Secure Connected Domination in a Graph

Amerkhan G. Cabaro
Department of Mathematics
College of Natural Sciences and Mathematics
Mindanao State University
Marawi City, Philippines

Sergio S. Canoy, Jr., and Imelda S. Aniversario
Department of Mathematics & Statistics
College of Sciences and Mathematics
Mindanao State University- Iligan Institute of Technology
9200 Iligan City, Philippines

Copyright © 2014 Amerkhan G. Cabaro, Sergio S. Canoy, Jr. and Imelda S. Aniversario. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Let $G = (V(G), E(G))$ be a connected simple graph. A connected dominating set S of $V(G)$ is a secure connected dominating set of G if for each $u \in V(G) \setminus S$, there exists $v \in S$ such that $uv \in E(G)$ and the set $(S \setminus \{v\} \cup \{u\})$ is a connected dominating set of G. The minimum cardinality of a secure connected dominating set of G, denoted by $\gamma_{sc}(G)$, is called the secure connected domination number of G. We characterized secure connected dominating set in terms of the concept of external private neighborhood of a vertex. Also, we give necessary and sufficient conditions for connected graphs to have secure connected domination number equal to 1 or 2. The secure connected domination numbers of graphs resulting from some binary operations are also investigated.

Mathematics Subject Classification: 05C69
Keywords: dominating set, connected dominating set, secure connected dominating set, external private neighbors

1 Introduction

Let \(G = (V(G), E(G)) \) be a simple graph with vertex set \(V(G) \) of finite order and edge set \(E(G) \). The neighborhood of \(v \) is the set \(N_G(v) = N(v) = \{ u \in V(G) : uv \in E(G) \} \). If \(X \subseteq V(G) \), then the open neighborhood of \(X \) is the set \(N_G(X) = N(X) = \bigcup \{ N_G(v) : v \in X \} \). The closed neighborhood of \(X \) is \(N_G[X] = N[X] = X \cup N(X) \). A vertex \(w \in V(G) \setminus X \) is an \(X \)-external private neighbor if \(N_G(w) \cap X = \{ v \} \). The set of all external private neighbors of \(v \in X \) is denoted by \(\text{epn}(v, X) \).

A subset \(S \) of \(V(G) \) is a dominating set (DS) in \(G \) if for every \(u \in V(G) \setminus S \), there exists \(v \in S \) such that \(uv \in E(G) \), i.e., \(N[S] = V(G) \). The domination number of \(G \) is the minimum cardinality of a dominating set in \(G \) and is denoted by \(\gamma(G) \). A set \(S \) is said to be a secure dominating set in \(G \) if for every \(u \in V(G) \setminus S \) there exists \(v \in S \) such that \(uv \in E(G) \) and \((S \setminus \{ v \}) \cup \{ u \} \) is a dominating set. The minimum cardinality of a secure dominating set in \(G \) is called the secure domination number of \(G \) and is denoted by \(\gamma_s(G) \). This variant of domination was introduced in [5] and several studies is found in [1, 2, 4] and elsewhere.

Another variant of domination was introduced by Sampathkumar and Walikar in [8] which they called connected domination. A dominating set \(S \) is said to be connected dominating set (CDS), if the induced subgraph \(\langle S \rangle \) is connected. Let \(S \) be a connected dominating set in \(G \). A vertex \(u \in S \) is said to \(S \)-defend \(u \), where \(u \in V(G) \setminus S \), if \(uv \in E(G) \) and \((S \setminus \{ v \}) \cup \{ u \} \) is a connected dominating set in \(G \). \(S \) is a secure connected dominating set (SCDS) in \(G \) if for each \(u \in V(G) \setminus S \), there exists \(v \in S \) such that \(v \) \(S \)-defends \(u \). The secure connected domination number \(\gamma_{sc}(G) \) of \(G \) is the smallest cardinality of a secure connected dominating set in \(G \). A dominating set (resp. secure connected dominating set) \(S \) in \(G \) with \(|S| = \gamma(G) \) (resp. \(|S| = \gamma_{sc}(G) \)) is called a \(\gamma \)-set (resp. \(\gamma_{sc} \)-set).

In this paper, we initiate a study of secure connected domination in graphs. Any undefined terms maybe found in [3] or [6].

2 Results and Discussion

Remark 2.1 Let \(G \) be a connected graph of order \(n \). Then \(1 \leq \gamma_{sc}(G) \leq n \).

