Some Symmetric Identities for h-Extension of q-Euler Polynomials under Third Dihedral Group D_3

D. V. Dolgy

Institute of Mathematics and Computer Sciences
Far Eastern Federal University,
Vladivostok 690060, Russia

T. Kim

Department of Mathematics
Kwangwoon University
Seoul 139-701, Republic of Korea

S. H. Rim

Department of Mathematics Education
Kyungpook National University
Taegu 702-701, Republic of Korea

S. H. Lee

Division of General Education
Kwangwoon University
Seoul 139-701, Republic of Korea

Copyright © 2014 D. V. Dolgy, T. Kim, S. H. Rim and S. H. Lee. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In this paper, we give some new symmetric identities for h-extension of q-Euler polynomials under third Dihedral group D_3.
1. Introduction

Let p be a fixed odd prime number. Throughout this paper, \mathbb{Z}_p, \mathbb{Q}_p and \mathbb{C}_p will denote the ring of p-adic integers, the field of p-adic rational numbers, and the completion of algebraic closure of \mathbb{Q}_p. Let $| \cdot |_p$ be the normalized p-adic absolute value with $|p|_p = \frac{1}{p}$ and let q be an indeterminate in \mathbb{C}_p with $|1 - q|_p < p^{-\frac{1}{p-1}}$. The q-extension of number x is defined as $[x]_q = \frac{1-q^x}{1-q}$. Note that $\lim_{q \to 1} [x]_q = x$.

The q-binomial coefficient is defined by

\[
\binom{x}{n}_q = \frac{[x][x-1] \cdots [x-n+1]_q}{[n]_q!}, \text{ where } [n]_q! = [n][n-1]_q \cdots [2]_q[1]_q.
\]

(1.1)

Let f be a continuous function on \mathbb{Z}_p. Then the fermionic p-adic integral on \mathbb{Z}_p is defined by Kim to be

\[
I_{-1}(f) = \int_{\mathbb{Z}_p} f(x) d\mu_{-1}(x) = \lim_{N \to \infty} \sum_{x=0}^{p^N-1} f(x)(-1)^x, \text{ (see [5-15]).}
\]

(1.2)

Thus, by (1.2), we get

\[
I_{-1}(f_n) + (-1)^{n-1}I_{-1}(f) = 2 \sum_{l=0}^{n-1} (-1)^{n-l-1}f(l), \text{ (see [10,11]),}
\]

(1.3)

where $f_n(x) = f(x+n)$, $(n \in \mathbb{N})$.

For $h \in \mathbb{N}$, the expansion of q-Euler polynomials are considered by Kim to be

\[
\int_{\mathbb{Z}_p} \cdots \int_{\mathbb{Z}_p} q^\sum_{i=1}^{r}(h-l)y_i e^{[x+y_1+\cdots+y_r]_q t} d\mu_{-1}(y_1) \cdots d\mu_{-1}(y_r)
\]

\[
=2^r \sum_{m_1,\ldots,m_r=0}^{\infty} q^\sum_{i=1}^{r}(h-l)m_i (-1)^{\sum_{i=1}^{l} m_i} e^{[x+m_1+\cdots+m_r]_q t}
\]

\[
=2^r \sum_{m=0}^{\infty} \binom{m+r-1}{m} q^{(h-r)m} (-1)^m e^{[m+x]_q t}
\]

(1.4)

\[
= \sum_{n=0}^{\infty} E^{(h,r)}_{n,q}(x) \frac{t^n}{n!}, \text{ (see [6,12]).}
\]
From (1.4), we have

\[E_{n,q}^{(h,r)}(x) = \int_{\mathbb{Z}_p} \cdots \int_{\mathbb{Z}_p} q^{\sum_{i=1}^r (h-l) y_i} [x + y_1 + \cdots + y_r]_q^n d\mu_{-1}(y_1) \cdots d\mu_{-1}(y_r) \]

\[= 2^r \sum_{m=0}^\infty \binom{m + r - 1}{m} \left(-q^{h-r}\right)^m [x + m]_q^n \]

\[= \frac{2^r}{(1-q)^n} \sum_{l=0}^n \binom{n}{l} \left(-q^x\right)^l \left(-q^{h-r+l}\right), \quad \text{where} \quad (b : q)_n = (1-b)(1-bq)\cdots(1-bq^{n-1}). \]

In the special case, \(r = 1 \), we have

\[E_{n,q}^{(h,1)}(x) = \int_{\mathbb{Z}_p} q^{(h-1)y} [x + y]_q^n d\mu_{-1}(y) \]

\[= 2 \sum_{m=0}^\infty (-1)^m q^{m(h-1)} [x + m]_q^n \]

\[= \frac{2}{(1-q)^n} \sum_{l=0}^n \binom{n}{l} \frac{(-1)^l q^x}{1 + q^{h+l-1}}, \]

which is called the \(h \)-extension of \(q \)-Euler polynomials.

