An Approximation to the Boussinesq Equations

Cristian-Fabian Baron-Pertuz

Faculty of Exact and Natural Sciences, University of Cartagena
Campus San Pablo, Avenue of Consulado
Cartagena de Indias, Bolivar, Colombia

Ana-Magnolia Marin-Ramirez

Faculty of Exact and Natural Sciences, University of Cartagena
Campus San Pablo, Avenue of Consulado
Cartagena de Indias, Bolivar, Colombia

Ruben-Dario Ortiz-Ortiz

Faculty of Exact and Natural Sciences, University of Cartagena,
Campus San Pablo, Avenue of Consulado
Cartagena de Indias, Bolivar, Colombia

Copyright © 2014 Cristian-Fabian Baron-Pertuz, Ana-Magnolia Marin-Ramirez and Ruben-Dario Ortiz-Ortiz. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

We study the system of type Boussinesq which models the movement of a wave in the surface of a fluid in a channel. We found solutions by using Fourier transform and Neumann series.

Mathematics Subject Classification: 35Q35

Keywords: Boussinesq equations, Neumann series
1 Introduction

In [2], traveling-wave solutions of Boussinesq systems was studied. It was constructed approximate and exact solutions for Boussinesq equations using homotopy perturbation Pade technique in [5]. Methods and applications to water waves were studied in [6] and [3]. In [1] was treated Boussinesq Equations. In paper [4] was obtained the solitary wave solutions of two different forms of Boussinesq equations. In this paper we study new approximated solutions of the Boussinesq equations for a small parameter $\alpha > 0$

$$\eta_t + ((1 + \alpha \eta)u)_\xi = 0,$$
$$u_t + \eta_\xi + \frac{\alpha}{2}(u^2)_\xi - \frac{\beta}{3}u_{\xi \xi t} = 0,$$

subject to the condition

$$u(\xi, 0) = f(\xi), \eta(\xi, 0) = \eta_0(\xi).$$

2 Exact solution in the nonlinear case

Denoting the Fourier transform of a function $g(\xi, t)$ with respect to ξ by

$$\hat{g}(k, t) = \int_{-\infty}^{\infty} g(\xi, t)e^{-ik \xi} d\xi$$

Taking the Fourier transform in (1)-(3) we obtain

$$\hat{\eta}_t + ik\hat{u} + \alpha ik \hat{\eta} \ast \hat{u} = 0, \xi \in \mathbb{R}, t \geq 0,$$
$$(1 + \frac{\beta}{3}k^2)\hat{u}_t + ik\hat{\eta} + \alpha \hat{u} \ast iq\hat{u} = 0,$$

subject to the condition

$$\hat{u}(k, 0) = \hat{f}(k), \hat{\eta}(k, 0) = \hat{\eta}_0(k).$$

Taking the derivative with respect to t in (5) we obtain

$$(1 + \frac{\beta}{3}k^2)\hat{u}_{tt} + ik\hat{\eta}_t + \alpha(\hat{u} \ast iq\hat{u})_t = 0,$$

Multiplying by $-ik$ to equation (4) and adding to equation (7) we obtain

$$(1 + \frac{\beta}{3}k^2)\hat{u}_{tt} + k^2\hat{u} + \alpha k^2 \hat{\eta} \ast \hat{u} + \alpha(\hat{u} \ast iq\hat{u})_t = 0$$
Dividing by \(k^2 \) we have

\[
\frac{1 + \beta k^2}{k^2} \hat{u}_{tt} + \hat{u} + \alpha \hat{\eta} \ast \hat{u} + \frac{\alpha}{k^2} (\hat{u} \ast iq \hat{u})_t = 0 \tag{9}
\]

the solution is

\[
\hat{u}(k,t) = c_1 e^{-ik \sqrt{1 + \frac{\beta}{3} k^2} t} + c_2 e^{ik \sqrt{1 + \frac{\beta}{3} k^2} t} + \alpha T \hat{u} \tag{10}
\]

where

\[
f(t) = \hat{\eta} \ast \hat{u} + \frac{1}{k^2} (\hat{u} \ast iq \hat{u})_t \tag{11}
\]

Dividing by \(ik \) in (5) we obtain

\[
\hat{\eta} = -\frac{1}{ik} ((1 + \frac{\beta}{3} k^2) \hat{u}_t + \alpha \hat{u} \ast i q \hat{u}) \tag{12}
\]