Theorem 2.2 Let \(S \) be a connected dominating set of \(G \), \(v \in S \) and \(u \in V(G) \setminus S \) with \(uv \in E(G) \). \(v \) \(S \)-defends \(u \) if and only if \(\text{epn}(v, S) \subseteq N_G[u] \) and \(V(C) \cap N_G(u) \neq \emptyset \), for every component \(C \) of \(\langle S \setminus \{ v \} \rangle \).
Secure connected domination in a graph

Proof: Suppose v S-defends u. Let $w \in \text{epn}(v, S)$. Then $w \notin S$ and $N_G(w) \cap S = \{v\}$. If $w = u$, then $w \in N_G(u)$. If $w \neq u$, then $w \notin T$, where $T = (S \setminus \{v\}) \cup \{u\}$. Since T is a dominating set in G and $N_G(w) \cap S = \{v\}$, $w \in N_G(u)$. Hence, $\text{epn}(v, S) \subseteq N_G[u]$. Suppose that $V(C) \cap N_G(u) = \emptyset$ for some component C of $\langle S \setminus \{v\} \rangle$. Then there is no path joining any $a \in V(C)$ and u; hence T is not connected which is contrary to the assumption that v S-defends u.

Now we suppose that $\text{epn}(v, S) \subseteq N_G[u]$ and $V(C) \cap N_G(u) \neq \emptyset$, for every component C of $\langle S \setminus \{v\} \rangle$. Let $w \in V(G) \setminus T$, where $T = (S \setminus \{v\}) \cup \{u\}$. If $w = v$, then $uw \in E(G)$. If $w \neq v$, then $w \notin S$. If $w \notin \text{epn}(v, S)$, then $uw \in E(G)$. If $w \notin \text{epn}(v, S)$, then $N_G(w) \cap S \neq \{v\}$. Hence, there exists $t \in T \setminus \{v\} \subset T$ such that $tw \in E(G)$. Thus, T is a dominating set in G.

It remains to show that $\langle T \rangle$ is connected. Let $a, b \in T$, where $a \neq b$ and $ab \notin E(G)$. Consider the following cases:

Case 1: $a = u$ and $b \in V(D_1)$, where D_1 is a component of $\langle S \setminus \{v\} \rangle$.

Let $z \in V(D_1) \cap N_G(a)$. Then $az \in E(G)$ and $z \in V(D_1)$. Since D_1 is connected, there is a path, say $P(z, b)$, joining z and b. Now, the path $P(z, b)$ together with the edge az forms a path $P(a, b)$ joining a and b.

Case 2: a and b are in the same component D of $\langle S \setminus \{v\} \rangle$.

Since D is connected, there is a path joining a and b.

Case 3: $a \in V(D_1)$ and $b \in V(D_2)$, where D_1 and D_2 are different components of $\langle S \setminus \{v\} \rangle$.

Let $w \in V(D_1) \cap N_G(u)$ and $x \in V(D_2) \cap N_G(u)$. Since D_1 is connected, there is a path $P(a, w)$ joining a and w. Similarly, there is also a path $P(x, b)$ joining x and b. The paths $P(a, w)$ and $P(x, b)$, together with the edges uw and ux form a path $P(a, b)$ from a to b.

Thus, in either case, $\langle T \rangle$ is connected. \qed

Corollary 2.3 Let S be a connected dominating set in G. Then S is a secure connected dominating set in G if and only if for every $u \in V(G) \setminus S$, $\exists v \in S \cap N_G(u)$ such that

(i) $\text{epn}(v, S) \subseteq N_G[u]$, and

(ii) $V(C) \cap N_G(u) \neq \emptyset$, for every component C of $\langle S \setminus \{v\} \rangle$.

Proof: Suppose S is an SCDS in G. Then for every $u \in V(G) \setminus S$, there exists $v \in S \cap N_G(u)$ such that $\langle S \setminus \{v\} \rangle \cup \{u\}$ is a CDS in G. This means that v S-defends u. By Theorem 2.2, (i) and (ii) hold. The converse follows immediately. \qed

A leaf u of a graph G is a vertex of degree one and the support vertex of a leaf u is the unique vertex v such that $uv \in E(G)$. We denote by $L(G)$ and $S(G)$ be the set of leaves and support vertices of G, respectively.
Theorem 2.4 Let G be a connected graph of order $n \geq 3$ and let X be a secure connected dominating set of G. Then

(i) $L(G) \subseteq X$ and $S(G) \subseteq X$

(ii) No vertex in $L(G) \cup S(G)$ is an X-defender.

