Some Extremal Properties of a Generalised Close-to-Convex Function

Abdullah Yahya
Faculty of Computer and Mathematical Sciences
Universiti Teknologi MARA Malaysia,
40450 Shah Alam, Selangor, Malaysia

Shaharuddin Cik Soh and Daud Mohamad
Faculty of Computer and Mathematical Sciences
Universiti Teknologi MARA Malaysia,
40450 Shah Alam, Selangor, Malaysia

Copyright © 2014 Abdullah Yahya, Shaharuddin Cik Soh and Daud Mohamad. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Let $G_{St}(\alpha, \delta)$ denotes the class of function f, $f(0) = f''(0) - 1 = 0$ and satisfying
\[
\text{Re}\left\{ e^{in} \frac{zf'(z)}{f(z) - f(-z)} \right\} > \delta,
\]
in $E = \{z : |z| < 1\}$ for $|\alpha| < \pi$, $0 \leq \delta < 1$ and $\cos \alpha > \delta$. In this paper, we determine the bounds for $\arg f'(z)$ of $G_{St}(\alpha, \delta)$.

Mathematics Subject Classification: Primary 30C45, Secondary 30C45

Keywords: Analytic function, Starlike function, Argument, Bounds
1 Introduction

Let \(A \) denote the class of function given by
\[
f(z) = z + a_2 z^2 + a_3 z^3 + \cdots + a_n z^n + \cdots = z + \sum_{n=2}^{\infty} a_n z^n
\] (1.1)
that are analytic in \(E = \{ z : |z| < 1 \} \). We define \(G_{S\alpha}(\alpha, \delta) \) as the class of normalise function \(f \in A \) satisfying the condition
\[
\Re \left\{ e^{i\alpha} \frac{zf''(z)}{f(z) - f(-z)} \right\} > \delta, \quad (z \in E)
\]
where \(|\alpha| < \pi \), \(0 \leq \delta < 1 \) and \(\cos \alpha > \delta \). These functions are called starlike with respect to symmetric points and were introduced by Sakaguchi [4] in 1959. We also define subclass of \(A \) consisting of function that are Univalent, Starlike, Convex and Close-to-Convex denotes by \(S, St, K, \) and \(C \) respectively. Based on Goodman [1], the class of \(St, K, \) and \(C \) are defined as follows

Definition 1.1 Let \(f \) be given by (1.1). Then \(f \in St \) if and only if
\[
\Re \left\{ \frac{zf''(z)}{f(z)} \right\} > 0, \quad z \in E.
\]

Definition 1.2 Let \(f \) be given by (1.1). Then \(f \in K \) if and only if
\[
\Re \left\{ 1 + \frac{zf''(z)}{f'(z)} \right\} > 0, \quad z \in E.
\]

Definition 1.3 Let \(f \) be given by (1.1). Then \(f \in C \) if and only if for \(z \in E \) and \(-\frac{\pi}{2} < \beta < \frac{\pi}{2} \) there exist \(g(z) \in K \) such that
\[
\Re \left\{ e^{i\beta} \frac{f''(z)}{g'(z)} \right\} > 0, \quad z \in E.
\]

Recently, Yahya et al., [2][3] defined \(G_{S\alpha}(\alpha, \delta) \) as the class of functions \(f \in S \) satisfy
\[
\Re \left\{ e^{i\alpha} \frac{zf''(z)}{g(z)} \right\} > \delta, \quad \left(z \in E; |\alpha| \leq \pi; \cos \alpha > \delta; g(z) = \frac{z}{1-z^2} \right)
\]
and shows some extremal properties such as representation theorem, extreme points, bound of \(a_n \), upper and lower bounds for \(\Re f' \), \(\Im f' \) and distortion.
Properties of a generalised close-to-convex function

1933

theorem for this class of functions. Our purpose on this paper is to obtain others
basic properties such as bounds for \(\arg f'(z) \) of \(G_{S_\alpha}(\alpha, \delta) \).

2 Main Result

In Yahya et al., [3] the Centre and Radius and Distortion Theorem for
\(G_{S_\alpha}(\alpha, \delta) \) are given by following lemma.

