\(\alpha^m \)-Closed Sets in Topological Spaces

Milby Mathew
Karpagam University
Coimbatore-32, India

R. Parimelazhagan
Department of Science and Humanities
Karpagam College of Engineering
Coimbatore-32, India

Copyright © 2014 Milby Mathew and R. Parimelazhagan. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In this paper, the authors introduce and study the concept of new class of closed sets called \(\alpha^m \)-closed sets. Also we investigate some of their properties.

Mathematics Subject Classification: 54A10

Keywords: \(\alpha^m \)-closed set

1 Introduction

In 1970, N. Levine introduced and investigated the concept of generalized closed sets in a topological space. A subset \(A \) in a topological space \((X, \tau) \) is called generalized closed (briefly g-closed) if \(\text{cl}(A) \subseteq U \) whenever \(A \subseteq U \) and \(U \) is open in \((X, \tau) \). A subset \(B \) is called g-open if the complement of \(B \) (ie \(X/B \)) is g closed. He studied their most fundamental properties and also introduced a separation axiom \(T_{1/2} \). After Levine’s works many authors defined and investigated various notions analogous to Levine’s g-closed sets and related
topics. In this paper, we investigate the behaviour of α^m-closed sets and its various characterization are studied.

2 Preliminaries

Before entering into our work, we recall the following definitions which are due to Levine.

Definition 2.1. [6]: A subset A of a topological space (X, τ) is called a pre-open set if $A \subseteq \text{int}(\text{cl}(A))$ and pre-closed set if $\text{cl}(\text{int}(A)) \subseteq A$.

Definition 2.2. [2] A subset A of a topological space (X, τ) is called a semi-open set if $A \subseteq \text{cl}(\text{int}(A))$ and semi closed set if $\text{int}(\text{cl}(A)) \subseteq A$.

Definition 2.3. [7] A subset A of a topological space (X, τ) is called an α-open set if $A \subseteq \text{int}(\text{cl}(\text{int}(A)))$ and an α-closed set if $\text{cl}(\text{int}(\text{cl}(A))) \subseteq A$.

Definition 2.4. [1] A subset A of a topological space (X, τ) is called a semi-pre-open set (β-open set) if $A \subseteq \text{cl}(\text{int}(\text{cl}(A)))$ and semi-preclosed set (β closed set) if $\text{int}(\text{cl}(\text{int}(A))) \subseteq A$.

Definition 2.5. [3] A subset A of a topological space (X, τ) is called a g-closed set if $\text{cl}(A) \subseteq U$, whenever $A \subseteq U$ and U is open in (X, τ).

Definition 2.6. [4] A subset A of a topological space (X, τ) is called a generalized α-closed (briefly $g\alpha$-closed) set if $\text{acl}(A) \subseteq U$ whenever $A \subseteq U$ and U is α-open in (X, τ).

Definition 2.7. [5] A subset A of a topological space (X, τ) is called weakly generalized α-closed set (briefly wga-closed) if $\tau^{\alpha} - \text{cl}(\text{int}(A)) \subseteq U$ whenever $A \subseteq U$ and U is α-open in (X, τ).

3 α^m-closed sets

In this section we introduce the concept of α^m-closed sets.

Definition 3.1. A subset A of a topological space (X, τ) is called α^m-closed set if $\text{int}(\text{cl}(A)) \subseteq U$ whenever $A \subseteq U$ and U is α-open.

Theorem 3.1. Every α^m-closed set is α-closed set.

Proof. Assume that A is a α^m-closed set in X and let U be an open set such that $A \subseteq U$. Since every open set is α-open set and A is α^m-closed set, $\text{int}(\text{cl}(A)) \subseteq (\text{int}(\text{cl}(A))) \cup (\text{cl}(\text{int}(A))) \subseteq U$. Therefore A is α-closed set in X. \square
αm-closed sets in topological spaces

Remark 3.1. The converse of the above theorem need not be true as seen from the following example.

Example 3.1. Consider X=\{a,b,c\} with τ = \{X, \phi, \{a, b\}, \{b, c\}, \{b\}\}. In topological space the subset A=\{a\} is αclosed but not αm-closed set.

Theorem 3.2. A set A is αm-closed set iff int(cl(A))-A contains no nonempty αm-closed sets.

Proof. Necessity: Suppose that F is a non empty αm-closed subset of int(cl(A)) such that F ⊂ int(cl(A)) - A. Then F ⊂ int(cl(A)) - A. Since F ⊂ int(cl(A)) ∩ Ac. Therefore F ⊂ int(cl(A)) and F ⊆ Ac. Since Fc is αm-open set and A is αm-closed set int(cl(A)) ⊆ Fc. Thus F ⊂ (int(cl(A)))c. Therefore F ⊆ [int(cl(A))] ∩ [int(cl(A))c] = φ. Therefore F = φ ⇒ int(cl(A)) - A contains no non empty αm-closed sets.

Sufficiency: Let A ⊆ U is αm-open set. Suppose that int(cl(A)) is not contained in U. Then (int(cl(A)))c is a non empty αm-closed set and contained in int(cl(A)) - A which is a contradiction. Therefore int(cl(A)) ⊆ U and hence A is αm-closed set.