Proof: Suppose that $x \in L(G)$. Let $y \in S(G)$ such that $xy \in E(G)$. Let $S^* = (X \setminus \{y\}) \cup \{x\}$. Since $\langle S^* \rangle$ is not connected, $x \in X$. Suppose $x \in S(G)$. Let $z \in L(G) \cap N_G(x)$. Then $z \in X$. Since $\langle X \rangle$ is connected, $x \in X$.

Let $v \in L(G) \cup S(G)$ and $u \in V(G) \setminus X$. Now $v \in L(G) \cup S(G) \Rightarrow v \in L(G)$ or $v \in S(G)$. If $v \in L(G)$, then $uv \notin E(G)$. If $v \in S(G)$, then there exists $z \in V(G)$ such that $N(z) = \{v\}$. By (i), $z \in X$. Thus $\langle X \setminus \{v\} \rangle \cup \{u\}$ is not connected. Thus, in either case, v does not X-defend u. \hfill \Box

Theorem 2.5 Let n be a positive integer. Then

(i) $\gamma_{sc}(K_n) = 1$ for all $n \geq 2$

(ii) $\gamma_{sc}(P_n) = \begin{cases} 1, & \text{if } n = 2 \\ n, & \text{if } n \geq 3 \end{cases}$

(iii) $\gamma_{sc}(C_n) = \begin{cases} 1, & \text{if } n = 3 \\ n-1, & \text{if } n > 3 \end{cases}$

Proof: First suppose that $G = K_n$. Then $S = \{v\} \subseteq V(G)$ is a connected dominating set of G. Now $\forall x \in V(G)$, $(S \setminus \{v\}) \cup \{x\} = \{x\}$ which is a CDS of G. Thus $S = \{v\}$ is an SCDS of G. Therefore, $\gamma_{sc}(G) \leq 1$. By Remark 2.1, it follows that $\gamma_{sc}(G) = 1$. Next, let P_n be a path of order $n \geq 2$. For $n = 2$, $P_2 \cong K_2$ and $\gamma_{sc}(P_2) = 1$. Suppose $n \geq 3$. Let S be a γ_{sc}-set of $P_n = [v_1, v_2, \ldots, v_n]$. Then $v_1, v_n \in S$ by Theorem 2.4. Since $\langle S \rangle$ is connected, $S = V(P_n)$. Thus $\gamma_{sc}(P_n) = |S| = n$. Finally, let C_n be a cycle of order $n \geq 3$. Suppose $n = 3$, then $C_3 \cong K_3$ and $\gamma_{sc}(C_3) = 1$. For $n > 3$, let $C_n = [v_1, v_2, \ldots, v_n, v_1]$ and let $S^* = \{v_1, v_2, \ldots, v_{n-1}\}$. Clearly, S^* is an SCDS in C_n. Let S be a γ_{sc}-set of C_n. Since S^* is an SCDS in C_n, $|S| \leq |S^*| = n-1$. Suppose $|S| = k < n-1$. Since $\langle S \rangle$ is connected, $\langle V(C_n) \setminus S \rangle$ is connected, where $|V(C_n) \setminus S| = m \geq 2$. Moreover, since S is a dominating set, $m = 2$. Let $V(C_n) \setminus S = \{v_i, v_{i+1}\}$, $i = 1, 2, \ldots, n-1$. Note that $\langle S \setminus \{v_{i-1}\} \rangle \cup \{v_i\} = \{v_1, v_2, \ldots, v_{i-2}, v_i, v_{i+1}, \ldots, v_n\}$ is not connected, which is contrary to the assumption that $|S| = k < n-1$. This shows that $|S| = k = n-1$. Consequently, $\gamma_{sc}(C_n) = n-1$. \hfill \Box
Theorem 2.6 Let G be a connected graph of order n. Then $\gamma_{sc}(G) = 1$ if and only if $G = K_n$.

Proof: Suppose $\gamma_{sc}(G) = 1$ and let $S = \{v\}$ be an SCDS of G. Suppose $G \neq K_n$, then there exists $x, y \in V(K_n)$ such that $d(x, y) = 2$. Then $(S \setminus \{v\}) \cup \{x\} = \{x\}$, which is not a dominating set of G, since $xy \notin E(K_n)$. Therefore, $G = K_n$. The converse is true by Theorem 2.5. \hfill \Box

The following Theorem shows that it is not possible to find a non-complete connected graph G such that $\gamma(G) = \gamma_{sc}(G)$.