Convoluting with \(\hat{u} \)

\[
\hat{\eta} \ast \hat{u} = -\frac{1}{ik} ((1 + \frac{\beta}{3} k^2) \hat{u}_t + \alpha \hat{u} \ast i q \hat{u}) \ast \hat{u} \tag{13}
\]

Then \(f(t) \) depends on \(\hat{u} \) and from (10)

\[
\hat{u}(k,t) = c_1 e^{-ik \sqrt{1 + \frac{\beta}{3} k^2} t} + c_2 e^{ik \sqrt{1 + \frac{\beta}{3} k^2} t} + \alpha T \hat{u}
\]

where

\[
T \hat{u} = e^{ik \sqrt{1 + \frac{\beta}{3} k^2} t} \int_0^t \frac{i \sqrt{1 + \frac{\beta}{3} k^2} f(\tau) e^{-ik \sqrt{1 + \frac{\beta}{3} k^2} \tau}}{2k(1 + \frac{\beta}{3} k^2)} d\tau
\]

\[
+ e^{-ik \sqrt{1 + \frac{\beta}{3} k^2} t} \int_0^t \frac{i \sqrt{1 + \frac{\beta}{3} k^2} f(\tau) e^{ik \sqrt{1 + \frac{\beta}{3} k^2} \tau}}{2k(1 + \frac{\beta}{3} k^2)} d\tau
\]
For shallow water waves of small amplitude we have that α and β are very small where α is related with nonlinear term and β with respect to the dispersive term and they are dimensionless parameters. Taking $\alpha \to 0$ and using the fact that $(1 - \alpha T)^{-1}$ there exists, then applying Neumann series we have

$$(1 - \alpha T)^{-1} = \sum_{n=0}^{\infty} \alpha^n T^n.$$

Then from (13)

$$\hat{u}(k, t) = \sum_{n=0}^{\infty} \alpha^n T^n \hat{u}(c_1 e^{-\frac{ik}{\sqrt{1 + \frac{\beta}{3}k^2}}} + c_2 e^{\frac{ik}{\sqrt{1 + \frac{\beta}{3}k^2}}})$$

Using the inverse Fourier theorem we obtain

$$u(\xi, t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \sum_{n=0}^{\infty} \alpha^n T^n \hat{u}(c_1 e^{-\frac{ik}{\sqrt{1 + \frac{\beta}{3}k^2}}} + c_2 e^{\frac{ik}{\sqrt{1 + \frac{\beta}{3}k^2}}}) e^{ik\xi} d\xi$$

This is an approximation of u as $\alpha \to 0$.

If we take the derivative with respect to t in this equation we obtain

$$\hat{u}_t(k, t) = c_1 \left(-\frac{ik}{\sqrt{1 + \frac{\beta}{3}k^2}} \right) e^{-\frac{ik}{\sqrt{1 + \frac{\beta}{3}k^2}}} + c_2 \left(\frac{ik}{\sqrt{1 + \frac{\beta}{3}k^2}} \right) e^{\frac{ik}{\sqrt{1 + \frac{\beta}{3}k^2}}} + (\sum_{n=1}^{\infty} \alpha^n T^n \hat{u}(c_1 e^{-\frac{ik}{\sqrt{1 + \frac{\beta}{3}k^2}}} + c_2 e^{\frac{ik}{\sqrt{1 + \frac{\beta}{3}k^2}}}))_t$$

And then replacing this into (12) we get

$$\hat{\eta} = c_1 \sqrt{1 + \frac{\beta}{3}k^2} e^{-\frac{ik}{\sqrt{1 + \frac{\beta}{3}k^2}}} - c_2 \sqrt{1 + \frac{\beta}{3}k^2} e^{\frac{ik}{\sqrt{1 + \frac{\beta}{3}k^2}}} + O(\alpha)$$

Now using the initial conditions (6) we obtain

$$c_1 = \frac{\tilde{f}(k)}{2} + \frac{\hat{\eta}_0(k)}{2 \sqrt{1 + \frac{\beta}{3}k^2}} + O(\alpha)$$

$$c_2 = \frac{\tilde{f}(k)}{2} - \frac{\hat{\eta}_0(k)}{2 \sqrt{1 + \frac{\beta}{3}k^2}} + O(\alpha)$$

We have proved the following theorem

Theorem 2.1. The solution of the problem (1) - (3) is given by (14), (16) and (17).

Acknowledgements. The authors express their deep gratitude to Universidad de Cartagena for partial financial support.
References

Received: September 12, 2014, Published: October: 27, 2014