Some Results on Fixed Points of

Asymptotically Regular Mappings

B. Baskaran

Department of Mathematics
SRM University, Vadapalani Campus
Chennai – 600 026, Tamil Nadu, India

C. Rajesh

Department of Mathematics
SRM University, Vadapalani Campus
Chennai – 600 026, Tamil Nadu, India

Abstract

In this paper we extend some results of fixed points for asymptotically regular mappings on a complete 2-metric space. We generalize some fixed point theorem of ‘Slobodan C. Nesic’ in the context of 2-metric space

Keywords: Fixed Point, Asymptotically Regular Mapping, 2-metric space

1 Introduction

The concept of asymptotically regular at a point in a space was first introduced by Browder and Petryshyn [1]

2 Preliminaries

Definition 2.1: A 2-metric space is a set X with a real valued non-negative function is defined on $X \times X \times X$ such that
(1) for all \(x, y \in X \), \((x \neq y) \), there exists a point \(z \in X \) such that \(\sigma(x, y, z) \neq 0 \)

(2) \(\sigma(x, y, z) = 0 \) if at least two of points \(x, y, z \) coincide.

(3) \(\sigma(x, y, z) = \sigma(x, z, y) = \sigma(y, z, x) = \sigma(y, x, z) \)

(4) \(\sigma(x, y, z) \leq \sigma(x, y, w) + \sigma(x, w, z) + \sigma(w, y, z) \)

The function \(\sigma \) is called 2-metric for the space and \((X, \sigma)\) is called a 2-metric space.

Definition 2.2: A mapping \(T: X \to X \) of a 2-metric space \((X, \sigma)\) into itself is said to be asymptotically regular at a point \(x \in X \) if

\[
\lim_{n \to \infty} (T^n x, T^{n+1} x, z) = 0, \quad (z \in X).
\]

3 Main Results

In the following theorem, we establish a unique fixed point in \(X \)

Theorem 3.1

Let \((X, \sigma) \) be a complete 2-metric space and \(T: X \to X \) be a mapping such that the following condition is satisfied.

(i) \(\sigma(Tx, Ty, z) \leq p \sigma(x, y, z) + q[\sigma(x, Tx, z) + \sigma(y, Ty, z)] \)

\[
+ r[\sigma(x, Ty, z) + \sigma(y, Tx, z)] \\
+ F[\sigma(x, Tx, z) \cdot \sigma(y, Ty, z)]
\]

for all \(x, y, z \in X \), \(0 \leq p, r, p + 2r < 1 \), \(q + r < 1 \).

If \(T \) is asymptotically regular at some point of \(X \), then \(T \) has a unique fixed point in \(X \).

Proof: We shall assume that \(T \) is asymptotically regular at a point \(x_0 \in X \) and consider the sequence \(\{T^n x_0\} \). Then

\[
\sigma(T^{m-1} x_0, T^n x_0, z) \leq p \sigma(T^{m-1} x_0, T^n x_0, z) \\
+ q[\sigma(T^{m-1} x_0, T^n x_0, z) + \sigma(T^n x_0, T^{m-1} x_0, z)] \\
+ r[\sigma(T^{m-1} x_0, T^{n-1} x_0, z) + \sigma(T^{n-1} x_0, T^{m-1} x_0, z)] \\
+ F[\sigma(T^{m-1} x_0, T^n x_0, z) \cdot \sigma(T^{n-1} x_0, T^m x_0, z)]
\]

\[
\leq p \left[\sigma(T^{m-1} x_0, T^n x_0, z) + \sigma(T^n x_0, T^{m-1} x_0, z) \right] \\
+ q[\sigma(T^{m-1} x_0, T^n x_0, z) + \sigma(T^n x_0, T^{m-1} x_0, z)] \\
+ r[\sigma(T^{m-1} x_0, T^{n-1} x_0, z) + \sigma(T^{n-1} x_0, T^{m-1} x_0, z)] \\
+ F[\sigma(T^{m-1} x_0, T^n x_0, z) \cdot \sigma(T^{n-1} x_0, T^m x_0, z)]
\]
Some results on fixed points of asymptotically regular mappings

\[\lim_{n \to \infty} T^n x_0 = n \]

