Classification of Sturm-Liouville Problems

at Infinity

Kishor J. Shinde

Department of Mathematics
Dr. Panjabrao Deshmukh Agricultural University
Akola (Maharashtra State)-India

S. M. Padhye

Department of Mathematics
Shri RLT College of Science
Akola(M. S.) India

Copyright © 2014 Kishor J. Shinde and S. M. Padhye. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Abstract. We determine the values of k and p such that the Sturm-Liouville differential operator $\tau u = -\frac{d^2 u}{dx^2} + kx^p u$ is in limit point case or limit circle case at infinity. In particular it is shown that τ is in the limit point case when (i) For $p = 2$ and $\forall k$ (ii) For $\forall p$ and $k = 0$ (iii) For all p and $k > 0$ (iv) For $0 \leq p \leq 2$ and $k < 0$ (v) For $p < 0$ and $k < 0$. τ is in the limit circle case when (i) For $p > 2$ and $k < 0$.

Keywords: limit point case, limit circle case

1 Introduction

We study self-adjoint operators generated by Sturm-Liouville differential expressions
\[\tau u(x) = \frac{1}{r(x)} \{ -(pu')'(x) + q(x)u(x) \} \text{ in } (a, b), \quad -\infty \leq a < b \leq \infty \]

in the Hilbert space \(L_2(a, b; r) \) with inner product
\[\langle u, v \rangle = \int_a^b u(x) v(x) r(x) \, dx. \]

We require the following minimal assumptions on the coefficients of \(\tau \):
- \(p, q, r \) are real-valued measurable functions on \((a, b)\).
- \(p(x), r(x) > 0 \) almost everywhere in \((a, b)\).
- \(\frac{1}{p}, q, r \) are locally integrable in \((a, b)\).

We will consider here the case when \(p(x) = r(x) = 1 \). Then \(\tau \) defined above becomes
\[\tau u(x) = -u''(x) + q(x)u(x) \text{ in } (a, b), -\infty \leq a < b \leq \infty \quad \text{.................[1]} \]

The above assumptions reduce in this case to:
- \(q \) is real-valued measurable functions on \((a, b)\).
- \(q \) is locally integrable in \((a, b)\).

Definition 1.1 ([10]). We say that \(\tau \) is regular at \(a \), if \(a > -\infty \) and above assumptions hold in \([a, b)\) instead of \((a, b)\). \(\tau \) is called regular if it is regular at \(a \) and at \(b \). \(\tau \) is said to be singular at \(a \) (resp. \(b \)) if it is not regular at \(a \) (resp. \(b \)). \(\tau \) is said to be singular if it is singular at \(a \) or at \(b \).

Definition 1.2 ([10]). We say that \(\tau \) is in the limit circle case (l.c.c.) at \(b \), if for every \(\lambda \in \mathbb{C} \) all solutions of \((\tau - \lambda)u = 0\) lie right in \(L_2(a, b; r) \). \(\tau \) is in the limit point case (l.p.c.) at \(b \), if for every \(\lambda \in \mathbb{C} \) there is at least one solution of \((\tau - \lambda)u = 0\), which does not lie right in \(L_2(a, b; r) \).

2 Criteria for Determining the Limit Point and Limit Circle case for Sturm-Liouville Differential Operator

There are number of limit point-limit circle criteria in the literature. Here we just mention the most important one for the special case [1].

Theorem 2.1 ([10])
Let \(p(x) = r(x) = 1 \) in \((a, \infty)\) and assume that for some \(c \in (a, \infty) \) and \(k \geq 0 \)
\[q(x) \geq -kx^2 \text{ for } x \geq c \]
Then \(\tau \) is in the limit point case at \(\infty \).

Theorem 2.2 ([7])
Let \(q \) be a twice continuously differentiable real-valued function on \((0, \infty)\) and suppose that \(q(x) \to -\infty \) as \(x \to \infty \). Suppose further that
\[
\int_{c}^{\infty} \left(\left(\frac{(-q)^{1/2}}{(-q)^{3/2}} \right)^{'} \right) (-q)^{-1/4} \, dx < \infty
\]
for some \(c \). Then \(q \) is in the Limit point case at \(\infty \) if and only if
\[
\int_{c}^{\infty} (-q(x))^{-1/2} \, dx = \infty.
\]

3. Classification of Sturm-Liouville problems at Infinity for function \(kx^p \) for various values of \(p \) and \(k \) in terms of Limit Point and Limit Circle case

Proposition 3.1

For \(p = 2 \) and \(k \neq 0 \), \(\tau = -\frac{d^2}{dx^2} + kx^p \) is in the limit point case at \(\infty \).