□

Theorem 3.3. Let B ⊆ Y ⊆ X, if B is αm closed set relative to Y and Y is open then B is αm closed set in (X, τ)

Proof. Let U be a αm closed set in (X, τ) such that B ⊆ U. Given that B ⊆ Y ⊆ X. Therefore B ⊆ Y and B ⊆ U. This implies B ⊆ Y ∩ U. Since B is αm-closed set relative to Y, then int(cl(B)) ⊆ U. Y ∩ int(cl(B)) ⊆ Y ∩ U implies that Y ∩ (int(cl(B))) ⊆ U. Thus [Y ∩ int(cl(B))] ∪ [int(cl(B))]c ⊆ U ∪ [int(cl(B))]c. This implies that (Y ∪ (int(cl(B)))c) ∩ (int(cl(B)))c ⊆ U ∪ (int(cl(B)))c. Therefore (Y ⊂ (int(cl(B)))c) ⊆ U ∪ (int(cl(B)))c. Since Y is αm-closed set in X. int(cl(Y)) ⊆ U ∪ (int(cl(B)))c. Also B ⊆ Y implies that int(cl(B)) ⊆ int(cl(Y)). Thus int(cl(B)) ⊆ int(cl(Y)) ⊆ U ∪ (int(cl(B)))c. Therefore int(cl(B)) ⊆ U. Since int(cl(B)) is not contained in [int(cl(B))]c, B is αm-closed set relative to X.

□

Theorem 3.4. If A is a αm closed set and A ⊆ B ⊆ int(cl(A)) then B is a αm closed set.

Proof. Let A be a αm closed set such that A ⊆ B ⊆ int(cl(A)). Let U be a αm open set of X such that B ⊆ U. Since A is αm closed set, we have int(cl(A)) ⊆ U whenever A ⊆ U. Since A ⊆ B and B ⊆ int(cl(A)) then int(cl(B)) ⊆ int(cl(int(cl(A)))) ⊆ int(cl(A)) ⊆ U. Therefore int(cl(B)) ⊆ U. Thus B is αm closed set in X.

□

Theorem 3.5. The intersection of a αm closed set and a closed set is a αm closed set.
Proof. Let A be a α^m closed set and F be a closed set. Since A is α^m closed set, $\text{int}(\text{cl}(A)) \subseteq U$ whenever $A \subseteq U$ where U is α^m open set. To show that $A \cap F$ is α^m closed set. It is enough to show that $\text{int}(\text{cl}(A \cap F)) \subseteq U$ whenever $A \cap F \subseteq U$, where U is α^m open set. Let $G = X - F$ then $A \subseteq U \cup G$. Since G is open set, $U \cup G$ is α^m open set and A is α^m open set. Now $\text{int}(\text{cl}(A \cap F)) \subseteq \text{int}(\text{cl}(A)) \cap \text{int}(\text{cl}(F)) \subseteq \text{int}(\text{cl}(A)) \cap F \subseteq (U \cup G) \cap F \subseteq (U \cap F) \cup (G \cap F) \subseteq (U \cap F) \cup \emptyset \subseteq U$. This implies that $A \cap F$ is α^m closed set.

Theorem 3.6. If A and B are two α^m closed set defined for a non empty set X, then their intersection $A \cap B$ is α^m closed set in X.

Proof. Let A and B are two α^m closed sets. Consider U be α^m open set in X such that $A \cap B \subseteq U$. Now $\text{int}(\text{cl}(A \cap B)) \subseteq (\text{int}(\text{cl}(A)) \cap \text{int}(\text{cl}(B))) \subseteq U$. Hence $A \cap B$ is α^m closed set.

Remark 3.2. The union of two α^m closed sets need not be α^m closed set.

Example 3.2. Let $X = \{a,b,c\}$ with topology $A = \{\emptyset, X, \{a\}, \{b,c\}\}$ and $B = \{\emptyset, \{b\}, \{a,c\}, X\}$. Then $A \cup B$ is not a α^m closed set. Since $\{c\}$ does not belong to $A \cup B$.

Theorem 3.7. Every closed sets is α^m closed set.

Remark 3.3. The converse of the above theorem need not be true.

Theorem 3.8. Every α^m closed set is wα closed set.

Remark 3.4. The converse of the above theorem need not be true from the following example.

Example 3.3. Consider $X = \{a,b,c\}$ with topology $A = \{\emptyset, X, \{a,b\}, \{b,c\}, \{b\}\}$. In topological space the subset $A = \{a\}$ is wα -closed but not α^m-closed set.

Theorem 3.9. Every α^m closed set is gα closed set.

Remark 3.5. The converse of the above theorem need not be true from the following example.

Example 3.4. Consider $X = \{a,b,c\}$ with topology $A = \{\emptyset, X, \{a,b\}, \{b,c\}, \{b\}\}$. In topological space the subset $A = \{a\}$ is gα -closed but not α^m-closed set.

Remark 3.6. The following are the implications of α^m -closed set and the reverse is not true.
References

Received: August 11, 2014