k)}(s) = 2^k \sum_{m=1}^{\infty} \binom{m+k-1}{m} \frac{(-1)^m \omega^m}{(2m)^s}. \tag{3.4}
\]

The function \(\zeta_{\omega}^{(k)}(s) \) interpolates the number \(T^{(k)}_{n, \omega} \) at negative integers. Substituting \(s = -n \) with \(n \in \mathbb{Z}_+ \) into (3.4), and using (3.3), we have the following theorem:

Theorem 3.4 Let \(n \in \mathbb{Z}_+ \), one has

\[
\zeta_{\omega}^{(k)}(-n) = E^{(k)}_{n, \omega}.
\]

References

Received: September 15, 2014; Published: October 27, 2014