Note that \(\lim_{q \to 1} E_{n,q}^{(h,1)}(x) = E_n(x) \), where \(E_n(x) \) are ordinary Euler polynomials which are defined by the generating function to be

\[\frac{2}{e^t + 1} e^{xt} = \sum_{n=0}^\infty E_n(x), \quad \text{where} \quad \text{see [1-22].} \]

In this paper, we give new symmetric identities for the \(h \)-extension of \(q \)-Euler polynomials under third Dihedral group \(D_3 \) which are derive from the fermionic \(p \)-adic integral on \(\mathbb{Z}_p \).

2. Symmetric identities under \(D_3 \)

Let \(w_1, w_2, w_3 \in \mathbb{N} \) with \(w_1 \equiv 1 \pmod{2} \), \(w_2 \equiv 1 \pmod{2} \), \(w_3 \equiv 1 \pmod{2} \). Then, we have

\[\int_{\mathbb{Z}_p} q^{(h-1) w_2 w_3 y} e^{w_2 w_3 y + w_1 w_2 w_3 x + w_1 w_3 + w_1 w_2} q^t d\mu_{-1}(y) \]

\[= \lim_{N \to \infty} \sum_{y=0}^{p^N-1} q^{(h-1) w_2 w_3 y} e^{w_2 w_3 y + w_1 w_2 w_3 x + w_1 w_3 + w_1 w_2} q^t (-1)^y \]

\[= \lim_{N \to \infty} \sum_{y=0}^{p^N-1} \sum_{k=0}^{w_1-1} q^{(h-1)(k+w_1 y) w_2 w_3} (-1)^{k+y} e^{w_2 w_3 (k+w_1 y) + w_1 w_2 w_3 x + w_1 w_3 + w_1 w_2} q^t. \]

(2.1)
From (2.1), we can derive the following equation (2.2):

\[
\sum_{i=0}^{w_2-1} \sum_{j=0}^{w_3-1} (-1)^{i+j} q^{(h-1)i+q(w_2 w_3 y + w_1 w_2 w_3 x + w_1 w_3 i + w_1 w_2 j) q t} d\mu_{-1}(y)
\times \int_{\mathbb{Z}_p} q^{(h-1) w_2 w_3 y} e^{[w_2 w_3 y + w_1 w_2 w_3 x + w_1 w_3 i + w_1 w_2 j] q t} d\mu_{-1}(y)
= \lim_{N \to \infty} \sum_{i=0}^{w_2-1} \sum_{j=0}^{w_3-1} \sum_{k=0}^{w_3-1} \sum_{y=0}^{w_2-1} (-1)^{i+j+k} q^{(h-1)(w_1 w_2 j + w_2 w_3 k + w_1 w_2 y)}
\times e^{[w_2 w_3 (k+w_1 y) + w_1 w_2 w_3 x + w_1 w_3 i + w_1 w_2 j] q t}.
\]

As this expression is invariant under any permutation \(\sigma \in D_3\), we have the following theorem.

Theorem 2.1. Let \(w_1, w_2, w_3\) be odd natural numbers. Then the following expressions

\[
\sum_{i=0}^{w_2-1} \sum_{j=0}^{w_3-1} (-1)^{i+j} q^{(h-1)(i w_\sigma(1) w_\sigma(3) + j w_\sigma(1) w_\sigma(2))}
\times \int_{\mathbb{Z}_p} q^{(h-1) w_\sigma(2) w_\sigma(3) y} e^{[w_\sigma(2) w_\sigma(3) y + w_\sigma(1) w_\sigma(2) w_\sigma(3) x + w_\sigma(1) w_\sigma(3) i + w_\sigma(1) w_\sigma(2) j] q t} d\mu_{-1}(y)
\]

are the same for any \(\sigma \in D_3\).

