Uniqueness of a Meromorphic Function and its Differential Polynomial

Raj Shree Dhar

J & K Institute of Mathematical Sciences
Higher Education Department, J & K, India

Abstract

In this paper, we investigate the problem of uniqueness of a non-constant meromorphic function \(f \) and its differential polynomial \(Q[f] \) when they share two distinct, non-zero, small meromorphic function \(IM^* \), where we have taken the conditions \(N(r, f) = S(r, f) \) and \(N(r, 0, f) < \lambda T(r, f), \ \lambda \in (0, 1) \).

Mathematics Subject Classification: 30D35, 30D30

Keywords: Meromorphic function, Shared values, Linear combination of Derivatives, Differential Polynomial

I. INTRODUCTION

Let \(\mathbb{C}^* \) denote the extended complex plane. We say that two meromorphic function \(f \) and \(g \) share the value \(a \in \mathbb{C}^* \), \(CM(IM) \) provided that \(f(z) = a \) if and only if \(g(z) = a \), counting multiplicity (ignoring multiplicity). It is assumed that the reader is familiar with the usual notations and fundamental results of Nevanlinna theory of meromorphic function see e.g. [3]. In the sequel, a meromorphic function \(a(z) \) is called a small function of \(f \) if and only if \(T[r, a(z)] = o(T[r, f]) \) as \(r \to \infty \) possibly outside a set of \(r \) of finite linear measure.
In 1996, Dhar [2] studied some results about sharing of a function and its linear differential polynomials and proved the following result:

THEOREM A: Let f be a non-constant entire function and
\[
L[f] = \sum_{j=1}^{k} a_j f',
\]
share two finite values CM, then $f \equiv L[f]$.

We know that if f is a non-constant meromorphic function then f and $L[f]$ cannot share two finite values IM, otherwise $f \neq L[f]$ as shown by the following example given by Gundersen [1]:

EXAMPLE: Let
\[
f(z) = \frac{2A}{1 - Be^{-2z}}, \quad A \neq 0, B \neq 0,
\]
then f and f' share 0 and 1 DM (different multiplicities) and $f \neq f'$. In the example, one shared value is zero. Therefore, there arises the following question:

II. QUESTION

If $f(z)$ is a non-constant meromorphic function which shares two finite, non-zero small meromorphic functions IM with $L[f]$, a linear differential polynomial in f, then what about their uniqueness?

III. DEFINITIONS

DEFINITION 1: Let p_0, p_1, \ldots, p_k be non-negative integers. We call
\[
M[f] = f^{p_0} (f')^{p_1} \ldots (f^{(k)})^{p_k},
\]
a monomial in f with $d_M = p_0 + p_1 + \ldots + p_k$, its degree. Further let $M_1[f], M_2[f], \ldots, M_n[f]$ denote monomials in f and a_1, a_2, \ldots, a_n small meromorphic functions such that $T(r,a_j) = S(r,f), 1 \leq j \leq n$.

Then
\[
Q[f] = \sum_{j=1}^{n} a_j M_j[f],
\]
is called a differential polynomial in f of degree
\[
d_Q = \text{Max} \, d_M.
\]
The Nevanlinna Deficiency is defined by
Uniqueness of a meromorphic function

$\delta(a, f) = 1 - \lim_{r \to \infty} \frac{N(r, a, f)}{T(r, f)} = \lim_{r \to \infty} \frac{m(r, a, f)}{T(r, f)}$.

For statement of our results, we need the following definitions:

DEFINITION 2:
A value a is said to be shared by f and g CM* if

$\overline{N}(r, a, f) - \overline{N}_E(r, a, f) = S(r, f)$

where $\overline{N}_E(r, a, f)$ is the counting function (counted only once) of those a- points of f, where a is taken by f and g with same multiplicity.

DEFINITION 3:
A value a is said to be shared by f and g IM* if

$\overline{N}(r, a, f) - \overline{N}_I(r, a, f) = S(r, f)$

where $\overline{N}_I(r, a, f)$ is the counting function (counted only once) of those a- points of f, where a is taken by f and g with ignoring multiplicity.

In the above definitions, the constant value a can be replaced by a small meromorphic function $a(z)$.

IV. MAIN RESULTS

THEOREM 1: Let f be a non-constant meromorphic function such that $N(r, f) = S(r, f) \& N(r, 0, f) \leq \lambda T(r, f), \lambda \in (0,1)$

Let

$$Q[f] = \sum_{j=1}^{n} a_jM_j[f],$$

be a non-constant differential polynomial which shares two distinct, finite, non-zero small meromorphic functions a, b IM* with f^{d_Q}, where d_Q is the degree of $Q[f]$, then

$$f^{d_Q} \equiv Q[f].$$

For the proof of the theorem, we need the following lemma due to Doeringer [4]:

LEMMA: Suppose that f is meromorphic and $f^P = Q$, where P and Q are differential polynomials in f and the degree of Q is at most n.

Then
\[m(r, P) = S(r, f), r \to \infty \]

Proof of Theorem 1: Suppose \(f^{d_0} \neq Q[f] \). Let \(a, b \) be two distinct, finite non-zero small meromorphic functions of \(f \) such that \(f^{d_0} \) and \(Q[f] \) share \(a, b \) then by using \(N(r, f) = S(r, f) \), above lemma and Nevanlinna’s Second Fundamental Theorem, we have

\[
[d_0 + o(1)]T(r, f) = T(r, f^{d_0})
\]

\[
\leq \overline{N}(r, a, f^{d_0}) + \overline{N}(r, b, f^{d_0}) + \overline{N}(r, f)
\]

\[
\leq \overline{N}(r, \frac{Q}{f^{d_0}}, 1)
\]

\[
\leq T(r, \frac{Q}{f^{d_0}})
\]

\[
\leq N(r, \frac{Q}{f^{d_0}}) + S(r, f)
\]

\[
\leq N(r, \frac{1}{f^{d_0}}) + S(r, f)
\]

\[
\leq \lambda d_0 T(r, f) + S(r, f)
\]

which is a contradiction as \(\lambda < 1 \). Thus we have \(f^{d_0} \equiv Q[f] \).

Remark 1: The number 2 is best possible in the above Theorem 1 for consider the following:

Example: Let \(f(z) = \sin z \) and \(Q[f] = f^2 + f^3 + f^4 \). Then \(f^{d_0} \) and \(Q[f] \) share \(\frac{1}{2} \).

Remark 2: If we replace \(Q[f] \) by \(L[f] \) (as defined in Theorem A) in Theorem 1 then \(d_0 = 1 \) and we get the following result which is answer to above Question:

Theorem 2: Let \(f \) be a non-constant meromorphic function such that \(N(r, f) = S(r, f) \) \& \(N(r, 0, f) \leq \lambda T(r, f), \lambda \in (0, 1) \),

which shares two distinct, finite, non-zero small meromorphic functions \(a, b \) IM* with \(L[f] \), then

\[f \equiv L[f]. \]
REMARK 3: If we replace \(f \) by an entire function in Theorem 2, we get the following result which is an improvement of Theorem A:

THEOREM 3: Let \(f \) be a non-constant entire function and \(L[f] \) share two distinct, finite, non-zero small meromorphic functions \(a, b \in \mathbb{M}^* \), then

\[
f = L[f],
\]

provided that \(N(r,0,f) \leq \lambda T(r,f), \lambda \in (0,1) \).

REFERENCES

Received: August 3, 2014