\[\leq p[\sigma(T^{n-1}x_0, T^n x_0, z) + \sigma(T^n x_0, T^n x_0, z) + \sigma(T^n x_0, T^{n-1}x_0, z) + \sigma(T^n x_0, T^n x_0, 0)] \]

\[+ \sigma(T^n x_0, T^n x_0, 0)] \]

\[+ q[\sigma(T^{n-1}x_0, T^n x_0, z) + \sigma(T^{n-1}x_0, T^n x_0, z)] \]

\[+ 2r \, \sigma(T^n x_0, T^n x_0, z) + r[\sigma(T^{n-1}x_0, T^n x_0, z) + \sigma(T^{n-1}x_0, T^n x_0, z)] \]

\[+ F[\sigma(T^{n-1}x_0, T^n x_0, z) \cdot \sigma(T^{n-1}x_0, T^n x_0, z)] \]

\[\text{i.e. } \sigma(T^n x_0, T^n x_0, z) \leq \frac{(p+q+r)}{1-p-2r} [\sigma(T^{n-1}x_0, T^n x_0, z) + \sigma(T^{n-1}x_0, T^n x_0, z)] \]

\[+ \frac{1}{1-p-2r}F[\sigma(T^{n-1}x_0, T^n x_0, z) \cdot \sigma(T^{n-1}x_0, T^n x_0, z)] \]

Since \(T \) is asymptotically regular at \(x_0 \),
\[\sigma(T^n x_0, T^n x_0, z) \to 0 \text{ as } m, n \to \infty, \quad z \in X \]

\[\Sigma (T^{n-1}x_0, T^n x_0, T^n x_0) \to 0 \]

\[\sigma(T^{n-1}x_0, T^n x_0, T^n x_0) \to 0, \quad \text{etc, as } m, n \to \infty \]

Hence \(\{T^n x_0\} \) is a Cauchy sequence.

Since \((X, \sigma) \) is complete, there exist a point \(u \in X \) such that
\[u = \lim_{n \to \infty} T^n x_0 \]

Suppose that \(u \) is not a fixed point of \(T \),
Then by (i), we obtain
\[\sigma(u, Tu, z) \leq \sigma(u, T^n x_0, z) + \sigma(T^n x_0, Tu, z) \]

\[\leq \sigma(u, T^n x_0, z) + p[\sigma(T^{n-1}x_0, u, z)] + q[\sigma(T^{n-1}x_0, T^n x_0, z) + \sigma(u, Tu, z)] \]

\[+ r [\sigma(T^{n-1}x_0, Tu, z) + \sigma(u, T^n x_0, z)] \]

\[+ F[\sigma(T^{n-1}x_0, T^n x_0, z) \cdot \sigma(u, Tu, z)] \]

\[\leq \sigma(u, T^n x_0, z) + p[\sigma(T^{n-1}x_0, u, z)] \]

\[+ q [\sigma(T^{n-1}x_0, T^n x_0, z) + \sigma(u, Tu, z)] + r \, \sigma(u, T^n x_0, z) \]

\[+ r [\sigma(u, Tu, z) + \sigma(T^{n-1}x_0, u, z) + \sigma(T^{n-1}x_0, Tu, z)] \]

\[+ F \left[\sigma(T^{n-1}x_0, T^n x_0, z) \cdot \sigma(u, Tu, z) \right] \]

\[= (1+r) \, \sigma(u, T^n x_0, z) + (p+r) \, \sigma(u, T^{n-1}x_0, z) + q \, \sigma(T^{n-1}x_0, T^n x_0, z) \]

\[+ (q+r) \, \sigma(u, Tu, z) + F \left[\sigma(T^{n-1}x_0, T^n x_0, z) \cdot \sigma(u, Tu, z) \right] \]

Taking the limit as \(n \to \infty \), we obtain \(\sigma(u, Tu, z) \leq (q+r) \, \sigma(u, Tu, z) \)
Which contradicts \((q+r) < 1 \) unless \(u = Tu \),
Suppose \(T \) has second fixed point \(v \) in \(X \). Then by (i),
We obtain \(\sigma(u, v, z) \leq (p+2r) \, \sigma(u, v, z) \)
Since \((p + 2r) < 1\) it follows that \(u = v\).
Hence the fixed point is unique.