Theorem 2.7 Let G be a non-complete connected graph and let S be a secure connected dominating set in G. Then the set $S \setminus \{v\}$ is a dominating set for every $v \in S$. In particular, $1 + \gamma(G) \leq \gamma_{sc}(G)$.

Proof: Let $v \in S$ and $T = S \setminus \{v\}$. We will show that T is a dominating set in G. Let $w \in V(G) \setminus T$. If $w = v$, then $\exists u \in S$ such that $uw \in E(G)$ because $\langle S \rangle$ is connected. If $w \neq v$, then $w \notin S$. Since S is a secure dominating set in G, there exists $x \in S \cap N_G(w)$ such that x S-defends w. If $x \neq v$, then $x \in T$. If $x = v$, then $(S \setminus \{v\}) \cup \{w\}$ is a CDS. This implies that $\exists u \in T$ such that $uw \in E(G)$. Therefore, in any case, $T = S \setminus \{v\}$ is a DS. Thus, $1 + \gamma(G) \leq |S|$. If, in particular, S is a γ_{sc}-set, then $1 + \gamma(G) \leq \gamma_{sc}(G)$. \hfill \Box

Theorem 2.8 Let G be a connected graph of order $n \geq 4$. Then $\gamma_{sc}(G) = 2$ if and only if there exists a non-complete graph H such that $G = K_2 + H$.

Proof: Suppose $G = K_2 + H$, for some non-complete graph H. Then G is not complete and by Theorem 2.6, it follows that $\gamma_{sc}(G) \geq 2$. Let $S = \{x, y\}$, where $x, y \in V(K_2)$. Then S is a connected dominating set in G. Let $z \in V(G) \setminus S$. Then $z \in V(H), xz \in E(G)$ and $(S \setminus \{x\}) \cup \{z\} = \{y, z\}$ a connected dominating set of G. Thus S is an SCDS in G. Therefore, $\gamma_{sc}(G) = 2$.

For the converse, suppose that $\gamma_{sc}(G) = 2$. Let $S = \{x, y\}$ be a γ_{sc}-set of G. Let $z \in V(G) \setminus S$. Suppose $xz \notin E(G)$. Since S is an SCDS of G, $yz \in E(G)$ and $S^* = \{x, z\}$ is a connected dominating set of G. This is not possible because $xz \notin E(G)$. Therefore, $xz \in E(G)$. Similarly, $yz \in E(G)$. Let $H = \langle V(G) \setminus S \rangle$ and let $K_2 = \langle S \rangle$. Then $G = K_2 + H$. Moreover, since G is not complete, H is non-complete. \hfill \Box

Corollary 2.9 Let G be a non-complete connected graph and $n \geq 2$. Then $\gamma_{sc}(G + K_n) = 2$.

Corollary 2.10 Let G be a non-complete connected graph. Then $\gamma_{sc}(K_1 + G) = 2$ if and only if one of the following is true:

(i) $\gamma(G) = 1$
(ii) $\gamma_{sc}(G) = 2$

Proof: Suppose $\gamma_{sc}(K_1 + G) = 2$ and let $V(K_1) = \{a\}$. Let $S = \{x, b\}$ be an SCDS in $K_1 + G$, where $b \in V(G)$. Consider the following cases:

Case 1. Suppose $x = a$.

If $\{b\}$ were not a dominating set of G, then $\exists y \in V(G) \setminus \{b\}$ such that $by \notin E(G)$. Since S is an SCDS of $K_1 + G$, $S \setminus \{x\} \cup \{y\} = \{y, b\}$ is a connected dominating set of $K_1 + G$. This, however, is impossible to happen since $by \notin E(G)$. Thus, $\{b\}$ is a dominating set of G. This shows that $\gamma(G) = 1$.

Case 2. Suppose $x \neq a$.

Then $x \in G$. Hence, S is an SCDS in G. Since $K_1 + G$ is not complete, it follows that $\gamma_{sc}(G) = |S| = 2$.