Proof. Let \(q(x) = kx^p \)

For \(p = 2 \) and \(k > 0 \),

\[
\therefore kx^2 = kx^2 \geq -kx^2, \quad \forall x
\]

\[
\therefore q(x) \geq -kx^2
\]

By theorem 2.1, \(\tau \) is in the limit point case at \(\infty \).

For \(p = 2 \) and \(k = 0 \)

\[
q(x) = 0 \geq 0 \cdot x^2
\]

By theorem 2.1, \(\tau \) is in the limit point case at \(\infty \).

For \(p = 2 \) and \(k < 0 \)

\[
\therefore kx^2 = -(-kx^2)
\]

\[
q(x) = kx^2 \geq -k'x^2, \text{ where } k' = -k > 0
\]

By theorem 2.1, \(\tau \) is in the limit point case at \(\infty \).

Proposition 3.2

For \(\forall p \) and \(k = 0 \), \(\tau = -\frac{d^2}{dx^2} + kx^p \) is in the limit point case at \(\infty \).

Proof. Let \(q(x) = kx^p \)

For \(\forall p \) and \(k = 0 \),

\[
q(x) = 0 \geq -kx^2, \quad \forall x
\]

By theorem 2.1, \(\tau \) is in the limit point case at \(\infty \).

Proposition 3.3

For all \(p \) and \(k > 0 \), \(\tau = -\frac{d^2}{dx^2} + kx^p \) is in the limit point case at \(\infty \).

Proof. Let \(q(x) = kx^p \)
\[kx^p \geq 0 \geq -x^2 \quad \text{for all } \ x > 0 \]

By theorem 2.1, \(\tau \) is in the limit point case at \(\infty \).

Proposition 3.4

For \(0 \leq p \leq 2 \) and \(k < 0 \), \(\tau = -\frac{d^2}{dx^2} + kx^p \) is in the limit point case at \(\infty \).

Proof. Since \(0 \leq p \leq 2 \)

\[
\frac{p}{2} \leq 1 \Rightarrow \frac{2}{p} \geq 1
\]

\[x^{2/p} \geq x, \quad x \geq 1 \]

\[x^2 \geq x^p, \quad x \geq 1 \]

\[kx^2 \leq kx^p, \quad x \geq 1 \]

Put \(k' = -k \)

\[-k'x^2 \leq kx^p, \quad k' > 0, x \geq 1 \]

By theorem 2.1, \(\tau \) is in the limit point case at \(\infty \).

Proposition 3.5

For \(p < 0 \) and \(k < 0 \), \(\tau = -\frac{d^2}{dx^2} + kx^p \) is in the limit point case at \(\infty \).

Proof. If \(p < 0 \), then

\[kx^p = \frac{k}{x^m}, \quad \text{where } m = -p. \]

Now \(\frac{k}{x^m} \geq -cx^2, \ x \geq 1 \) for some \(c > 0 \).

\[\Rightarrow k \geq -cx^{m+2}, \ x \geq 1. \]

Choose \(c = -k. \) Then \(c > 0 \) and \(x \geq 1 \)

\[x^{m+2} \geq 1 \]

\[\Rightarrow -cx^{m+2} \leq -c = k, \ x \geq 1 \]

\[\Rightarrow \frac{k}{x^m} = kx^p \geq -cx^2, \ x \geq 1. \]

By theorem 2.1, \(\tau \) is in the limit point case at \(\infty \).

Theorem 3.6

Let \(k < 0 \) and \(p > 0 \). \(\tau = -\frac{d^2}{dx^2} + kx^p \) is in the limit point case at \(\infty \) if and only if \(p \leq 2 \).

Proof. Let \(q(x) = kx^p \) and \(k < 0 \). Then \(q(x) \to -\infty \) as \(x \to \infty \) for \(p > 0 \).