Theorem 3.2

Let \((X, \sigma)\) be a 2-metric space and \(T\) be a mapping of \(X\) into itself satisfying the condition
\[
\sigma(Tx, Ty, z) \leq p\sigma(x, y, z) + q[\sigma(x, Tx, z) + \sigma(y, Ty, z)] + r[\sigma(x, Ty, z) + \sigma(y, Tx, z)] + F[\sigma(x, Tx, z) \cdot \sigma(y, Ty, z)] \quad \text{for all } x, y, z \in X,
\]
\(0 \leq p, r, p + 2r < 1, \quad q + r < 1\).

If \(T\) is asymptotically regular at a point \(x \in X\) and sequence of iterates \(\{T^nx\}\) has a subsequence converging to a point \(z \in X\), then \(z\) is a unique fixed point of \(T\) and \(\{T^nx\}\) also converges to \(z\).

Proof:

Let \(T\) be asymptotically regular at \(x \in X\) and consider the sequence \(\{T^nx\}\), we shall assume that \(\lim_{k \to \infty} T_{nk}^k = z\) and \(Tz \neq z\).

Then by condition (i), we obtain, (for \(u \in X\))
\[
\sigma(z, Tz, u) \leq \sigma(z, T^nkx, u) + \sigma(T^nkx, T^{nk+1}x, u) + \sigma(T^{nk+1}x, Tz, u)
\]
\[
\leq \sigma(z, T^nkx, u) + \sigma(T^nkx, T^{nk+1}x, u) + p \sigma(T^nkx, z, u) + q[\sigma(T^nkx, T^{nk+1}x, u) + \sigma(z, Tz, u)] + r[\sigma(z, T^{nk+1}x, u) + \sigma(T^nkx, Tz, u)] + F[\sigma(T^nkx, T^{nk+1}x, u) \cdot \sigma(z, Tz, u)]
\]
\[
\leq \sigma(z, T^nkx, u) + \sigma(T^nkx, T^{nk+1}x, u) + p \sigma(T^nkx, z, u) + q[\sigma(T^nkx, T^{nk+1}x, u) + \sigma(z, Tz, u)] + r[\sigma(z, T^{nk+1}x, u) + \sigma(z, Tz, u) + \sigma(T^nkx, Tz, z)] + F[\sigma(T^nkx, T^{nk+1}x, u) \cdot \sigma(z, Tz, u)]
\]

Taking limit as \(k \to \infty\), we obtain
\[
\sigma(z, Tz, u) \leq (q + r) \sigma(z, Tz, u) \quad \text{which is contradicts } q + r < 1 \text{ unless } z = Tz.
\]

By Theorem 3.1, \(z\) is the unique fixed point. By using (i), we obtain
\[\sigma(z, T^n x, u) = \sigma(Tz, T^n z, u) \leq \sigma(Tz, T^{n+1} x, u) + \sigma(T^n x, T^{n+1} x). \]

\[\therefore \sigma(z, T^n x, u) \leq \sigma(Tz, T^{n+1} x, u) + \sigma(T^n x, u) \]

\[\leq p \sigma(z, T^n x, u) + q(\sigma(z, Tz, u) + q\sigma(T^n x, T^{n+1} x, u)) + r[\sigma(z, T^n x, u) + \sigma(T^n x, Tz, u)] + F[\sigma(z, Tz, u) \cdot \sigma(T^n x, T^{n+1} x, u)] \]

\[\leq p \sigma(z, T^n x, u) + q[\sigma(z, Tz, u) + \sigma(T^n x, T^{n+1} x, u)] + r[\sigma(z, T^n x, u) + \sigma(T^n x, T^{n+1} x, u)] + \sigma(z, Tz, u) + \sigma(T^n x, Tz, z) + \sigma(T^{n+1} x, T^n x, u) \]

This implies that
\[\sigma(z, T^n x, u) \leq \frac{(1+q+r)}{(1-p-2r)} \sigma(T^n x, T^{n+1} x, u), \quad (x \in X) \]

Since \(p + 2r < 1 \), \(Tz = z \).

Since \(T \) is asymptotically regular, \(\lim_{n \to \infty} \sigma(z, T^n x, u) = 0 \).

This implies that \(\{T^n x\} \) converges to \(z \).

This completes the proof.

References

Received: September 16, 2014; Published: October 29, 2014