For the converse, suppose first that $\gamma(G) = 1$, say $\{b\}$ is a dominating set of G. Let $H = \langle V(G) \setminus \{b\} \rangle$. Then H is non-complete and $K_1 + G \approx \langle \{a, b\} \rangle + H$. By Theorem 2.8, $\gamma_{sc}(K_1 + G) = 2$. Suppose now that $\gamma_{sc}(G) = 2$. Then by Theorem 2.8, $G = K_2 + H^*$, where H^* is a non-complete graph. Let $H = \langle a \rangle + H^*$. Then H is non-complete and $K_1 + G \approx K_2 + H$. Therefore, by Theorem 2.8, $\gamma_{sc}(K_1 + G) = 2$.

Theorem 2.11 Let G be a non-complete connected graph and $K_1 = \langle v \rangle$. Then $S \subseteq V(K_1 + G)$ is a SCDS of $K_1 + G$ iff one of the following holds:

(i) $S \subseteq V(G)$ and S is a SCDS of G.

(ii) $v \in S$ and $S \setminus \{v\}$ is a dominating set in G.

Proof: Suppose $S \subseteq V(K_1 + G)$ is an SCDS in $K_1 + G$. If $S \subseteq V(G)$, then S is an SCDS of G. Suppose $v \in S$ and let $x \in V(G) \setminus (S \setminus \{v\})$. Suppose $xy \in E(K_1 + G)$ for all $y \in V(G) \setminus (S \setminus \{v\})$. Then $(S \setminus \{v\}) \cup \{x\}$ is not connected, contrary to our assumption that S is an SCDS in $K_1 + G$. Thus, $S \setminus \{v\}$ is a dominating set in G.

For the converse suppose first that S is an SCDS in G. Then S is an SCDS in $K_1 + G$. Next suppose that $v \in S$ and $S \setminus \{v\}$ is a dominating set in G. Then S is a connected dominating set in $K_1 + G$. Let $z \in V(K_1 + G) \setminus S$. Then $z \in V(G) \setminus (S \setminus \{v\})$. Since $S \setminus \{v\}$ is a DS in G, there exists $x \in S \setminus \{v\}$ such that $xz \in E(G)$ and $(S \setminus \{x\}) \cup \{z\}$ is a CDS in $K_1 + G$. Thus, S is an SCDS in $K_1 + G$.

Corollary 2.12 Let G be a non-complete connected graph. Then

$$\gamma_{sc}(K_1 + G) = \min\{\gamma_{sc}(G), \gamma(G) + 1\}.$$
Proof: Let \(S_1 \) and \(S_2 \) be, respectively, \(\gamma_{sc} \)-set and \(\gamma \)-set of \(G \). By Theorem 2.11, \(S_1 \) and \(S_2 \cup V(K_1) \) are SCDS in \(K_1 + G \). Thus, \(\gamma_{sc}(K_1 + G) \leq \min\{|S_1|, |S_2 \cup V(K_1)|\} = \min\{\gamma_{sc}(G), \gamma(G) + 1\} \). Let \(r = \min\{\gamma_{sc}(G), \gamma(G) + 1\} \). Let \(S \) be a \(\gamma_{sc} \)-set of \(K_1 + G \). By Theorem 2.11, \(\gamma_{sc}(K_1 + G) = |S| \geq r \). This proves the desired equality. \(\square \)

From this result, we can readily solve for the secure connected domination number of the graphs: \(F_n \) and \(W_n \).

Remark 2.13 Let \(F_n \), and \(W_n \) be the fan and wheel of order \(n + 1 \), respectively. Then

\[
(i) \quad \gamma_{sc}(F_n) = \begin{cases} 1, & \text{if } n = 1 \\ \lceil \frac{n}{3} \rceil + 1, & \text{if } n \geq 2 \end{cases}
\]

\[
(ii) \quad \gamma_{sc}(W_n) = \begin{cases} 1, & \text{if } n = 3 \\ \lceil \frac{n}{3} \rceil + 1, & \text{if } n \geq 4 \end{cases}
\]

Remark 2.14 Corollary 2.10 also follows from Corollary 2.12.

Let \(G \) and \(H \) be non-complete connected graphs. Then \(G + H \) is non-complete. Thus \(\gamma_{sc}(G + H) \geq 2 \). Now, choose \(a, b \in V(G) \) and \(x, y \in V(H) \). Then \(S = \{a, b, x, y\} \) is a SCDS in \(G + H \). It follows that \(\gamma_{sc}(G + H) \leq 4 \). This result is stated formally in the following remark.