Now for some \(c > 0 \)

\[
\int_c^\infty \left(\frac{[(-q)^{1/2}]}{(-q)^{3/2}} \right)'(-q)^{-1/4}dx = \int_c^\infty \left(\frac{[(-kx^p)^{1/2}]}{(-kx^p)^{3/2}} \right)'(-kx^p)^{-1/4}dx
\]
Classification of Sturm-Liouville problems at infinity

\[
\begin{align*}
&= (-k)^{-5/4} \int_c^\infty \left(\frac{p}{x^{2-3p}} \right)' x^{-\frac{p}{4}} dx \\
&= \frac{p}{2} (-k)^{-5/4} \int_c^\infty \left(\frac{p}{x^{2-1-3p}} \right)' x^{-\frac{p}{4}} dx \\
&= \frac{p}{2} (-k)^{-5/4} \int_c^\infty (x^{-p-1})' x^{-\frac{p}{4}} dx \\
&= \frac{p}{2} (k)^{-5/4} \int_c^\infty (x^{-p-1})' x^{-\frac{p}{4}} dx \\
&= (p + 1) \frac{p}{2} (k)^{-5/4} \int_c^\infty x^{-p-2} x^{-\frac{p}{4}} dx \\
&= (p + 1) \frac{p}{2} (k)^{-5/4} \int_c^\infty \frac{1}{x^{\frac{5p}{4} + 2}} dx
\end{align*}
\]

Now

\[
\int_c^\infty \frac{1}{x^{\frac{5p}{4} + 2}} dx < \infty
\]

\[
\Leftrightarrow \frac{5}{4} p + 2 > 1
\]

\[
\Leftrightarrow \frac{5}{4} p > -1
\]

\[
\Leftrightarrow 5p > -4
\]

\[
\Leftrightarrow p > -\frac{4}{5}
\]

Since \(p > 0 \), \(p > -\frac{4}{5} \) and hence the condition

\[
\int_c^\infty \left(\left(\frac{(-q)^{1/2}}{(-q)^{3/2}} \right)' \right) (-q)^{-1/4} dx < \infty
\]

is satisfied.

Now by Theorem 2.2, \(q(x) = kx^p \) is in the limit point case at \(\infty \) if and only if
\[
\int_{c}^{\infty} (-q(x))^{-1/2}dx = \infty.
\]

Now
\[
\int_{c}^{\infty} (-kx^p)^{-1/2} dx = (-k)^{-1/2} \int_{c}^{\infty} x^{-p/2} dx
\]
\[
= (-k)^{-1/2} \int_{c}^{\infty} \frac{1}{x^p} dx
\]

Hence
\[
\int_{c}^{\infty} (-kx^p)^{-1/2} dx = \infty
\]
\[
\iff p \leq 1
\]
\[
\iff p \leq 2.
\]

Therefore for \(p > 0 \) and \(k < 0 \), \(q(x) = kx^p \) is in the limit point case at \(\infty \) if and only if \(p \leq 2 \).

Proposition 3.7

For \(p > 2 \) and \(k < 0 \), \(\tau = -\frac{d^2}{dx^2} + kx^p \) is in the limit circle case at \(\infty \).

Proof. For \(p > 2 \), \(k < 0 \) and \(p > 0 \). Applying Theorem 3.6, we get \(\tau = -\frac{d^2}{dx^2} + kx^p \) is not in the limit point case at \(\infty \). *i.e.* \(\tau = -\frac{d^2}{dx^2} + kx^p \) is in the limit circle case at \(\infty \).

Conclusion

Following table illustrates how \(\tau \) lies in limit circle case or limit point case at \(\infty \) for \(q(x) = kx^p \).
Classification of Sturm-Liouville problems at infinity

\[p \quad k \quad \tau \text{ is in l.c.c./l.p.c.} \]

- \(2 \quad (-\infty, \infty) \quad \tau \text{ is in l.p.c.}\)
- \((-\infty, \infty) \quad 0 \quad \tau \text{ is in l.p.c.}\)
- \((-\infty, \infty) \quad (0, \infty) \quad \tau \text{ is in l.p.c.}\)
- \([0,2] \quad (-\infty, 0) \quad \tau \text{ is in l.p.c.}\)
- \((-\infty, 0) \quad (-\infty, 0) \quad \tau \text{ is in l.p.c.}\)
- \((2, \infty) \quad (-\infty, 0) \quad \tau \text{ is in l.c.c.}\)

References

Received: January 5, 2014