Lemma 2.1 Let \(f \in G_{S_\alpha}(\alpha, \delta) \), then \(f' \) maps \(|z| \leq r\) into the disc \(\Delta_r \), with
centre
\[
-e^{-ia}(e^{-ia} - 2\delta) \frac{1}{1-r^4} + \frac{2A_{a\delta}e^{-ia}}{(1-r^2)(1-r^4)}
\]
and radius
\[
\frac{2A_{a\delta}r}{(1-r^2)(1-r^4)}.
\]

Lemma 2.2 Let \(f \in G_{S_\alpha}(\alpha, \delta) \), then
\[
|f'(z)| \leq C(r) + \frac{2A_{a\delta}r}{(1-r^2)(1-r^4)}
\]
where
\[
C(r) = \left[1 + \frac{4r^2A_{a\delta}}{1-r^2}\left(A_{a\delta} + \delta\right)\right]^{\frac{1}{2}} \left[\frac{1}{1-r^4}\right]
\]
(2.1)
and the bound is sharp for any extreme points of \(G_{S_\alpha}(\alpha, \delta) \).

Theorem 2.3 Let \(f \in G_{S_\alpha}(\alpha, \delta) \) and put \(x(r) = \frac{2r^2A_{a\delta}}{(1-r^2)(1-r^4)} \), \((0 \leq r < 1)\). Let
\[
r_0 = \begin{cases}
1, & \delta \geq 0 \\
\frac{1}{\sqrt{1-4\delta A_{a\delta}}}, & \delta < 0
\end{cases}
\]
Then, for \(0 < |z| = r < r_0 \) and for suitable determination of argument
\[
|\arg f'(z) + \alpha - \phi_a(x(r))| \leq \sin^{-1} \frac{2rA_{a\delta}}{(1-r^2)(1-r^4)C(r)}
\]
where \(\phi_a(x) \) is defined on \([0,x(r_o)] \) as above, and \(C(r) \) is given by (2.1).

Proof Following work by Soh and Mohamad [5] and from Lemma 2.1, the distance of the centre from the origin is greater than the radius. Thus,

\[
\left| \frac{2A_{ao\delta}}{1-r^2(1-r^4)} - \frac{e^{-ia} - 2\delta}{1-r^4} \right| > \frac{2rA_{ao\delta}}{1-r^2(1-r^4)}.
\]

From the above inequality, we have

\[
\left(\frac{2A_{ao\delta}}{1-r^2(1-r^4)} + \frac{2\delta}{1-r^4} \right)^2 - 2\cos \alpha \left(\frac{2A_{ao\delta}}{1-r^2(1-r^4)} + \frac{2\delta}{1-r^4} \right) + \frac{\cos^2 \alpha}{1-r^4} + \frac{\sin^2 \alpha}{1-r^4} - \frac{4r^2 A_{ao\delta}^2}{(1-r^2(1-r^4))} > 0,
\]

and hence

\[
\frac{4\delta A_{ao\delta}}{1-r^2(1-r^4)} - \frac{4\delta A_{ao\delta}}{1-r^2(1-r^4)} + \frac{1}{1-r^4} > 0,
\]

This inequality holds for all \(r \) in \([0,1) \) if \(\delta \geq 0 \) and for \(0 \leq r < \frac{1}{\sqrt{1-4\delta A_{ao\delta}}} \) if \(\delta < 0 \). This establishes the restriction on \(|z| \) in the statement of the theorem.

From Lemma 2.2, we have

\[
\left| f''(z) - \left(- \frac{-e^{-ia}e^{-ia} - 2\delta}{1-r^4} + \frac{2A_{ao\delta}e^{-ia}}{1-r^2(1-r^4)} \right) \right| \leq \frac{2A_{ao\delta}}{1-r^2(1-r^4)}.
\]

and with \(H(r) \) given as \(H(r) = -\frac{-e^{-ia}e^{-ia} - 2\delta}{1-r^4} + \frac{2A_{ao\delta}e^{-ia}}{1-r^2(1-r^4)} \) and \(C(r) = |H(r)| \), we deduce

\[
|\arg f''(z) - \arg H(r)| \leq \sin^{-1} \left(\frac{2rA_{ao\delta}}{1-r^2(1-r^4)C(r)} \right)
\]