Remark 2.15 Let \(G \) and \(H \) be non-complete connected graphs. Then \(2 \leq \gamma_{sc}(G + H) \leq 4 \).

Theorem 2.16 Let \(G \) and \(H \) be non-complete connected graphs. Then \(\gamma_{sc}(G + H) = 2 \) if and only if one of the following holds:

\[(i) \quad \gamma_{sc}(G) = 2.\]

\[(ii) \quad \gamma_{sc}(H) = 2.\]

\[(iii) \quad \gamma(G) = 1 \text{ and } \gamma(H) = 1.\]

Proof: Suppose \(\gamma_{sc}(G + H) = 2 \). Then by Theorem 2.8, \(G + H = K_2 + H_1 \), where \(H_1 \) is a non-complete graph. Let \(V(K_2) = \{x, y\} = S \), then \(S \) is a SCDS in \(G + H \). Consider the following cases:

Case 1: Suppose \(x, y \in V(G) \)

Then \(G = K_2 + J \), where \(J \) is a non-complete subgraph of \(G \). Hence by Theorem 2.8, \(\gamma_{sc}(G) = 2 \).

Case 2: Suppose \(x, y \in V(H) \)

As in case 1, \(\gamma_{sc}(H) = 2 \).
Case 3: Suppose \(x \in V(G) \) and \(y \in V(H) \)

Let \(z \in V(G) \setminus \{x\} \). Since \(G + H = K_2 + H_1 \), \(xz \in E(G) \). Hence \(\{x\} \) is a dominating set in \(G \). It follows that \(\gamma(G) = 1 \). Similarly, \(\gamma(H) = 1 \).

For the converse, suppose that \(\gamma_{sc}(G) = 2 \). Then by Theorem 2.8, \(G = K_2 + J \), where \(J \) is a non-complete graph. Thus, \(G + H = (K_2 + J) + H = K_2 + H_1 \), where \(H_1 = J + H \) is non-complete. It follows from Theorem 2.8 that \(\gamma_{sc}(G + H) = 2 \). Similarly, \(\gamma_{sc}(G + H) = 2 \) if \(\gamma_{sc}(H) = 2 \) holds. Suppose (iii) holds. Let \(\{x\} \) and \(\{y\} \) be a dominating set of \(G \) and \(H \), respectively. Then \(G = \langle x \rangle + J \) and \(H = \langle y \rangle + K \) where \(J \) and \(K \) are non-complete graphs.

Then, \(G + H = (\langle x \rangle + J) + (\langle y \rangle + K) = K_2 + H_1 \), where \(V(K_2) = \{x, y\} \) and \(H_1 = J + K \) is a non-complete graph. Hence by Theorem 2.8, \(\gamma_{sc}(G + H) = 2 \).

\(\square \)

Theorem 2.17 Let \(G \) and \(H \) be non-complete connected graph such that \(\gamma_{sc}(G + H) \neq 2 \). Then \(\gamma_{sc}(G + H) = 3 \) if and only if one of the following holds:

(i) \(\gamma_{sc}(G) = 3 \) or \(\gamma_{sc}(H) = 3 \)

(ii) \(\gamma(G) = 2 \) or \(\gamma(H) = 2 \).

Proof: Suppose that \(\gamma_{sc}(G + H) = 3 \). Let \(S = \{x, y, z\} \) be a SCDS in \(G + H \). Consider the following cases:

Case 1: Suppose \(S \subseteq V(G) \)

Then \(S \) is an SCDS in \(G \). It follows that \(\gamma_{sc}(G) = 3 \)

Case 2: If \(S \subseteq H \)

Then \(S \) is an SCDS in \(H \) and \(\gamma_{sc}(H) = 3 \).

Case 3: Suppose \(V(G) \cap S \neq \emptyset \) and \(V(H) \cap S \neq \emptyset \)

Let \(w \in V(G) \setminus \{x, y\} \). Suppose that \(w \notin N_G(X) \). Then \(wz \in E(G + H) \).

Hence, \(\{S \setminus \{z\}\} \cup \{w\} \) is not a CDS, which is contrary to the assumption about \(S \). Therefore, \(N_G[X] = V(G) \), that is, \(X \) is a DS in \(G \).

Since \(G \) is non-complete, \(\gamma(G) = 2 \).