By (1.6), we get

\[
\int_{\mathbb{Z}_p} q^{(h-1) w_2 w_3 y} e^{[w_2 w_3 y + w_1 w_2 w_3 x + w_1 w_3 i + w_1 w_2 j] q t} d\mu_{-1}(y)
= \sum_{n=0}^{\infty} [w_2 w_3]_q^n E_{n, q = w_2 w_3}^{(h, 1)} \left(w_1 x + \frac{w_1}{w_2} i + \frac{w_1}{w_3} j \right) q^n t^n n!.
\]

Therefore, by Theorem 2.1 and (2.3), we obtain the following theorem.

Theorem 2.2. Let \(w_1, w_2, w_3\) be odd natural numbers. Then the following expressions

\[
[w_\sigma(2) w_\sigma(3)]_q^n \sum_{i=0}^{w_\sigma(2)-1} \sum_{j=0}^{w_\sigma(3)-1} (-1)^{i+j} q^{(h-1)(i w_\sigma(1) w_\sigma(3) + j w_\sigma(1) w_\sigma(3))}
\times E_{n, q = w_\sigma(2) w_\sigma(3)}^{(h, 1)} \left(w_\sigma(1) x + \frac{w_\sigma(1)}{w_\sigma(2)} i + \frac{w_\sigma(1)}{w_\sigma(2)} j \right)
\]

are the same for any \(\sigma \in D_3\) and \(n \in \mathbb{N} \cup \{0\}\).
From (1.6), we have
\[
\int_X q^{(h-1)w_1 w_3 y} \left[y + w_1 x + \frac{w_1}{w_2} i + \frac{w_1}{w_3} j \right]^n d\mu_{-1}(y)
\]
\[
= \sum_{k=0}^{n} \binom{n}{k} \left(\frac{[w_1]_q}{[w_2 w_3]_q} \right)^{n-k} [w_3 i + w_2 j]^{n-k} \int_X q^{(h-1)w_2 w_3 y} [y + w_1 x]^k_{q^{w_2 w_3}} d\mu_{-1}(y)
\]
\[
= \sum_{k=0}^{n} \binom{n}{k} \left(\frac{[w_1]_q}{[w_2 w_3]_q} \right)^{n-k} [w_3 i + w_2 j]^{n-k} E_{k,q^{w_2 w_3}}^{(h,1)}(w_1 x).
\tag{2.4}
\]

By (2.4), we get
\[
[w_2 w_3]_q^{n-k} \sum_{i=0}^{w_2-1} \sum_{j=0}^{w_3-1} (-1)^{i+j} q^{(h-1)(i w_2 w_3 + j w_1 w_2)} \times \int_X q^{(h-1)w_2 w_3 y} \left[y + w_1 x + \frac{w_1}{w_2} i + \frac{w_1}{w_3} j \right]^n_{q^{w_2 w_3}} d\mu_{-1}(y)
\]
\[
= \sum_{k=0}^{n} \binom{n}{k} [w_2 w_3]_q^k [w_1]_q^{n-k} E_{k,q^{w_2 w_3}}^{(h,1)}(w_1 x) T_{n,k,q^{w_1}}^{(h)}(w_2, w_3),
\]
where
\[
T_{n,k,q}^{(h)}(w_1, w_2) = \sum_{i=0}^{w_1-1} \sum_{j=0}^{w_2-1} (-1)^{i+j} q^{(h-1)(i w_2 w_3 + j w_1 w_2)} [w_2 i + w_1 j]^{n-k}.
\tag{2.6}
\]

Therefore, by (2.5) and (2.6), we obtain the following theorem.

Theorem 2.3. For \(w_1, w_2, w_3 \in \mathbb{N} \) with \(w_1 \equiv 1 \) (mod 2), \(w_2 \equiv 1 \) (mod 2), \(w_3 \equiv 1 \) (mod 2), and \(n \in \mathbb{N} \cup \{0\} \), the following expressions
\[
\sum_{k=0}^{n} \binom{n}{k} [w_{\sigma(2)} w_{\sigma(3)}]_q^k [w_{\sigma(1)}]_q^{n-k} E_{k,q^{w_{\sigma(2)} w_{\sigma(3)}}}^{(h,1)}(w_{\sigma(1)} x) T_{n,k,q^{w_{\sigma(1)}}}^{(h)}(w_{\sigma(2)}, w_{\sigma(3)})
\]
are the same for any \(\sigma \in D_3 \).

References

Received: August 15, 2014