(2.3)

also,

\[
\arg H(r) = \arg \left(\frac{2A_{ao\delta}}{1-r^2(1-r^4)} - \frac{e^{-ia} - 2\delta}{1-r^4} \right)
\]

\[
= -\alpha + \arg \left(\frac{e^{ia}}{1-r^4} + \frac{2r^2 A_{ao\delta}}{1-r^2(1-r^4)} \right)
\]
Put \(x(r) = \frac{2r^2A_{\alpha \delta}}{(1-r^2)(1-r^4)} \), then \(\arg H(r) = -\alpha + \phi_\alpha(x(r)) \) and the desired result follows using (2.3).

We prove the following theorem that is similar to the previous result, but feature \(\arg(f'(z) + k) \) for some real number \(k \) instead of \(\arg f'(z) \) with a restricted range of \(|z| \).

Theorem 2.4
Let \(f \in G_{\alpha, \delta} \), where \(|\alpha| \neq \frac{\pi}{2} \). Put \(x(r) = \frac{2r^2A_{\alpha \delta}}{(1-r^2)(1-r^4)} \),

\[
(0 \leq r < 1) \quad \text{and let} \ k \ \text{be a real number such that} \\
k \cos \alpha + \delta \left(\frac{1}{1-r^4} \right) > 0.
\]

Then

\[
|\arg(f'(z) + k) + \alpha - \phi_\alpha(x(r))| \leq \sin^{-1} \frac{2rA_{\alpha \delta}}{(1-r^2)(1-r^4)C_1(r)}
\]

where \(\phi_\alpha \) is defined on \([0, \infty) \) as the continuous argument of \(\left(k + \frac{1}{1-r^4} \right)e^{i\alpha} + x \) and

\[
C_1(r) = \sqrt{\frac{4A_{\alpha \delta}r^2}{(1-r^2)(1-r^4)} + \frac{A_{\alpha \delta}}{(1-r^2)(1-r^4)} + k \cos \alpha + \frac{\delta}{1-r^4} + \left(\frac{1}{1-r^4} + k \right)^2}.
\]

Proof
Let \(|\alpha| \neq \frac{\pi}{2} \), and let \(k \) satisfy \(k \cos \alpha + \delta \left(\frac{1}{1-r^4} \right) > 0 \). From (2.2), we have,

\[
|f'(z) + H(r) + k| \leq \frac{2rA_{\alpha \delta}}{(1-r^2)(1-r^4)}
\]

where

\[
H(r) = -e^{-i\alpha} \left(e^{-i\alpha} - 2\delta \right) + 2A_{\alpha \delta} e^{-i\alpha} = \frac{1}{1-r^4} + \frac{2A_{\alpha \delta}r^2 e^{-i\alpha}}{(1-r^2)(1-r^4)}.
\]

Hence,
\[\arg f'(z + k) - \arg (H(r) + k) \leq \sin^{-1} \frac{2r A_{\alpha \delta}}{(1 - r^2)(1 - r^4)} C_1(r) \] (2.4)

where

\[C_1(r) = |H(r) + k| = \left| \frac{1 - r^2 + 2 A_{\alpha \delta} r^2 \cos \alpha + k(1 - r^2) (1 - r^4)}{(1 - r^2)(1 - r^4)} + \frac{2 A_{\alpha \delta} r^2 \sin \alpha}{(1 - r^2)(1 - r^4)} \right| \]

\[= \frac{4 A_{\alpha \delta} r^2}{(1 - r^2)(1 - r^4)} \left[\frac{A_{\alpha \delta}}{(1 - r^2)(1 - r^4)} + k \cos \alpha + \frac{\delta}{1 - r^4} \right] + \left(\frac{1}{1 - r^4} + k \right)^2. \]

Now,

\[\arg (H(r) + k) = \arg \left[e^{-i\alpha} \left(\frac{2 A_{\alpha \delta}}{(1 - r^2)(1 - r^4)} - \frac{e^{-i\alpha}}{(1 - r^4)} \right) + k \right] \]

\[= -\alpha + \varphi_{\alpha}(x(r)) \]

and with (2.4) this completes the proof.

References

Received: April 11, 2014