For the converse, suppose (ii) holds, say \(\gamma(G) = 2 \). Let \(X = \{a, b\} \) be a DS in \(G \). Pick \(c \in V(H) \) and set \(S = \{a, b, c\} \). Let \(z \in V(G + H) \setminus S \). Then \(z \in V(G) \) or \(z \in V(H) \). If \(z \in V(G) \), then \(z \in N_G(X) \), say \(az \in E(G + H) \), and \(S = \{b, z, c\} \) is a CDS in \(G + H \). If \(z \in V(H) \), then \(az \in E(G + H) \) and \(S = \{b, z, c\} \) is a CDS in \(G + H \).

Thus, \(S \) is an SCDS in \(G + H \). Therefore \(\gamma_{sc}(G + H) = 3 \). We obtain the same conclusion if we assume that \(\gamma(H) = 2 \).

Suppose (i) holds, say \(\gamma_{sc}(H) = 3 \). Let \(S = \{a, b, c\} \) be a SCDS in \(H \). Then, clearly \(S \) is a SCDS in \(G + H \). Therefore, \(\gamma_{sc}(G + H) = 3 \).

\(\square \)

Theorem 2.18 Let \(G \) be a non-trivial connected graph and let \(H \) be any graph. Then \(C \subseteq V(G \circ H) \) is a secure connected dominating set in \(G \circ H \) if and only if \(C = V(G) \cup (\bigcup_{v \in V(G)} S_v) \), where each \(S_v \) is a dominating set in \(H_v \).
Secure connected domination in a graph

Proof: Suppose that \(C \subseteq V(G \circ H) \) is a secure connected dominating set in \(G \circ H \) and let \(v \in V(G) \). Choose \(w \in V(G) \setminus \{v\} \). Since \(C \) is a DS, \(V(v + H^v) \cap C \neq \emptyset \) and \(V(w + H^w) \cap C \neq \emptyset \). Since \((C) \) is connected, \(v \in C \). Let \(S_v = V(H^v) \cap C \) and \(x \in V(H^v) \setminus S_v \). Since \(C \) is an SCDS of \(G \circ H \), there exists \(y \in C \) such that \(xy \in E(G \circ H) \) and \((C \setminus \{y\}) \cup \{x\} \) is a CDS. Note that since \((\langle C \setminus \{v\} \rangle \cup \{x\}) \) is not connected in \(G \circ H \), it follows that \(y \neq v \). Thus, \(y \in S_v \), showing that \(S_v \) is a DS in \(H^v \).

Conversely, suppose that \(C = V(G) \cup (\cup_{v \in V(G)} S_v) \). Then, clearly, \((C) \) is a CDS in \(G \circ H \). Let \(x \in V(G \circ H) \setminus C \) and let \(v \in V(G) \) such that \(x \in V(H^v) \setminus S_v \). Since \(S_v \) is a DS in \(H^v \), there exists \(z \in S_v \) such that \(xz \in E(G \circ H) \). Also, \((C \setminus \{x\}) \cup \{z\} \) is a CDS in \(G \circ H \). Therefore, \(C \) is an SCDS in \(G \circ H \). \(\square \)

Corollary 2.19 Let \(G \) be a non-trivial connected graph of order \(m \) and let \(H \) be any graph of order \(m \). Then \(\gamma_{sc}(G \circ H) = m(1 + \gamma(H)) \).

Proof: Let \(S \) be a \(\gamma \)-set of \(H \). For each \(v \in V(H) \), choose \(S_v \subseteq V(H^v) \) such that \(S_v \cong S \). Then, by Theorem 2.18, \(C = V(G) \cup (\cup_{v \in V(G)} S_v) \) is an SCDS in \(G \circ H \). Hence, \(\gamma_{sc}(G \circ H) \leq m + \sum |S_v| = m + m\gamma(H) = m(1 + \gamma(H)) \). On the other hand, if \(C \) is a \(\gamma_{sc} \)-set in \(G \circ H \), then \(C = V(G) \cup (\cup S_v^*) \), where each \(S_v^* \) is a DS in \(H^v \), by Theorem 2.18. Thus, \(\gamma_{sc}(G \circ H) = |C| = m + \sum |S_v^*| \geq m + m\gamma(H) = m(1 + \gamma(H)) \). This proves the desired equality. \(\square \)

Acknowledgements. The researcher would like to thank the Commission of Higher Education of the Republic of the Philippines for the partial financial support extended through its Faculty Development Program Phase II.

References

Received: July 1, 2014